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Robust guaranteed performance PID controller
design for non-minimum phase plants
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The paper presents a new original robust PID design method for non-minimum phase plants to achieve closed-loop
performance prescribed by the process technologist in terms of settling time and maximum overshoot, respectively. The

proposed design procedure has two steps: first, the uncertain system is identified using external harmonic excitation signal
with frequency, second, the controller of the nominal system is designed for specified gain margin. A couple of parameters
is obtained from the time domain performance specification using quadratic regression curves, the so-called performance B-
parabolas so, as to simultaneously satisfy robust closed-loop stability conditions. The main benefits of the proposed method
are universal applicability for systems with both fast and slow dominant dynamics as well as performance specification using
time domain criteria. The proposed PID design method has been verified on a set of benchmark systems.

K e y w o r d s: robust PID controller design, guaranteed performance, robust stability, robust performance, unstable
zero, excitation level

1 Introduction

Difficulties in control of the class of non-minimum
phase plants F (s) = (1 − βs)/(1 + Ts)n with an un-
stable (positive) zero z = 1/β even for small values of
β are well known as well as growing control complexity
with increasing β , [1]. This problem is encountered in
the control of continuous stirred tank reactors, flexible
robotic arms, servomechanisms, level control systems of
steam boilers as well as in processes of increasing power
of water turbines. A similar problem occurs when a time
delay is approximated using a higher order Padé approx-
imation. Unstable zeros decrease closed-loop bandwidth,
deteriorate its dynamics and robustness against distur-
bances [2].

Control theory provides various controller design ap-
proaches for systems with an unstable zero, eg root locus
method, LQG theory, IMC approach, and fuzzy control.
A comprehensive survey on control of systems with un-
stable zero based on the above approaches can be found
in [3-21].

There are several tuning methods for systems with
unstable zero described by typical models. For FOPTD
models (First Order Plus Time Delay) with an unstable
zero the method by Sree and Chidambaram [22] can be
applied. Using the first method, an ideal PI controller is
designed, the second method yields a real PI controller
in series with a first-order filter; in both cases the per-
formance is not specified. For SOPTD models (Second
Order Plus Time Delay) with an unstable zero an ideal
PID controller guaranteeing a maximum peak of the sen-
sitivity Ms = 1.5 can be designed using the method

by Wang et al [23]. The approach proposed by Huang
et al , [24] yields coefficients of a non-interactive PID
controller based on the two-degree of freedom structure
[25] with a filtered derivative part and non-specified per-
formance. Tuning the serial PI-PD controller according
to Poulin and Pomerleau [26] guarantees a phase margin
ϕM ≥ 65(and according to O’Dwyer [27] both the gain
margin Am = 2 and phase margin ϕM = 45◦. In the
λ-tuning method according to Chien [28] the expected
settling time is limited by the time delay, however with
no possibility to closed specify the performance. There-
fore, there is a natural demand for such controller design
methods that are universally applicable for a broad range
of systems and guarantee specified performance even for
systems with varying parameters. The presented paper
follows this idea.

The new proposed method is applicable for control
of linear single-input-single-output non-minimum phase
systems even with unknown mathematical model with
unstructured uncertainties. The control objective is to
provide required nominal closed-loop settling time treg
and maximum overshoot ηmax , respectively.

The key idea of guaranteeing specified treg and ηmax

was to generalize the relations treg = f(ωe) and ηmax =
f(GM ) known from the Reinisch formulas [29] where their
validity is restricted just for 2-nd order systems. Their
generalization for systems of arbitrary order has proved
a quadratic dependence on two parameters in both cases:
treg = f(ωe, GM ) and ηmax = f(ωe, GM ); their graphical
representation the so-called B -parabolas is an important
design tool that enables choosing such a pair of parame-
ters (GM , ωe) that guarantee closed-loop robust perfor-
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mance specified in terms of treg and ηmax . In this way the
closed-loop step response of the plant with an unstable
zero and unstructured uncertainty can be systematically
shaped.

