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Multi-objective optimal reconfiguration of distribution network

Darko Šošić, Predrag Stefanov
∗

Configuration of distribution system can be changed manually or automatically, by changing the status of the respective
switching elements, with the aim of reducing power losses, increase system reliability, or improving the power quality. When
changing the status of switching equipment it is necessary to satisfy the requirement for the radial and connected structure
of the distribution network. Using the single criteria optimization it is possible to improve one of the characteristics of the
distribution network, on the other hand by using multicriteria optimization it is possible to find a network configuration that
enhances multiple distribution system characteristics at the same time. In this paper, a modification of the multi-criteria
Gray Wolf optimization algorithm is proposed in order to create an efficient algorithm that can be implemented in the
management functions of smart grid concept of modern distribution systems. The proposed reconfiguration algorithm was
tested on standard symmetrical IEEE33 test distribution network.
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1 Introduction

The reconfiguration of the distribution network repre-
sents the process of changing the topology of individual
feeders by opening and closing the tie and sectionaliz-
ing switches. The goal of reconfiguration is to improve
the individual characteristics of the distribution network.
The considered improvements may relate to shorter or
longer periods of time. While in the early studies recon-
figuration was treated as basic function for planning of
distribution networks and connected to the calculation of
configuration changes due to seasonal load changes [1, 2],
current research is oriented towards finding the solutions
for real-time reconfiguration implementations [3,4], espe-
cially due to distributed sources and their voltage and
power control [5].

Production variability of distributed generators, which
are increasingly being used in modern distribution sys-
tems, along with daily variations of different load cate-
gories, increases daily and even hourly variations of feeder
loads in distribution networks. These variations affect not
only operational costs in distribution systems, but also
the ability to efficiently use all parts of the network and
exploit the distributed generation without violating oper-
ational constraints. In order to satisfy these constraints,
new optimal reconfiguration functions are being devel-
oped and implemented in modern smart grid systems.
These new functions require fast and reliable algorithms,
which need to include as many of distribution network
efficiency indicators as possible, as well as all limitations
that will ensure system operation within the allowed lim-
its.

The first paper dealing with reconfiguration, in which
the potential for exploring this area was noticed, was
written by Merlin and Back [6]. Starting from this paper,

a new area has been opened in which different authors
have tried to create an algorithm for finding the radial
structure of a distribution network that will have lower
real power losses, but for an acceptable execution time.

Observed from the mathematical point of view, the
problem of reconfiguration of the distribution network
belongs to the class of complex combinatorial, non-
differentiable optimization problems. The requirement
for the radial structure of the distribution network fur-
ther complicates this optimization problem. The iterative
structure of the load flow, the thermal constraints of the
distribution network components, and the necessity of an
exhaustive search of all possible configurations addition-
ally contribute to the complexity of the problem under
consideration.

Methods for solving the distribution network reconfig-
uration problem can be roughly divided into three cat-
egories: 1) heuristic, 2) mathematical optimization and
3) meta-heuristic methods. The fourth group could be hy-
brid combinations of the above methods. The most popu-
lar methods are based on heuristic principles, mainly due
to the rapid generation of the final solution. Heuristic
techniques are in fact optimization processes for finding
solutions using system characteristics, which can be de-
fined by appropriate coefficients. These coefficients can be
simple (obtained on the basis of author’s experience) or,
on the other hand, they can be based on solving complex
problems by analyzing the sensitivity of a complete or
simplified mathematical model [2, 7–10]. However, these
methods are highly dependent on the initial configura-
tion of the distribution network, so finding the global
optimal solution is not always guaranteed. Mathemati-
cal optimization methods, also known as deterministic
methods, for solving distribution network reconfiguration
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problem use linear programming methods [11], dynamic
programming [12], etc.

