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Wind speed prediction with RBF
neural network based on PCA and ICA

Yagang Zhang, Chenhong Zhang, Yuan Zhao, Shuang Gao
∗

Thanks to non-pollution and sustainability of wind energy, it has become the main source of power generation in the
new era worldwide. However, the inherent random fluctuation and intermittency of wind power have negative effects on the
safe and stable operation of power system and the quality of power. The key solving this problem is to improve the accuracy
of wind speed prediction. In the paper, considering the forecasting accuracy is affected by many factors, we propose that,
Principal Component Analysis (PCA) is combined with Independent Component Analysis (ICA) to process the sample,

which can weaken the mutual interference between the various factors, extract accurately independent component reflected
the characteristics of wind farm and achieve the purpose of improving the accuracy of wind speed prediction. At the same
time, the adaptive and self-learning ability of neural network is more suitable for wind speed sequence prediction. The
prediction results demonstrate that compared with the traditional neural network predicting model (RBF, BP, Elman),
this model makes full use of the information provided by varieties of relevant factors, weakens the volatility of wind speed
sequence and significantly enhances the short-term wind speed forecasting accuracy. The research work in the paper can
help wind farm reasonably arrange the power dispatching plan, reduce the power operation cost and effectively boost the
large-scale development and utilization of renewable energy.
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1 Introduction

Excessive consumption of traditional energy, intensi-
fied environmental pollution and frequent extreme weat-
her, such as monster-level hurricanes, the highest tem-
peratures, heat waves etc, have urge all countries in the
world to provide political impetus to the solution of en-
ergy security, ecological environment and abnormal cli-
mate through multilateral cooperation. To establish a fu-
ture supported by clean and sustainable energy, renew-
able energy, such as solar, wind and geothermal energy,
has become the focus of attention of all countries.

Wind energy is the best solution to deal with global
climate change and energy crisis because it has the advan-
tage of abundant reserves, pollution and great generation
potential. According to data released by the global wind
energy council [1], the installed capacity of global wind
power in 2016 has increased over 54.6 GW, with a total
installed capacity of 486.8 GW, a year-on-year increase of
12.5%. By the end of 2016, China led global wind power
market, with the installed capacity of wind power added
23.3GW, with a total installed capacity of 170GW. Each
country wind capacity makes great improvement, but the
power grid construction is not coordinated with the new
energy generation construction, the power grid dispatch
capacity is insufficient and the power grid consumption
is low, which all make abandoning wind getting worse.
Serious wind abandoning phenomenon not only causes
the economic loss of wind power enterprises [2], but also

greatly weakens the utilization rate of new energy gen-
eration, hindering the large-scale development of wind
power industry. Reliable wind speed prediction is the key
to effectively arrange the power grid dispatch plan and
improve the power grid’s consumption ability.

The prediction accuracy of wind speed depends on the
performance of prediction model, the characteristics of
predicted object itself, and data preprocessing techniques.
Wind speed prediction is divided into deterministic pre-
diction and uncertainty prediction by the form of predic-
tion results. Deterministic prediction is the single wind
speed prediction, uncertainty prediction is estimating the
interval of wind speed and fitting the probability distri-
bution of wind speed. At present, most of wind speed
prediction is deterministic prediction, including: support
vector machine (SVM) method [3, 4], neural network [5-
7], time series method [8-10], grey forecast method [11,
12], etc. The inherent random fluctuation of wind speed
sequence has great influence on the prediction accuracy,
and the larger the fluctuation range is, the worse the pre-
diction precision is. Preprocessing wind speed sequences
reduces the complexity of wind speed sequences and the
impact of stochastic volatility on prediction accuracy to
a certain extent. The popular methods include wavelet
decomposition [13-15], principal component analysis [16],
independent component analysis [17] and empirical mode
decomposition [18].

Wind speed is related to wind direction, temperature,
air pressure, humidity and roughness. Because the mea-
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Fig. 1. The process flow chart of ICA

surement of wind speed signal is affected by many factors,
we innovatively put forward wind speed predicting model
with RBF neural network based on PCA and ICA. At
first, the samples are processed by PCA, and we can ob-
tain several comprehensive indexes that affect the wind
speed greatly; Secondly, its to make ICA of several com-
prehensive indexes and wind speed sequence, and get sev-
eral independent source signals; Then, RBF neural net-
work prediction model is established for each source sig-
nal, which will greatly improve the prediction accuracy
of a single neural network; Finally, Finally, reconstruct-
ing the prediction result of the source signal obtains the
final wind speed prediction result. With the conventional
prediction methods compared, this method considers the
influence of multiple factors on the wind speed sequence,
reduces the interaction between various factors and en-
hance the performance of the RBF neural network effec-
tively.