2 Uncertain plant identification

using a harmonic excitation input

Consider the multipurpose control loop in Fig. 1,
where the control u(t) is generated using a three-position
switch SW . A PID controller FR(s) is to be designed
such that the controlled output y(t) properly tracks the
reference w(t). Transfer function of the uncertain non-
minimum phase system is F (s).

Sine-wave
generator

PID controller

Ideal relay

w t( ) e t( )
2

1

3

u t( ) y t( )

SW

F s( )
-

Fig. 1. Multipurpose loop for the proposed harmonic excitation-
based robust PID design method

If we apply a zero setpoint w(t) = 0 and switch SW
into the position 2, the sinusoid signal generator excites
the unknown uncertain controlled system F (s) using the
signal u(t) = Ue sin(ωet) The corresponding response is
a harmonic signal y(t) = Ye sin(ωet + ϕ) with a phase
shift ϕ(ω). From the ratio of amplitudes Ye(ωe)/Ue(ωe)
obtained from measurements of u(t) and y(t) we can
calculate location of the related point F(jωe) on the
Nyquist plot of the unknown controlled system

F(jωe) = F (ωe)e
jϕ(ωe) =

Y (ωe)

U(ωe)
ejϕ(ωe). (1)

By performing multiple identification experiments for
individual changes in uncertain parameters of the un-
known system under the same frequency ωe of the exci-
tation signal we obtain a set of N = 2p identified points
Fi, i = 1 . . .N corresponding to N Nyquist plots of the
unknown uncertain system

Fi(ωe) =







F1(ωe)
F2(ωe)
. . .

FN (jωe)






exp







jϕ1(ωe)
jϕ2(ωe)

. . .
jϕN (ωe)






, (2)

above p denotes the number of varying process quantities
F (s). The nominal point position

F0(jωe) = F0(ωe)e
jϕ0(ωe)

can be calculated according to [30]

F0(ωe) =
1

N





(

N
∑

i=1

Fi(ωe) cosϕi

)2

+

(

N
∑

i=1

Fi(ωe) sinϕi

)2




1/2

,

(3)

ϕ0(ωe) = arctg

N
∑

i=1

Fi(ωe) sinϕi

N
∑

i=1

Fi(ωe) cosϕi

. (4)

Position of the worst-case point

FN (jωe) = FN (ωe)e
jϕN (ωe)

can be determined using the following expressions [30]
From here the variable ωe will be omitted for simplicity
if not on clarity account

FN =
√

F 2
0 +R2

G − 2F0RG cos∆ϕ, (5)

ϕN = ϕ+∆ϕ0N , (6)

where ∆ϕ0N is a phase difference between the worst-case
point FN and the nominal point F0 of the uncertain
system

∆ϕ0N = arccos
F0 −RG cos∆ϕ

FN
, (7)

∆ϕ = arccos
F0 + cosϕ0

√

F 2
0 + 2F0 cosϕ0 + 1

. (8)

Position of the nominal point F0 , the worst point FN

and the dispersion circle MG of the uncertain system for
N = 3 is depicted in Fig. 2.
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Fig. 2. Position of the nominal point F0 , the ”worst” point Fn and
the dispersion circle MG of the uncertain system in the complex

plane (n = 3)
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Fig. 3. Identification process of the Nyquist plots Fi for i = 1, 2, 3 at the excitation frequency ωe

Derivation of (3)-(8) can be found in [30]. Time re-
sponses u(t) and y(t) during the identification stage of
the uncertain plant for N = 3 is depicted in Fig. 3.

3 Design of robust PID controller

for non-minimum phase plants

Following the harmonic excitation-based identification
of the unknown process with uncertainties, a robust PID
controller for the nominal system will be designed in this
section. Turn the switch SW in the control loop in Fig. 1
into the position SW = 1. The nominal closed-loop char-
acteristic equation

C0(s) = 1 + L0s = 1 + F0(s)FR(s) = 0 (9)

can be divided to the following two conditions

F0(ωe)FR(ωe) =
1

GM
, (10)