In the early nineties a considerable number of papers
that used meta-heuristic algorithms for solving the dis-
tribution network reconfiguration problem appeared [13–
19]. Greek prefix “meta” means “higher level”. A meta-
heuristic approach is a specific search method that starts
from an initial point (or from a set of initial points) and
which, using certain rules, guide initial point to avoid lo-
cal optimum. The main difference between various meta-
heuristic methods is in the solution search mechanism.
These methods can provide an optimal solution regard-
less of the initial distribution network configuration, but
they are time-consuming so they can be used only when
it is not necessary to quickly deliver solutions. Different
methods were used for distribution network reconfigura-
tion to reduce real power losses and/or to reduce num-
ber of switching operations: sequentially encoded genetic
algorithm [13], harmony search algorithm [14], modified
honey bee mating optimization [15].

In the literature it is possible to find many papers
which solve the problem of optimal reconfiguration using
the single criteria function. On the other hand, very few
papers are dedicated to the simultaneous improvement of
several criteria [20, 21].

By applying single criteria optimization, it is possible
to improve only certain (considered) characteristics of the
distribution network. On the other hand, by applying
multi-criteria optimization it is possible to find a solution
that will represent a compromise for the improvement
of several characteristics. It is justifiable to expect that
the compromise solution will be worse than one that was
obtained when only single optimal solution is required,
on the other hand this is a solution in which all the
characteristics are represented, which was not the case
for single criteria optimization.

In this paper, the basic Gray Wolf algorithm [22] was
used for solving optimal reconfiguration of distribution
network. This optimization algorithm has been very little
used so far for solving problems in electrical engineering.
Also, due to the requirement for the algorithm to make
the most comprehensive solution necessary for efficient
management in the modern smart grid, a modification
of multi-criteria Grey Wolf algorithm [23] has been im-
plemented, enabling the inclusion of several criteria func-
tions. The formed optimization procedure is adapted to
the problem of optimal reconfiguration with integer con-
trol variables. In this procedure the search is limited only
to a set of feasible solutions that do not violate the radial
structure and requirement for the connection of all nodes
of the distribution network. The proposed multicriteria
optimization was used to reduce the real power losses
and maximum voltage drop and balance the load across
the branches of the observed network. The proposed algo-
rithm, based on the comparison by domination, provides
a set of compromise optimal solutions (Pareto front). Us-
ing this set of solutions, the decision maker can quickly
make a comparison and/or a complete sensitivity analysis
and depending on the priority that can be adapted to the

management requirements at any time selects an optimal
solution.

All calculations were tested on a standard symmetric
IEEE 33 test distribution network, while the comparison
of the obtained solutions was made by sensitivity anal-
ysis using synthetic criteria functions with appropriately
chosen parameters.

The paper is organized in the following way: in the
second part, the basic concepts of multi-criteria optimiza-
tion are presented. The basic algorithm of Gray Wolf is
presented in the third part, while the fourth part de-
scribes the extension of the basic algorithm of Gray Wolf
to multi-criteria optimization. The fifth section describes
the modifications necessary for the implementation of op-
timal reconfiguration with description of all algorithm
components, while in the sixth section the optimal re-
configuration algorithm of the distribution network is de-
scribed. The results are shown in the seventh section and
finally the conclusion is given in the eighth part.

2 Multi-criteria optimization

Multi-criteria optimization refers to the optimization
of a problem that has more than one criteria function.
Without loss of generality, this problem can be defined as
a minimization problem in the following way

Minimize
F(x) = {f1(x) . . . , fK(x)}, (1)

According to the limitations:

gi(x) ≥ 0 , i = 1, . . . ,M , (2)

hi(x) = 0 , i = 1, . . . , N , (3)

Li ≤ xi ≤ Ui , i = 1, . . . , D , (4)

where D is the number of control variables, K is the
number of criteria functions, M is the number of inequal-
ity constraints, N is the number of equality constraints,
gi is the i -th inequality constraints, and hi represents
i -th equality constraints. The lower and upper bounds of
the i -th control variables are labeled with Li and Ui .