The structure of this paper is as follows: the second
section introduces the theory of PCA and ICA; the third
section describes the modeling process of wind speed pre-
diction model with RBF neural network based on PCA
and ICA (PCA-ICA-RBF); the fourth section presents
the comparison of prediction results and error analysis of
each model; the fifth section summarizes the full text and
make a prospect.

2 Principal component analysis (PCA) and
Independent component analysis (ICA)

PCA is a multivariate statistical analysis technique for
data compression and feature extraction that can convert
multiple related variables to a handful of uncorrelated
principal components. The principal components are usu-
ally a linear combination of original variables and can re-
flect most of original variable information [19]. The data
variance reflects the data information. The larger the vari-
ance is, the more information is contains. The detailed
calculation steps of PCA are as follows [20, 21]:

(i) – Standardize the raw data. Supposing there are
m original variables X1X2 · · · , Xm and n objects. We
standardize the original variables to eliminate differences
between variables in magnitude and dimension, and get
the normalized data matrix.

Xn×m =







x11 · · · x1m

...
. . .

...
xn1 · · · xnm






(1)

(ii) – Establishing the correlation coefficient matrix of
standardized data R and calculating its eigenvalues and

eigenvectors

R = (rij)m×m = X⊤X (2)

We get the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm > 0 and the
corresponding unit eigenvectors
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(iii) – Ascertain the number of principal components.
Selecting the number of principal components depends
on the cumulative variance contribution ratio. When the
cumulative variance contribution rate of the former p
principal components is not less than 95%, it is a good
choice to reflect the information of original variable. The
variance contribution rate and the cumulative variance
contribution rate are respectively

αi =
λi

m
∑

j=1

λi

, βi =

p
∑

j=1

λi

m
∑

j=1

λi

(4)

(iv) – The eigenvectors of p principal components
are Um×p = [u1, u2, · · · , up] and the matrix of principal
components of n samples is

Zn×p = Xn×mUm×p (5)

Independent component analysis (ICA) is a kind of
blind source separation (BSS) technique, which actually
looks for the directions that can make the data inde-
pendent in the feature space, and exploring the fluc-
tuation mechanism hidden in the complex phenomena

[22, 23]. Supposing s(t) = [s1(t), · · · , sm(t)]⊤ is dimen-
sional non-Gaussian independent source signal, x(t) =

[x1(t), · · · , xn(t)]
⊤ is n dimensional observation signal.

For x , the following decomposition can be done,

x = As (6)

Where A is an n×m the so called hybrid matrix.

ICA makes statistical independence as the optimiza-
tion goal. In the absence of both s and A , we shall find a
demixing matrix W , that x transforms to a new vector
y(t) = [y1(t), · · · , ym(t)]⊤ , the component of vector are
independent of each other and the optimal approximation
of source signals s . That is

y = Wx (7)

The process flow chart of ICA is shown in Fig. 1.
The process I – is a mixing process, the process II –
is demixing one, y are the independent components, W
can be obtained and the mixing matrix is approximately
xW−1 .
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To sum up, in order to find a demixing matrix W , we
need to make the following assumptions:

(i) – Components are assumed to be statistically in-
dependent;

(ii) – There is only one independent component that
does not meet the non-Gaussian features;

(iii) – The unknown mixing matrix is square matrix.

In recent years, the fixed-point algorithm based on
negative entropy (Fast ICA) has been widely used, and
the algorithm takes the maximum negative entropy as
the search direction and gradually extracts independent
components. Compared with other independent compo-
nent analysis algorithms, Fast-ICA has a fast convergence
speed, make sure of accuracy and can directly find any
non-Gaussian independent components [24]. Negative en-
tropy is defined as follows

J(y) = H(yGauss)−H(y) (8)

where, yGauss and y have the same covariance matrix and
both are gaussian vectors, and H(y) is entropy, which is
defined as

H(y) = −E [log py(η)]−

∫

py(η) log py(η)dη (9)

where, E [·] is the expectation, py(η) is the density of a
random vector.