ϕ0(ωe) + θ0(ωe) = −π, (11)

where GM is the required gain margin, L0(jω) is the
nominal open-loop frequency-response transfer function,
ωe is the nominal open-loop phase crossover frequency
and at the same time the excitation frequency of the
controlled plant F (s). Equations (10) and (11) repre-
sent the magnitude and the phase condition, respectively.
Let us denote F0 = |F0(jωe)| , FR = |FR(jωe)| and
ϕ0 = argF0(jωe) and Θ0 = argFR(jωe), respectively.
Consider the interacting PID controller in the following
form

FR(s) = K

[

1 +
1

T i
s+ Tds

]

, (12)

where K is the proportional gain, Ti is the controller in-
tegral time constant, and Td is controller derivative time
constant, respectively. Expressing the ideal PID controller
in the rectangular and polar form

FR = K + jK

[

Tdωe −
1

Tiωe

]

, (13)

FR = FR [cosΘ0 + j sinΘ0] , (14)

PID coefficients can be calculated solving the complex
equation at ω = ωe

K + jK

[

Tdωe −
1

Tiωe

]

=
cosΘ0

GMF0
+ j

sinΘ0

GMF0
, (15)

where

FR =
1

GMF0
(16)

is resulting from (10). The complex equation (15) can be
solved by comparing its corresponding real and imaginary
parts, respectively

K =
cosΘ0(ωe)

GMF0(ωe)
, K

[

Td(ωe)−
1

Ti(ωe)

]

=
sinΘ0

GMF0
,

(17a,b)
where the controller gain K can be calculated directly
from (17a). After the substitution of (17a) into (17b), a
following quadratic equation in Td is obtained

T 2
dω

2
e − Tdωe tg Θ0 −

1

µ
= 0, (18)

where µ = Ti/Td is the ratio of the integral and derivative
time constant of the robust PID controller, respectively.
In practical cases µ = 4. The controller derivative time
constant Td can be calculated as a positive solution of
(18)

Td =
tgΘ0(ωe)

2ωe
+

1

ωe

√

tg2 Θ0(ωe)

4
+

1

µ
. (19)

Hence, (17a) and (19) are the resulting PID tuning rules;
the phase Θ0 can be calculated from the phase condition
(11)

Θ0(ωe) = −π − ϕ0(ωe) = −π − ϕ0(ωe). (20)

Note that the required open-loop gain margin GM used
in (17a) represents the tuning parameter of the designed
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Table 1. Robust PI, PD and PID controller tuning rules

Controller K Ti Td

PI
cosΘ0

GMF0

−1

ωe tgΘ0

—

PD
cosΘ0

GMF0

—
1

ωe

tgΘ0

PID
cosΘ0

GMF0

µTd

tgΘ0

2ωe

+
1

ωe

√

tg2 Θ0

4
+

1

µ

Note that F0 = F0(ωe) and Θ0 = Θ0(ωe)

PID controller to guarantee the closed-loop robust stabil-
ity or performance.

Using the designed PID controller with coefficients

K;Ti = µTd;Td

the nominal point of the uncertain system with an un-
stable zero F0(jωe) is shifted into the phase-crossover
L0(jωe) located on the negative real half-axis with guar-
anteed gain margin GM , see Fig. 4 and 5.

The nominal phase crossover coordinates are

[L0, argL0(jωe)] = [1/GM ,−π].

The PI, PD and PID controller coefficients guarantee-
ing the required gain margin GM are obtained using the
harmonic excitation-type tuning rules in Table 1, where
Θ0 = −π − ϕ0 .

4 Robust stability and robust

performance conditions

The designed robust PID controller has to transform
the identified dispersion circle MG , Fig. 2, centred in the
nominal point F0(jωe) of the uncertain system into the
circle ML centred in the nominal point L0(jωe) of the
open-loop. Relation between the radii RG and RL of
both dispersion circles MG a ML respectively is

RL = RGFR(ωe), (21)

whereby the robust stability condition has to be satisfied

RL < |1 + L0(jωe)| , (22)

or robust performance condition, respectively

RL +RS < |1 + L0(jωe)| . (23)

Theorem 1 (Sufficient condition of robust stability un-
der a PID controller)

Let F (s) be a stable system with an unstable zero and
unstructured uncertainties. Let the nominal model F0(s)

of the controlled system be stable. Denote λL = R+
L/RL

the safety coefficient of the dispersion circle ML . Then
the closed-loop system under a PID controller is robustly
stable if the following inequality holds