In single criteria optimization, individual solutions can
be easily compared. In the case of minimization problem,
the solution x∗ is better than the solution x if and only if
f(x∗) < f(x). However, when dealing with multi-criteria
problems, it is impossible to compare the solutions with
relational operators. Let y = {f1(x), f2(x), . . . , fK(x)}
and y∗ = {f1(x

∗), f2(x
∗), . . . , fK(x∗)} be given vectors

which represent points in the space of the criteria func-
tions y ∈ O ⊂ ℜK . Each component of the vector y is
the value of an objective function that is calculated based
on the assigned point from the search area, x ∈ S ⊂ ℜD .
The vector y∗ dominates over the vector y (y∗ � y) if
y∗ is partially smaller than y , ie

∀k ∈ {1, . . . , K} : fk(y
∗) ≤ fk(y) ∧

∃k ∈ {1, . . . , K} : fk(y
∗) < fk(y) .

(5)
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If one of these two conditions is not fulfilled then the
solution y∗ does not dominate over the solution y . In
accordance with this definition, three cases are possible:

– the solution y∗ dominates the solution y ,

– the solution y dominates the solution y∗ ,

– the solutions y∗ and y are non-dominant one in rela-
tion to the other.

A solution that is not dominated by any other feasi-
ble solution is called Pareto optimal, or strictly efficient.
Pareto dominance refers to the vector in the domain of
the criteria functions, O , and not in the domain of search
space, S .

The Pareto front is a hyper-surface in the space of
the criteria functions, O , made up of a set of strictly
efficient solutions. As such, the Pareto front is a set of
best compromises that are not dominant in relation to
each other.

3 Grey Wolf Optimization

This section will briefly describe a single criteria opti-
mization algorithm based on the behavior of gray wolves.
A detailed description of this algorithm can be found
in [22]. The social order and the method of hunting of
the gray wolf pack were the basic inspiration for this al-
gorithm. To model the hierarchy in the pack, the three
best solutions were taken for the (α, β and δ ) wolves to
make a decision. All other solutions are ω wolves. New
locations of ω wolves are determined using the three best
wolves in the pack.

A good search mechanism is necessary for the success-
ful operation of optimization algorithms. Roughly speak-
ing, the search is divided into two segments: research and
exploitation. In the research process, it is necessary to
generate diverse solutions to cover as wide area of search
space as possible. On the other hand, in the process of
exploitation, it is necessary to search a relatively narrow
part around the best solution. The gray wolf algorithm
for these purposes uses vectors A and C defined in the
following way

A = 2a · r1 − a,

C = 2r2 .
(6)

where the members of the vector a linearly decrease from
2 to 0 with the iterations, and r1 and r2 are random
vectors at the interval [0, 1].

Since the position of the prey (optimal solution) is
not known in advance, the search for it will be based on
the information that the three best wolves possess. All ω
wolves will improve their position based on the following
expression

Di = |Ci ·Xi −X | , i = 1, 2, 3 , (7)

X(t+ 1) =
1

3

3
∑

i=1

(Xi −Ai ·Di) . (8)

The research process is guaranteed when |A| > 1, and
then wolves move away from prey. Another component
that favors research is vector C . Since C is an arbitrary
vector in the range [0, 2], the wolves will abandon the
prey when C > 1, and approach the prey when C < 1.
It is important to note that the vector C can take any
value from the specified range at any time of the opti-
mization algorithm. In other words, in the final iterations
of the algorithm, it may happen that some wolf goes into
research, precisely because of vector C , and does not con-
tinue exploitation even though the end of the optimiza-
tion is approaching. This feature helps the optimization
algorithm to avoid local optimums.

The exploitation process is guaranteed when |A| < 1.
Then the new position of ω wolf will be found between
his current position and the position of the prey, which is
estimated based on information provided by the leaders
of the pack.

Like most other meta-heuristic optimization algo-
rithms, this algorithm begins by creating a randomly
selected initial population. At each iteration three best
solutions are selected to conduct search in the solution
space. The selection of a new location of ω wolves in
the search space is done using expressions (6)-(8). With
iterations, the vectors a and A decrease, so ω wolves
tend to the solution when |A| < 1 and they are mov-
ing away from the solution when |A| > 1. At the end of
the optimization process, the last α wolf is the optimal
solution.

4 Multi-criteria optimization

In order to implement multi-criteria optimization in
the basic algorithm of gray wolves optimizer it is neces-
sary to implement two more components in algorithm.
One of these components is the archive in which the best
(non-dominant) solutions are located. The second com-
ponent refers to the method of selecting the leader of a
pack (α, β and δ wolf) from the archive.