Setting w as the unit vector, which is ||w|| = 1, max-
imizes the non-Gaussian of the corresponding projection

w⊤x . We introduce a nonlinear transformation function
G , the equation (8) is approximated as

J(y) ≈ {E [G(y)]− E [G(yGauss)]}
2

(10)

In order to maximize the negative entropy, the follow-
ing objective function can be obtained

w∗

i = argmax
{

E
[

G(w⊤

i x)
]

− E [G(yGauss)]
}

s.t. R
[

(w⊤

i x)(w
⊤

j x)
]

δij
(11)

where R [·] is the correlation matrix,

δij =

{

0 (i 6= j)

1 (i = j)

Usually it is taken

G(y) = − exp(−y2/2) (12)

g(y) = G′(y) = y exp(−y2/2) (13)

In summary, the calculation steps of independent com-
ponents are summarized as follows [25]:

(i) – Centralize the original data z so that its mean
value is 0;

(ii) – Whitening the centralized data, we can get x .
The process of whitening is to find a linear transformation
to x = Vz . The eigenvalues of the covariance matrix

Cz = E
[

zz⊤
]

are d1, · · · , dn , the corresponding unit

eigenvector is x = Vz . Setting D = diag(d1, · · · , dn),

E = (e1 · · · , en), we can get V = D−1/2E⊤ .

(iii) – Randomly select an initializing vector w which

needs to have the unit norm, that is ‖w‖ = 1.

(iv) – Increase the number of iterations and update,

which is w← E
[

xg(w⊤x)
]

−E
[

g′(w⊤x)
]

w ; (v) – Stan-

dardize w , namely w← w/||w|| ;

(vi) – If w does not converge, return to the step

(4), otherwise it will output wi as a column of demixing

matrix W . Repeating the above steps one can obtain

multiple independent components. It is worth noting that

the independent component should be subtracted from

the observation signal after extracting an independent

component.

3 The modelling process of PCA-ICA-RBF

In order to verify the feasibility of this method, we

use real wind speed data from Sotavento wind farm in

Galicia, Spain to make modeling experiments. Galicia,

located in northwest Spain, faces the Atlantic Ocean,

which is a typical Mediterranean climate, hot and dry

in summer, and mild and rainy in winter [26]. The wind

speed distribution curve in summer and winter is shown

in Fig. 2(a)-(b), and it is obvious that the wind speed

sequence has high volatility.

Wind speed prediction accuracy is affected by many

factors, such as wind direction, air pressure, tempera-

ture, humidity, wake and roughness, etc. Each variable

provides a certain amount of information, but its degree

of importance varies. Because the information provided

by each variable has a certain overlap in many cases, we

use principal component analysis to process each compo-

nent, and select a few comprehensive variables to explain

most of the original data, so as to reduce the prediction

complexity.

The influence factors of simulation data including wind

direction D , temperature T , air pressure P , specific vol-

ume a and specific humidity H , surface roughness R

and power E come from Sotavento wind farm in Galicia,

Spain. Making use of PCA to analyze the above eight

factors, we can get the eigenvalues shown in Fig. 3(a)-

(b). The eigenvalues are arranged in descending order,

from the fifth principal component, the line segment be-

comes flat and almost coincides with, which means that

eigenvalue change begins to significantly decrease. From

the gravel diagram, we can take the first four or the first

five principal components, thus combining the cumulative

variance contribution ratio to select the main component.

As shown in Tab.1, the cumulated variance contribution

ratio (CVCR) of the first four principal components in

summer and winter were respectively 99.4% and 99.69%,

both are larger than 95% and close to 100%. Almost all
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Fig. 2. Wind speed distribution curves in (a)– summer and (b) – winter
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Fig. 3. Eigenvalue of principal components in (a) – summer and (b)– winter

Table 1. The first four eigenvalues, eigenvectors and contribution rates

Temperature 0.0011 0.0001 -0.0018 -0.0003 0.0001 0.0001 -0.0663 0.0058

Air pressure 0.0003 2.7515 -0.001 -0.0010 -2.3741 -5.4046 0.0004 -0.0038

Specific volume 0.0008 0.0001 -0.0007 0.0070 0.0002 0.0002 -0.0067 0.0097

Specific humidity -0.0125 -0.0013 0.0607 0.0037 -0.0016 0.0017 -0.0422 0.2353

Surface roughness -0.2456 0.0221 0.6635 0.7048 -0.0378 -0.0087 0.9475 -0.2964

Power -0.1875 0.0279 0.6789 -0.7081 -0.0199 -0.0007 0.3139 0.9255

Eigenvalue 1.0287 0.9915 0.8113 0.1991 1.0112 0.9876 0.2974 0.1602

Contribution rate 0.3374 0.3252 0.2661 0.0653 0.4104 0.4008 0.1207 0.0650

CVCR 0.3374 0.6626 0.9287 0.994 0.4104 0.8112 0.9319 0.9969

of them explain the total variance, achieve the goal of di-
mensionality reduction and can well reflect the vast ma-
jority of the original variable information.