GM > 1 +
λLRG(ωe)

F0(ωe)
. (24)

Proof:

Graphical interpretation of the PID design for robust
stability as well as situation of both dispersion circles MG

and ML are depicted in Fig. 4.
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Fig. 4. Dispersion circles MG and ML for the robust stability
condition

According to the Nyquist stability condition the closed
loop is stable if the distance between the point (−1, 0)
and the nominal point L0(jωe) is greater than the radius
RL of the open-loop dispersion circle ML , ie when (22)
is satisfied. As illustrated in Fig. 4, the distances |1 +
L0(jωe)| and |0,L0| = |L0| are related according to

|L0|+ |1 + L0(jωe)| = 1, (25)

which yields

|1 + L0(jωe)| = 1− L0 = 1−
1

GM
. (26)

From the gain condition (10) results the following equa-
tion

L0 = F0FR =
1

GM
. (27)
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After substituting for the radius RL , and carrying out
several manipulations the resulting relation between the
radii of dispersion circles ML a MG is obtained in the
following form

RL = RG
1

GMF0
. (28)

Substituting (26) and (28) into the general robust stabil-
ity condition (22) and considering the safety coefficient
λL we obtain the following inequality

GM − 1

GM
>

λLRG

GMF0
, (29)

which can be manipulated to obtain the inequality (24)
as had to be proved. In practical cases λL = 1.2, and the
gain margin GM is chosen to satisfy inequality (24). After
substituting it into (17a) we can calculate coefficients of
the robust PID controller.

Theorem 2 (Sufficient condition for robust perfor-
mance under a PID controller)

Let F (s) be a stable uncertain system described by a
nominal model F0(s) with an unstable zero and unstruc-

tured uncertainty. Denote λL = R+
L/RL the safety coef-

ficient of the dispersion circle ML . Then, robust closed-
loop performance under a PID controller is guaranteed if
the following inequality is satisfied

GM >
1 + λL

RG

F0

1− λS
GS − 1

GS

, (30)

where λS = R+
S /RS is a safety coefficient of radii of

the dispersion circle MS [30]. The prohibited area MS
is defined in terms of GM using the expression

GS =
1

1−RS
, (31)

where RS is the radius of the circle MS .

Proof: Graphical interpretation of PID design for ro-
bust performance, situation of dispersion circles MG , ML

and the prohibited area MS are shown Fig. 5.
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Fig. 5. Dispersion circles MG and ML and the prohibited area

delineated by the circle MS for the robust performance condition

After substituting the distance |1+L0(jωe)|, (26) and
the radius RL , (28) into (23) which expresses the general
robust performance condition and considering the safety
coefficients λL and λS , respectively, we obtain the fol-
lowing relation

GM − 1

GM
>

λLRG

GMF0
+ λSRS , (32)

which after small manipulations yields the resulting rela-
tion (30).

In practical cases λS = 1.1.

5 Closed-loop performance under

the designed PID controller

Recommended frequency of the excitation signal ωe

generated by the sinusoid generator in the control loop in
Fig.1 ranges within the following interval [31]

ωe/ωu ∈ 〈0.5, 1.25〉 in dB, (33)

where ωu is the ultimate frequency of the unknown un-
certain system with an unstable zero. Its value can be
determined by switching SW into position 3 and realiz-
ing the experiment according to Rotach [33].

In this chapter we aim to find a relation between robust
performance requirements specified in the time domain
in terms of (treg, ηmax), and PID controller parameters
and frequency domain identification results in terms of
GM , ωe) guaranteeing their fulfilment.

Consider the interval of typical open-loop gain margins

GM ∈ 〈3, 17dB〉, , (34)

Let us divide the intervals (33) and (34) into linear sec-
tions ∆ωe = 0.15ωu and ∆GM = 2dB, respectively

{ωek/ωu} = {0.5; 0.65; 0.8; 0.95; 1.1; 1.25} , k = 1 . . . 6,

{GMj} = {3, 5, 7, 9, 11, 13, 15, 17} in dB , j = 1 . . . 8.