The archive represents the register in which are stored
and deleted, the non-dominant solutions found in the pre-
vious search process. One of the important things about
the archive is the control of the entry of new vectors into
the archive. It should also know the archive has a prede-
fined number of places, so it is not possible to enter more
vectors than the predefined maximum allowed number of
archive.

In order to reduce the number of comparisons, the
concept of fronts from the NSGA-II algorithm was intro-
duced [24]. These solutions, which are not dominated by
any member in the population, are called non-dominant
solutions of the first level. Figure 1 shows one minimiza-
tion problem where the solutions are divided into fronts.
The first front in this case is composed of a set of vec-
tors {1, 5, 8, 9, 10} . If the solutions from the first domi-
nant front are eliminated for a moment, and the principle
of sorting according to domination is applied to the re-
maining solutions, the next dominant front is obtained
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{3, 6, 7} , Fig. 1. The process continues until all the solu-
tions in the population are processed.

At the very beginning of the optimization process, af-
ter creating the initial population, it is necessary to place
the first front of the initial population in the archive. If
the first front has less than three members, the corre-
sponding number of vectors must be randomly selected
from the second front. It is necessary that the archives

have at least three members. This is conditioned by the
basic algorithm of gray wolves since the search process is
navigated with the three best solutions.

As already noted, in order to avoid unnecessary com-
parison of worse solutions with vectors located in the
archive, only vectors from the first front of the current
population will be compared. Comparison is carried out
by combining a complete archive with the first front of
the current population, and then the comparison is re-
peated according to the principle of domination. The new
archive consists of the first front of this formed set. If the
maximum number of vectors that can be stored in the
archive is exceeded, it is necessary to reject the corre-
sponding number of vectors. The decision which member
of the archive will be rejected is based on the density of
the number of solutions in certain parts of the space of
the criteria functions, O .

Criteria function space can be uniformly divided as
shown in Fig. 2. After that, it is necessary to find occupied
areas (numbers within the circle in Fig. 2) as well as
the number of vectors in these areas. Segment selection
from which the vector will be discarded is done using the
roulette wheel. First, it is necessary to separate the areas
on the roulette wheel. The surface of the roulette slice
for each hyper surface is determined using the following
expression

pi =
nb
i

∑m

j=1 n
b
j

(9)

where pi is the probability of selecting the i -th segment,
b is the gain coefficient, ni is the number of vectors
in the i -th hyper surface, while m is the total number
of hyper surface in which there is at least one vector.
Figure 3 shows segments division of the roulette wheel
for the example given in Fig. 2. Due to the visibility of
the diagram itself, a unit value is assigned for the gain
coefficient.

The area with the highest number of vectors, segment
number 24, has a 25% chance of being selected. This per-
centage would be higher if a higher value for b is adopted.
For example, for b = 2, this segment would occupy 42%
of the surface of the roulette wheel, while for b = 4 would
be 68%. After the division, a random number from the
range [0, 1] is generated. Based on this number, the seg-
ment from which arbitrarily selected vector will be ejected
is chosen. If the number of archive members is still greater
than allowed, it is necessary to repeat the described pro-
cedure until the size of the archive becomes acceptable.

The second additional component is the mechanism
for selecting the leader of the pack. With single criteria
optimization, the three best solutions were chosen to con-
duct a search with a objective to find a solution that is
close to the global optimum. However, in multi-criteria
optimization it is not possible to determine which solu-
tions are the best. Therefore, it was necessary to select
a mechanism that would enable the selection of the lead-
ers of the pack. Roulette wheel rule is also applied for
this purpose. In this case it is necessary to emphasize



132 D. Šošić, P. Stefanov: MULTI-OBJECTIVE OPTIMAL RECONFIGURATION OF DISTRIBUTION NETWORK

Algorithm 1

1 Formation of the initial population Xi, (i = 1, . . . , Np)

2 Calculating the value of the criteria functions of each vectors of the initial population

3 Test dominance and form fronts

4 Fill the archive with the first front and with the required number of vectors from the higher fronts.

5 while (t <maximum number of iterations)