ICA, as an effective methods looking for the real driv-
ing factors behind time series, can transform the observed
mixed signals into more structured and more regularized
signal to realize the reliable prediction of time series. In
this paper, Fast-ICA algorithm is used to estimate five in-
dependent components of four principal components and
wind speed time series. As shown in Fig.(a)-(b), five inde-
pendent component components have different wave char-
acteristics in each season. In summer, ICA 1 fluctuates

above the x axis with large fluctuations, ICA 2 and ICA
4 fluctuate within the same interval, but volatility char-
acteristics are not the same, ICA3 fluctuation interval is
relatively small, while ICA 5 fluctuates below the x axis
and the fluctuation interval is large. In winter, the fluc-
tuation interval of each independent component is larger
and the change of ICA 1 is smaller.

The principal component analysis can compress mul-
tiple influencing factors into several comprehensive com-
ponents that can describe original data information to
reduce dimension and the complexity of data. ICA can
decompose non-stationary time series into several inde-
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Fig. 4. (a)-(b) Decomposition results of independent components in summer and winter

pendent components with actual meanings, which can

help to better grasp the complicated fluctuation mech-

anism of wind speed series. RBF neural network can re-

alize nonlinear problems prediction well. Integrating the

advantage of principal component analysis, independent

component analysis and RBF neural network, a PCA-

ICA-RBF wind speed prediction model was established.

The specific steps are as follows:

Step 1: Principal component analysis of multivariate

time series. The PCA model is used to make sine direc-

tion and cosine wind direction knowing wind diretion D ,

temperature T , air pressure P , specific volume a , spe-

cific humidity H , surface roughness R and power E , to

get several unrelated comprehensive variables describing

the overall factors;

Step 2: Independent component analysis of synthetic

variables and wind speed time series. The ICA model

was used to decompose the data set, and the indepen-

dent analysis trend obtained by decomposition is used to

deeply grasp the fluctuation characteristics of wind speed

sequence.

Step 3: Predict each independent component one by

one. According to data characteristics of each indepen-

dent component, we could find the optimal RBF parame-

ters respectively, set up RBF model with best fitting inde-

pendent components, and predict the independent com-

ponents.

Step 4: Reconstruct independent component predic-

tions. The predicted values of each independent compo-

nent are multiplied with the mixed matrix, and the wind
speed prediction results are obtained.

Step 5: Error analysis. We make use of mean absolute
error (MAE), root mean square error (RMSE) and mean
absolute percentage error (MAPE) to comprehensively
evaluate the prediction results.

MAE =
1

k

k
∑

t=1

∣

∣

∣
f(t)− f̂(t)

∣

∣

∣

RMSE =

√

√

√

√

1

k

k
∑

t=1

(

f(t)− f̂(t)
)2

MAPE =
1

k

k
∑

t=1

∣

∣

∣

∣

∣

f(t)− f̂(t)

f(t)

∣

∣

∣

∣

∣

× 100

(14)

where, f(t) represents raw data of wind speed, and f̂ t(t)
represents predicted value of wind speed.

According to the above modeling steps, the modeling
flow chart of PCA-ICA-RBF wind speed prediction model
is shown in Fig.5.

4 Wind speed prediction results
and corresponding error analysis

According to the prediction algorithm in Section 3 and
the modeling flow chart, the wind speed prediction model
with RBF based on PCA and ICA was established in
winter and summer respectively. Making traditional neu-
ral network (RBF and BP and ELMAN) as the reference
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Fig. 5. Flow chart of PCA-ICA-RBF wind speed prediction model

model, we utilize MATLAB to take simulation experi-
ment so as to get wind speed forecasting curve in summer
and winter.