(35)
In the next development, each element of the Cartesian
product ωek×GMj

has been used to generate parameters
for PID controller designed for the following benchmark
examples:

F1(s) =
(1− β1s)

n1

1 + T1s
, (36)

F2(s) =
(1− β2s

(1 + s)(1 + T2s)(1 + T 2
2 s)(1 + T 3

2 s)
. (37)

Closed-loop step response shaping based on using various
GM and ωe to tune PID for F2(s) is shown in Fig. 6
where T2 = 0.75 and β2 = 1.3; PID controllers were
designed for four different gain margin values GM =
5, 9, 11, 13 dB, and three different identification levels
ωe1/ωu = 0.5, ωe3/ωu = 0.8 and ωe5/ωu=1.1.
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Fig. 6. Closed-loop step response shaping for (a) to (c) – F2(s) with T2 = 0.75, α2 = 1.3 using different GM , and (d) – relay-test time
response of F2(s) for β/T =1 and β/T = 0.1, respectively

A systematic PID design using parameters from (33)
and (34) allows to evaluate and generalize the achieved
performance, and to establish relation between the time-
domain performance measures and the frequency domain
parameters entering in PID tuning procedure

P : (ηmax; treg) → (ωe;GM ). (38)

Based on the fact that the designed PID controller
shifts the idenitified nominal point F0(jωe) into the gain
crossover L0(jωe) at the excitation frequency ωe , the
settling time can be expressed by the relation

treg =
πγ

ωe
, (39)

where γ is a curve factor of the step response. In the
similar relation according to Reinisch [29] valid just for
second order closed-loops its value ranges within the in-
terval (1;4). In the proposed method γ changes within a
considerably broader interval (0.5;16) found empirically,
and strongly depends on the gain margin at the given
frequency ωe , ie γ = f(GM ).

Graphical interpretation of relation (39) for different
excitation frequencies ωe is in Fig. 7(a) and Fig. 8(a).
From the two plots clearly results that for each identi-
fication level ωek/ωu with increasing the open-loop gain
margin GM the settling time τreg first decreases and after
achieving its minimum value τregmin it grows again.

Consider the benchmark examples (36) and (37) with
the following parameter values F1.1(s) : (T1n1

, β1) =

(0.75, 8, 0.2); F1.2(s) : (1, 3, 0.1); F1.3(s) : (0.5, 5, 1);
F2(s) : T2 = 0.5, β2 = 1.3.

The couples of studied systems [F2(s),F1.3(s)] and
[F1.2(s), F1.1(s)] principally differ by the ratio β/T ; for
the first couple [β2/T2 = 2.6, β1.3/T1.3 = 2], and for the
second one [β1.2/T1.2 = 0.1, β1.1/T1.1 = 0.27].

Thus, for the performance of a closed-loop comprising
a non-minimum phase system with an unstable zero and
a PID controller, the ratio of the parameter β and the
(dominant) time constant is decisive. Based on analysis
realized for a large number of benchmark examples [34]
it has been concluded that unknown controlled systems
with an unstable zero can be classified with respect to the
ratio β/T into the following two groups:

1. systems with an unstable zero and β/T < 0.3

2. systems with an unstable zero and β/T > 0.3

For nonminimum-phase systems with an unstable zero
the B-parabolas for ηmax depending on different gain
margins GM and excitation levels ωe/ωu are shown in
Fig. 7(b) (for β/T > 0.3) and in Fig. 8(b) (for β/T <
0.3). We can observe that increasing the gain margin GM

brings about decreased maximum overshoot ηmax .

6 Discussion

• Note that the ratio β/T cannot be found mathemat-
ically because the plant model is unknown. To de-
cide to which category the controlled plant belongs
(β/T > 0.3 or β/T < 0.3) it is sufficient to analyze
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the beginning of the rising part of the output variable
during the Rotach test for determination of the criti-
cal frequency ωu . If the y(t) response is S-shaped with
just a tiny undershoot under the time axis, the con-
trolled object belongs to the category β/T < 0.3 and
B-parabolas in Fig. 8 are to be used. However, if a con-
siderable square root-shaped undershoot of y(t) under
the time axis appears, Fig. 6(d), in the red dashed el-
lipse, the system falls into the category β/T > 0.3 and
its performance will be assessed using the B-parabolas
in Fig. 7.