6 Calculate the vectors a , A and C

7 for each vector from the current population

8 Select the α leader and temporarily remove it from the archive

9 Select the β leader and temporarily remove it from the archive

10 Select the δ leader and temporarily remove it from the archive

11 Return α, β and δ vectors to the archive

12 Improve the position of the current vector by expression (6)–(8)

13 end for

14 Calculate the values of the criteria functions of each newly formed vector

15 Test dominance and form first front

16 Combine the archive and the first front of the current population into an ancillary registry

17 Test dominance of the auxiliary register and form first front

18 Place the first front in the archive

19 if archive size greater than allowed

20 Determine the number of vectors, k , which need to be removed from the archive

21 for i = 1 to k

22 Form the network and determine the number of vectors in hyper areas

23 Determine from which hyper area the vector will be discarded

24 From a selected hyper area, randomly select a single vector which will be discarded

25 end for

26 end if

27 t = t+ 1

28 end while
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Fig. 4. An example of meshed grid

the exploitation process to cover the whole Pareto front
evenly. For this purpose, the expression (9) can be used,
with the difference that a negative value for the gain co-
efficient b is assigned. One vector is arbitrarily selected
from a selected segment using a roulette wheel rule and
temporarily removed from the archive. The same proce-
dure is repeated for the other two leading members of the
pack. When all three wolves (α, β and δ ) that navigate
search process are selected, it is necessary to return the

deleted vectors to the archive. The further process of im-
proving all ω wolves is performed using the expressions
(6)–(8). Since the best solutions cannot be determined
when solving the problem of multi-criteria optimization,
the new leaders of the pack are selected for each member
of the population. Now it is possible to summarize the
multi-criteria algorithm of gray wolves (Algorithm 1).

5 Components of algorithm

This chapter will describe the basic components used
in the process of optimal reconfiguration. Load flow is
one of the basic tools in solving the problem of reconfig-
uration. For the purposes of this paper, it is sufficient to
use the most basic variant of power flow calculation [25],
which does not respect modifications due to the presence
of loops and/or distributed generators.

5.1 Fundamental loops

The feasible configuration of the distribution network
is formed using fundamental loops [26]. When the network
is meshed, the number of fundamental loops, FL , can be
calculated using the expression

FL = Nbr −Nnod + 1, (10)
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Table 1. Branch determination of the first fundamental loop

B
Node

1 2 3 4 5 6

1 -1 0 0 0 1 0

3 0 -1 0 0 1 0

Branch
6 0 0 0 -1 1 0

5 0 0 -1 1 0 0

7 0 0 0 0 1 -1

2 1 -1 0 0 0 0

Step 1 |Σ| 2 2 1 2 4 1

Step 2 |Σ| 2 2 0 1 3 0

Step 3 |Σ| 2 2 0 0 2 0

where Nbr is the number of branches in the observed net-
work, and Nnod is the number of nodes of the observed
network. The number of fundamental loops also gives in-
formation on how many branches should be opened to
have a radial configuration of the network. Elements of
one fundamental loop constitute of a set of all graph
branches that form the observed loop. Branches of the
fundamental loops for the network shown in Fig. 4 are:
FL1 = [L1, L2, L3] , FL2 = [L3, L4, L5, L6] , FL3 =
[L5, L6, L7, L8] . In order to create radial topology, it
is necessary to select exactly one branch from each fun-
damental loop. However, in this approach, it should be
careful not to select the same branches for different fun-
damental loops. As shown in Fig. 4 branch L3 belongs to
the fundamental loops 1 and 2, while branches L5 and
L6 belong to the fundamental loops 2 and 3. This means
that if the branch L3 is selected in the first fundamental
loop, for the second control variable branch 2, 3 and 4
(L4, L5 and L6 ) can be selected.