Figure 6(a)-(b) describes wind speed prediction curves
in summer and winter respectively. The horizontal axis
represents the prediction period, and the vertical axis is
on behalf of wind speed value. The black curve depicts
original wind speed sequence, the blue dotted line depicts
wind speed prediction result of Elman model, the green
dotted line depicts wind speed prediction result of BP
neural network model, the purple dotted line depicts wind
speed prediction result of RBF neural network model,
the red band point curve depicts wind speed prediction
results of PCA-ICA-RBF model. The wind speed predic-
tion results in summer and winter demonstrate that tra-
ditional neural network forecasting curve below original
wind speed curve can describe the change trend of orig-
inal wind speed sequence, but the prediction values are
greatly deviated from the real wind speed data. Figure (a)
is summer wind speed forecasting results for each model.
The original wind speed sequence described by the black
curve is relatively stable, there are a steep upward trend
after the 16th points, three traditional neural networks
dont appear good prediction performance, while the red
band point curve not only keeps the consistent trend but
also closer to the true wind speed curve. Figure (b) de-
scribes winter wind speed forecasting results. The black
curve describing wind speed sequence has great volatility,
which displays that various factors have great influence on
wind speed in winter. Meanwhile, there is a sharp increas-
ing tendency and a sharp decline trend after the 9 points,
green and blue dotted lines dont reflect the change trend,
while purple dotted line describes the change but lag to
real data, the red curve is not only in conformity with the
trend of original sequence, but also closer to the original
wind speed on the numerical data. It fully demonstrates
that the PCA-ICA-RBF wind speed prediction model is
adaptive to wind speed prediction in different seasons and
achieves satisfactory prediction accuracy.

Mean absolute error (MSE), root mean square error
(RMSE) and mean absolute percentage error (MAPE)
were used to comprehensively evaluate prediction results.
Table 2 shows the specific prediction accuracy of the four
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Fig. 6. Wind speed prediction curves of (a) – summer, and (b) – winter season
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Table 2. Wind speed prediction model error statistics

Prediction cycle Prediction model
Error indicator

MAE m/s RMSE m/s MAPE %

Elman 1.0945 1.3583 13.1

Summer
BP 1.0177 1.3424 11.94

RBF 1.0118 1.3289 11.87

PCA-ICA-RBF 0.4637 0.5099 5.3

Elman 1.2593 1.6024 14.78

Winter
BP 1.2669 1.6527 13.24

RBF 1.2348 1.6616 13.11

PCA-ICA-RBF 0.5651 0.6316 5.61

models. In the winter and summer wind speed predic-
tion results, the differences between MSE and RMSE in
three neural networks, Elman, BP and RBF, are very
small, and the MAPE error of BP and RBF is about
1.6%, smaller than that of Elman. In summer and win-
ter wind speed prediction results, three error indicators
of PCA-ICA-RBF wind speed forecasting model are far
less than that of the traditional neural network. Com-
pared with Elman, BP and RBF, MAE is down by at least
54% and RMSE by at least 60%, and MAPE by at least
6.5%. MSE, RMSE and MAPE of the PCA-ICA-RBF
wind speed prediction model in summer are respectively
0.4637 m/s, 0.5099 m/s and 5.21%, slightly less than that
in winter. Therefore, PCA-ICA-RBF wind speed predic-
tion model had better prediction results for stable wind
speed. Through the above analysis, we know that, no mat-
ter which season’s wind speed sequence is modeled, PCA-
ICA-RBF model error indicators are superior to the tra-
ditional wind speed prediction model. This again proves
the good performance of PCA-ICA-RBF.

5 Conclusions

At present, the worlds new energy technologies have
entered highly active period and are promoting the trans-
formation of energy pattern and the market competitive-
ness of new energy sources at an unprecedented speed.
The new energy generation technologies based on wind
energy and solar energy have been vigorously supported
by governments around the world. The global renewable
energy power generation installed capacity is on the rise.
It is estimated that by 2040, the proportion of global re-
newable energy in the overall energy structure will exceed
51 %, this fully shows that the new energy replacing tra-
ditional energy has been trending. Wind energy is a clean
and stable energy. Wind power generation is universally
recognized as a feasible solution to effectively mitigate cli-
mate change, improve energy security and promote low-
carbon economic growth. However, the stochastic volatil-
ity of the wind speed makes the wind power generation
changeable and unpredictable, thus affecting the stabil-
ity of the power system. Reduce adverse influence of wind

power generation integrated into the grid is the key to im-
prove wind speed prediction accuracy. Therefore, we use
wind farm data in Spain during the winter and summer,
take advantage of PCA to extract relevant influencing fac-
tors and make use of ICA to deal with influencing factors
and wind speed series. Based on the above operation, the
hidden information can be mined, and the interference
between the time series can be reduced, and the relevant
information can be extracted to the maximum extent, the
fluctuation of wind speed sequence is eliminated, and the
prediction performance of RBF neural network and the
wind speed prediction accuracy both are improved. PCA
and ICA make conspicuous improvement in RBF neural
network prediction, in the next step of research work, we
will use other numerical algorithms to carry out simu-
lation experiments and combine the advantages of PCA
and ICA to improve wind power prediction accuracy.
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