• B-parabolas for β/T > 0.3 in Fig. 7(a) indicate zero
overshoot at gain margins greater than 12.5 dB. When
tuning a PID controller using GM larger than 12.5 dB
the settling time rises almost linearly for all identifi-
cation levels ωe/ωu , Fig. 7(b). The range from 12.5
dB to 17 dB can be used to purposefully increase the
settling time in case that a larger rise time of the step
response is required (eg on increasing pressure in a sys-
tem where a sudden increase may cause a pipe break-
age).

• B-parabolas for β/T < 0.3 in Fig. 8(a) clearly show
that to achieve ηmax = 0 % it is necessary to use a

gain margin larger by approximately 10 dB compared

with systems with the ratio β/T > 0.3. The short-

est achievable relative settling time for systems with

β/T < 0.3 is τreg = 13 according to B-parabolas in
Fig. 8(b). The smallest overshoot for the given gain

margin can be achieved at the lowest identification

level ωe/ωu = 0.5 (red parabola).

• With increasing the gain margin the maximum over-

shoot of the closed-loop step response decreases. For a

chosen gain margin, it is possible to reduce the settling

time by increasing frequency of the sinusoid signal,

however at the price of increasing the step response

undershoot under the time axis (Fig. 6).

The robust PID controller is designed using the har-

monic excitation-based design method described in chap-

ters 2 and 3; the input data for the nominal model

F0(jωe) are its coordinates: {F0(ωe);ϕ0 = argF0(jωe)} .

It is a well known fact from control theory that the open-

loop gain margin GM is an attractive indicator of robust-

ness [2] and at the same time the design parameter of the

PID controller gain (17a). Its value has to be chosen from

the B-parabolas according to the prescribed closed-loop
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performance specification fulfilling the robust stability or
robust performance condition.

Determination of the gain margin GM for nominal
performance and robust stability

When calculating coefficients of the robust PID con-
troller according to Tab. 1, the value of the gain margin
GM has to be chosen from the couple of B-parabolas in
Fig. 7 or Fig. 8 to guarantee nominal performance (ie not
exceeding specified ηmax 0 and treg0 by the nominal model
closed-loop); and simultaneously meeting the derived ro-
bust stability condition (24).

Determination of the gain margin GM for robust per-
formance and robust stability

The value of the robust performance magnitude GS ,
(32) is determined using the B-parabolas (Fig. 7 or Fig. 8)
so as to guarantee the specified ηmaxN and tregN for the
”worst” identified point of the plant; by substituting it
into (34) we obtain the radius RS subsequently used in
the robust performance condition (31) to calculate the
gain margin GM ; coefficient of the PID controller are
then calculated according to Tab. 1.

Verification of the proposed harmonic excitation-based
robust PID controller design method is illustrated on the
following examples.

7 Verification

Example 1 – PID tuning for robust stability

Consider the following uncertain plant F3(s) with an
unstable zero

F3(s) =
K3 (1− β3s)

(1 + T3s)
3 ,

F30(s) =
K30 (1− β30s)

(1 + T30s)
3 =

0.8 (1− 7.5s)

(1 + 27.5s)
3

with parameters K3 , T3 and β3 varying within ±15%
around the nominal values; F30(s) is the nominal model.
Let us design a robust PID controller to guarantee a
maximum relative settling time τs0 = 12 and a maximum
overshoot ηmax 0 = 5% for the nominal model F30(s),
and stability of the whole family of the uncertain plants
F30(s) with unstable zero (ie robust stability).

Solution and discussion

1. Measured ultimate frequency of the nominal model
was ωu = 0.0488 rad/s. From the required nominal
closed-loop performance results treg = τreg/ωu=245.9 s.

2. The expected nominal performance (ηmax0, τreg0)
=(5%,12) is achievable for (GM , ωe)=18 dB, 0.65ωu)
based on ”pink” B-parabolas in Fig. 8, β30/T30 < 0.3.
As there are three uncertain parameters in F3(s) : K3, T3

and β3 , the number of identifications is N = 23 .