5.2 Radial structure and connectivity constraints

With a random selection of open branches in the ob-
served distribution network, many generated combina-
tions will be unfeasible. To prevent to work with unac-
ceptable distribution network configurations, it is nec-
essary to check connectivity and radial structure con-
straints. The process of checking the radial structure of
distribution network can also be used before the start
of the optimization process to determine the branches
of each individual fundamental loop. The algorithm for
checking the radial structure is proposed in [27] and will
be briefly explained here. For the observed network, it is
necessary to establish a connection matrix B . The dimen-
sions of this matrix are Nbr × Nnod . Non-zero elements
of the matrix B are 1 and −1. When the branch i is ori-
ented from the node j then the value 1 is entered at posi-
tion B(i, j), otherwise −1 is entered. When determining
the branches of the fundamental loops, the branches of
tree are entered first, and in the end only one branch
which forms the observed loop is added. After the for-
mation of the connectivity matrix it is necessary to sum
absolute values per columns of this matrix. If the sum of
the absolute values of some column is equal to 1, it is

necessary to find this row and delete it from the matrix

B . After that, the described procedure is repeated until

the moment when there is no longer a column in which

the sum of the absolute values of the elements is equal to

1. The remaining branches are the branches of the loop.

In the case of testing the radial structure of the network

at the end of the described procedure matrix B should

remain empty. The described process can be understood

in the case of determining the branch of the first funda-

mental loop, Fig. 4, which is shown in Tab. 1. Since in

the first step there are two columns in which sum of abso-

lute values is equal to 1, this means that the two branches

must be ejected from the matrix B . The ejected branches

are in bold and underlined. After this change and after

summing the absolute value by columns, step 2, there

is only one column that has one element. Branch num-

ber 6, marked with rectangles, will be ejected from the

matrix B . After a new summation of absolute values per

columns, step 3, there will no longer be a column that has

only one element. All branches that are left in the matrix

B form the branches of the first fundamental loop. This

only confirms the results that can be seen from Fig. 4,

which are described in the previous text.

The connection of the observed network is checked

using the value of determinant of the matrix B . Since

matrix B is not square it is necessary to remove the

column corresponding to the reference node and then

calculate its determinant. If the value of the determinant

of the so formed matrix B is equal to 1 or -1 then the

network is radial and connected otherwise, this condition

is not satisfied, and such a solution needs to be rejected.

6 Algorithm

The optimal reconfiguration algorithm in many ways

coincides with the described multi-criteria optimization

algorithm, as can be seen in Fig. 5. The calculations re-

quired for the reconfiguration of the distribution network

are performed as part of the steps in which the values of

the criteria functions are calculated.

First, it is necessary to round the control variables to

the nearest integer. After that, it is necessary to decode

the control variables. For example, if the following vec-

tor of control variables 1, 3, 4 is created for the network

shown in Fig. 4, it means that it is necessary to open

the following branches: FL1(1) = L1 , FL2(3) = L5 and

FL3(4) = L8 . In the next step, the condition of the ra-

dial structure and network connection is checked. If this

condition is not satisfied, the solution is immediately re-

jected and a new one is generated. After this, it is nec-

essary to properly orient the branches of the distribution

network and to carry out the load flow. With the results

of this calculation, the values of the considered criteria

functions can be calculated. In this paper three criteria

are considered: real power losses, maximal voltage drop
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and minimization of load balancing index. These criteria
functions can be represented in mathematical form

f1 = min

Nbr
∑

i=1

Ri

P 2
r,i +Q2

r,i

|Ur,i|2
,

f2 = min
(

max
i∈[1,Nnod]

(

|Un| − |Ui|
)

)

,

f3 = min
|Ii|

Imax
, i = 1, . . . , Nbr

(11)

where Ri is the resistance of the i -th branch, Pr,i and
Qr,i are the real and reactive power of the receiving end
of the i -th branch, respectively, Ur is voltage of the
receiving end of the i -th branch, Un is the nominal value
of the voltage, Ui is the voltage of the i -th node, Ii is
the current of the i -th branch, and Imax represents the
highest value of the current flowing through a segment of
considered distribution network.