3. Using the excitation frequency ωe = 0.65ωu=0.0317
rad/s eight points of the Nyquist plots of the uncertain

plant F31(jωe) . . . F38(jωe) were identified using the si-
nusoid excitation method (blue × in Fig. 9). The nominal
point F30(jωe) obtained from coordinates of the identi-
fied points F3i(jωe), i = 1 . . . 8 is located on the Nyquist
plot of the nominal model (blue) proving correctness of
the identification. The dispersion circle MG is centred in
the nominal point F30(jωe) and its radius is RG = 0.164.

4. As GM =18 dB and the right-hand side of (24) is
GRS = 3.52 dB, the robust performance condition (24)
GM > GRS is satisfied. The designed robust PID con-
troller shifts the nominal point F30(jωe) of the controlled
system to the negative half-axis of the complex plane into
the point L30(jωe) = F30(jωe)FR rob(jωe) = 0.12e−jπ ,
which is a point of the nominal open-loop Nyquist plot
L30(jωe) (green plot in Fig. 9). Thus, the gain mar-
gin GM =18 dB for the nominal closed-loop is guaran-
teed. Closed-loop step response with the nominal model
(green plot in Fig. 10) verifies achieving the required nom-
inal performance ηmax 0obt = 4.55 %, τreg0obt = ωutreg0
=11.86.

5. The dispersion circle MLobt (green) in Fig. 10
with the radius RL = 0.0573 encompasses all points
L3i(jωe) = F3i(jωe)FR rob(jωe) for i = 1...8. Using the
PID controller, the worst point of the robust stability
controlled system F3N(jωe) was shifted to L3N (jωe) =

0.16e−j1.09π yielding the estimated worst open-loop gain
margin GMN = 14.9 dB.

6. The smallest gain margin G+
MN = 13.1 dB with

the corresponding worst point F3N (jωe0) given by the
intersection of the red open-loop Nyquist plot and the
negative real half-axis of the complex plane. According to
the ”pink” B-parabolas in Fig. 8, under the identification
level ωe/ωu = 0.65 the expected maximum overshoot is
ηmaxN = 25 % and the relative settling time τregN = 16.
The closed-loop step response in Fig. 10 (red plot) verifies
that the achieved performance measure values ηmaxN =
13.5 %, tregN = 301 s correspond with the required ones.

Example 2 – PID tuning for robust performance

Consider again the uncertain plant F3(s) from Exam-
ple 1, with same uncertain parameters K3, T3 and β3 .
Let us design a robust PID controller to guarantee a rel-
ative settling time τregN = 12 and maximum overshoot
ηmaxN = 5% for all models from the family of plants
F3(s) (ie robust performance).

Solution and discussion

1. The task can be solved using the robust performance
magnitude GS = 18 dB and identification level ωe/ωu =
0.65 resulting from the ”pink” B-parabolas in Fig. 8.

2. The calculated right-hand side of (31) is G0RP =
21.37 dB, hence the robust performance condition (30)
GM > G0RP is fulfilled if the gain margin is chosen
eg GM = 21.5 dB.

3. Using the designed robust PID controller, the point
F30(jωe) of the nominal plant is moved on the unit cir-
cle into the point L30(jωe) = F30(jωe)FR rob(jωe) =

0.0841e−jπ . The nominal open-loop Nyquist plot (green
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Table 2. Desired and obtained performance measures under the
designed robust PID controllers designed for the uncertain plant

F3(s)

Design for: NP+RS (dB) NP+RP (dB)

ηmax0 des 5 %
GM0=18.0

-
GM ==22

treg0 des 245.9 s -

ηmaxNdes -
G+

MN = 14.9
5%

G+
MN = 18.8

tregNdes - 245.9 s

ηmax0obt 4.5 %
GM0 = 18.0

0%
GM0 = 22.0

treg0obt 243 s 381 s

ηmaxNobt 13.5 %
G+

MN =13.1
4.8%

G+
MN =16.9

tregNobt 301 s 237 s

Abbreviations: NP – (Nominal Performance)

RS – (Robust Stability), RP – (Robust Performance)

Table 3. Locations of the points F30,L30,F3N ,L3N , radii of the
dispersion circles RG , RL , RS and coefficients of the robust PID

controllers designed for F3(s)

F30(jωe0) 0.36e−j0.76π

F3N (jωe0) 0.46e−j0.86π

RG 0.164

FR(jωe) 0.35e−j0.24π 0.23e−j0.23π

Krob 0.258 0.173

Ti rob 27.729 27.729

Td rob 6.932 6.932

L30(jωe0) 0.12e−jπ 0.08e−jπ

L3N (jωe0) 0.16e−j1.1π 0.11e−j1.1π

RL 0.0573 0.0400

RS 0.7228 0.6992
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curve) passes through the point L30(jωe), Fig. 11. Com-
pared with the design task from Example 1, the circle
ML has moved towards the imaginary axis of the com-
plex plane, and its radius has reduced to RL = 0.0400
(in the Example 1 was RL = 0.0573 according to Fig. 9).

4. The lowest phase margin estimated from the posi-
tion of the ”worst” point L3N (jωe0) = 0.112e−j1.1π is

G+
MN = 18.8 dB. Intersection of the red Nyquist plot

with the real negative half-axis of the complex plane
yields the actual achieved lowest open-loop phase mar-

gin G+
MN = 16.9 dB.

5. Radius of the prohibited circle is RS = (GS −
1)/GS=0.699; its value multiplied by the expansion coef-
ficient λS = 1.2, and increased radius RL of the disper-
sion circle MLλL = 1.1 times guarantee that no open-
loop Nyquist plot enters the prohibited area delimited

by the circle MS . The expanded circles M+
L a M+

S in
Fig. 11 (dotted curves) are touching which indicates ful-
filment of the robust performance condition (30) as well
as the generalized robust performance condition (23).

6. Closed-loop step response of the ”worst” plant
model (Fig. 12, red curve) shows ηmaxNobt = 4.8 % and
a relative settling time τregNobt = ωutregNobt = 11.57,
which proves fulfilment of the input performance require-
ments. PID controller has been designed for the nominal
model of the plant using the gain margin GM = 21.5
dB and the identification level ωe = 0.65ωu, respec-
tively, according to the pink parabolas showed in Fig. 8,
hence the expected nominal closed-loop performance is
ηmax0 = 1.5% and τreg0 = 21. The nominal closed-loop
step response depicted in Fig. 12 (green curve) shows
the obtained performance values ηmax0 obt = 0% and
τreg obt = 18.59, in compliance with the expected per-
formance.

The results achieved for the uncertain plant F3(s)
with an unstable zero according to Examples 1 and 2 are
summarized in Table 2 and 3 which includes: locations
of the nominal point F30(jωe) and the worst-case point
F3N(jωe), radii of the dispersion circles RG, RL and RS

and coefficients of the designed robust PID controllers,
required performance specified by the designer, achieved
performance and gain margins used as design parameters.

8 Conclusions

Based on the results of Examples 1 and 2, and appli-
cation of the developed harmonic excitation-based robust
PID design method for a broad range of benchmark ex-
amples [34], the following conclusions can be drawn:

Increasing degree of robust stability is achieved by
decreasing maximum overshoot of the nominal closed-
loop step response.

For a maximum change κ = 30 % in uncertain pa-
rameters of the plant with an unstable zero it is possible
to achieve ηmax ∈ 〈0, 90〉 % and treg ∈ 〈8.5/ωu, 45/ωu〉
using the proposed method for both the nominal point

and the worst case point FN of the corresponding fam-
ily of plants with unknown mathematical model (ωu0

is an ultimate frequency of the corresponding nominal
model). Individual intervals result from the ranges of
ηmax = f(GM , ωe) and treg = f(GM , ωe) according to
the B-parabolas in Fig. 7 and 8. The proposed method
allows the designer to directly use the performance speci-
fication in terms of ηmax and treg in the robust controller
design algorithm operating in the frequency domain for
both the nominal and the worst case plant model (using
the performance B-parabolas).
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