Table 2. Possible values of control variables

No FL1 FL2 FL3 FL4 FL5

1 3-4 2-3 9-10 2-3 6-7

2 4-5 3-4 10-11 3-4 7-8

3 5-6 4-5 11-12 4-5 8-9

4 3-23 5-6 12-13 5-6 9-10

5 23-24 6-7 13-14 6-7 10-11

6 24-25 7-8 14-15 7-8 11-12

7 6-26 2-19 9-15 8-9 12-13

8 26-27 19-20 9-10 13-14

9 27-28 20-21 10-11 14-15

10 28-29 8-21 11-12 15-16

11 25-29 2-19 16-17

12 19-20 19-20 17-18

13 20-21 20-21 6-26

14 21-22 21-22 26-27

15 12-22 12-22 27-28

16 28-29

17 29-30

18 30-31

19 31-32

20 32-33

21 18-33

7 Results

The described algorithm was tested on a standard
symmetric IEEE 33 test distribution network [28]. In or-
der to make the sensitivity analysis, the results were an-
alyzed for 7 cases with different combination of criteria
functions:

1) real power losses,

2) voltage drop,

3) load balancing index,

4) real power losses and voltage drop,

5) real power losses and load balancing index,

6) voltage drop and load balancing index,

7) all proposed criteria.

The number of control variables of the optimization
problem is equal to the number of loops in the ob-
served network. The possible values of the individual
control variables are given in Tab. 2. The first column
of Tab. 2 presents the ordinal number or branch code
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in the respective loop. This approach makes it easy to
apply the optimization algorithm. The upper limits of
the control variables are defined by the total number of
branches in the observed fundamental loop, respectively
{11, 10, 7, 15, 21} . The maximum number of iterations
was set to 1000. The number of population members
was amounted to 50, while the coefficient of reinforce-
ment, b , was assigned with a value of 4. Table 3 shows
the solutions for all cases using proposed multi criteria
optimization algorithm.

Because of different range of changes of distribution
network characteristics, it is necessary to normalize them
in order to enable a quality comparison of the solution
from the Pareto front. Normalization can be done using
the following expression

fiT,j =
fi,j − fimin

fimax − fimin
(12)

where fi,j andfiT, are value and transformed value of
the i -th criteria function (i = 1, 2, 3) of the j -th solution
from the Pareto front, fimin and fimax are the minimum
and maximum values of the i -th criteria function of all
the solutions found on the Pareto front, respectively. Us-
ing the appropriate weight factors it is possible to extract
only those solutions from hyper surfaces, Fig. 6, which are
in a certain direction. The weight factors can be consid-
ered using the following expression

F = ω1f1 + ω2f2 + ω3f3 (13)

where ωi , (i = 1, 2, 3) represents the weight factors re-
lated to the real power losses, voltage drop and load bal-
ancing index, respectively, and serve to determine only
one solution that is optimal according to this function.

Using different combinations of weighting factors it is
possible to choose some solution from the Pareto front.
The basic economic indicator of distribution networks is
usually related to the costs associated with power losses.

In order to emphasize these criteria the weight factor
ω1 should take higher values than other weight factors.
This might be the main criteria when the network com-
ponents are not overloaded. However, during peak load
times, voltage drops can become critical from the point
of providing high quality power supply, especially to crit-
ical consumers. In this case, a greater value can be given
to the coefficient ω2 . On the other hand, in case if some
segments of the distribution network are overloaded, it
is necessary to give priority to the third criteria func-
tion to provide that all the elements of the network
are loaded more uniformly. The operator can decide, us-
ing collected measurements from advanced meters in the
smart grid, and according to the determined level of load
of the whole network or individual parts, which weight-
ing factors to choose. Since multi-criteria optimization
allows faster search in different directions, the operator
can, based on the available results of the multi-criteria
optimization, perform the sensitivity analysis, like it is
done in the following text.

Single criteria optimization is just a special case of
multi-criteria optimization. In other words, if the opti-
mization of only one distribution network characteristic
is considered, in expression (13) only one of the functions
should be retained, like it was done in the first three cases
in Tab. 3. These points can also be seen in Fig. 6 on the
appropriate axes because they represent the best solu-
tions to the considered criteria function when all others
are neglected. Cases 4, 5 and 6 correspond to the two
criteria optimizations. Due to the correlation of the first
and second criteria functions, case 4 (ω3 = 0), only a
small number of close solutions dominate over everything
else and make Pareto front. While in the case of opposing
criteria, as in case 5 and case 6, all compromise solutions
are included in the Pareto front. For the case 5, Pareto
front is shown in Fig. 6(b), and for case 6 in Fig. 6(c).

Knowing all optimal solutions, decision maker can
make an assessment which finds the best compromise

Table 3. Results

Case
Weighting factors

Branch code
Criteria functions

ω1 ω2 ω3 f1 f2 f3

1 1 0 0 11 6 7 10 20 136.76 0.0621 0.4246

2 0 1 0 10 6 7 10 20 137.19 0.0587 0.5434

3 0 0 1 10 4 1 14 18 243.20 0.1342 0.2714

4 0.7 0.3 0 11 6 7 10 20 136.76 0.0621 0.4246

4 0.3 0.7 0 10 6 7 10 20 137.19 0.0587 0.5434

5 0.8 0 0.2 11 5 7 10 20 137.87 0.0587 0.3719

5 0.5 0 0.4 10 4 7 7 21 157.61 0.0607 0.2929

6 0 0.7 0.3 10 6 7 8 20 138.84 0.0587 0.5431

6 0 0.3 0.7 10 4 6 14 20 182.13 0.0798 0.2890

7 0.33 0.33 0.33 11 5 3 7 20 144.29 0.0675 0.3712

7 0.3 0.4 0.3 10 4 1 7 21 158.61 0.0621 0.2928

7 0.5 0.2 0.3 11 5 7 9 20 138.10 0.0602 0.3719
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Fig. 6. Pareto front: (a) – case 7, (b) – case 5, (c) – case 6
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Fig. 7. Configuration of distribution network: (a) – base case, (b) –
case 5; ω1 = 0.8, ω2 = 0, ω3 = 0.2, (c) – case 6; ω1 = 0, ω2 = 0.7,
ω3 = 0.3, (d) – case 7; ω1 = 0.3, ω2 = 0.4, ω3 = 0.3, (e) – case 7;

ω1 = 0.5, ω2 = 0.2, ω3 = 0.3

solution, or can choose a solution using weight factors.
In the case of multi-criteria optimizations (with two and
three criteria), only the results for some directions are
given in Tab. 3. Strictly speaking, all the solutions pre-
sented here represent only a small number of special cases,
but sufficient to compare the gains that correspond to dif-
ferent configurations.

In addition to considering these criteria, this analy-
sis allows the operator to determine the final solution
based on the number of control activities for each specific

optimal solution in relation to the previous operational
condition. In Fig. 7, besides the base configuration, in
which only the tie lines are open, the configurations of the
four solutions from Tab. 3 are shown. In addition, the in-
sight into the proposed topology and the knowledge of the
characteristics of the available equipment (possession of
communication devices, possibility of remote control, cu-
mulative number of performed manipulations, etc ) can
additionally influence the choice of the network config-
uration that will be selected. These characteristics and
criteria can also be implemented in the proposed algo-
rithm by expanding the number of criteria, but due to
the 3D capabilities of the graphic representation of the
Pareto front, the authors have selected the three criteria
mentioned earlier.

8 Conclusion

The reconfiguration of the distribution network can
contribute to significant savings through reduction of
power losses.This paper presents ameta-heuristic method
for solving problem of distribution network reconfigura-
tion. Three criteria functions are considered: real power
losses, maximal voltage drop and minimization of load
balancing index. In addition to a single criteria optimiza-
tion that can only improve one distribution network char-
acteristic, and others to exacerbate, in this paper the
multi-criteria optimization was proposed. For this pur-
pose, a modified method of gray wolves was used. By ap-
propriate projections of multi-criteria hyper surfaces to
the coordinate axis or plane, it is possible to select the
best solution for single criteria or two criteria optimiza-
tion. The efficiency of the optimization process depends
on the size of the observed network and on the number of
the possible contours. The proposed algorithm provides a
useful tool for an operator that can determine the control
actions based on the current information of network and
the optimization results. Normally, according to the pre-
defined rules, choice of weight factors can be automated
and used in the smart grid concept. The proposed algo-
rithm was tested on a standard symmetric IEEE 33 test
network.
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