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Numerical modelling of the internal reflection and
Goos-Hänchen shift of electromagnetic beam wave

L’ubomı́r Šumichrast, Jaroslav Franek,

Rastislav Dosoudil, Jozefa Červeňová
∗

Total internal reflection of plane waves is a well-known phenomenon. Some new aspects of the numerical treatment of
the total internal reflection phenomena, concerning the beam-wave, are discussed.
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1 Introduction

Reflection and transmission of a homogeneous plane
wave at the plane boundary of two dielectric media is a
well known phenomenon commonly treated in nearly all
standard textbooks. Investigation of the internal reflec-
tion of inhomogeneous plane waves and spatially confined
beam waves is subject of permanent interest since the
discovery of the Goos-Hänchen shift [1]. There is a huge
number of papers published over the last seventy years.
concerning this topic, just a small non-representative
sample is for illustration exemplified by [2–6]. Here we
investigate first the effects occurring due to the total in-
ternal reflection of an inhomogeneous plane wave – the
classical Goos-Hänchen shift and subsequently we con-
sider spatially cofined beam wave. Special attention is
paid to the numerical treatment of these effects by a sim-
ple approach using Fourier series.

2 Propagation of a monochromatic plane

wave along the planar dielectric boundary

Let us consider the planar boundary x = 0 between
the two half-spaces, x < 0 and x > 0, filled respectively
with the dielectric media having permittivities ε1 and ε2
accordingly to Fig. 1.

Consider the infinite non-homogeneous harmonic plane
wave of angular frequency ω0 , with the electric intensity

and the magnetic intensity vectors E(r, t) = Re
{
Ê(r, t)

}

and H(r, t) = Re
{
Ĥ(r, t)

}
in complex representation of

the form

Ê(r, t) = Ê(r) exp(jω0t),

Ĥ(r, t) = Ĥ(r) exp(jω0t),
(1)

propagating in direction z with the wavenumber k0 , ie

Ê(r, t) = Ê(x, y) exp(−jk0z),

Ĥ(r, t) = Ĥ(x, y) exp(−jk0z) .
(2)

In what follows, we shall consider only the two dimen-
sional case, ie the wave transversal profile independent
of y

Ê(x, y) = Ê(x), Ĥ(x, y) = Ĥ(x) .

The mean value of the power flow density 〈P〉 is given
by the Poynting vector in the form

〈P〉 = 1

2
Re

{
Ê× Ĥ

∗

}
. (3)

The two-dimensional wave propagation may be formu-
lated either in the transversal electric (TE) configuration
with the electric and magnetic intensity vectors of the
form

Ê(x) = Ey(x)uy , Ĥ(x) = Hx(x)ux +Hz(z)uz . (4)

or in the transversal magnetic (TM) configuration with

Ê and Ĥ of the form

Ĥ(x) = Hy(x)uy , Ê(x) = Ex(x)ux + Ez(x)uz . (5)

For the TE configuration Ey(x) fulfils in the respective
half-spaces x < 0 and x > 0 the wave equations

∂2Ey(x)

∂x2
+ (β2

1 − k20)Ey(x) = 0 , x < 0 , (6)

∂2Ey(x)

∂x2
+ (β2

2 − k20)Ey(x) = 0 , x > 0 , (7)
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where β1 = ω0
√
µε1 and β2 = ω0

√
µε2 are the phase

constants in the respective media. The Ĥ(x) vector is
determined using the Maxwell’s equation

Ĥ(x) =
j

ω0µ

[
jk0Eyux +

∂Ey

∂x
uz

]
. (8)

For the TM configuration the wave equations for
Hy(x) are of the same form as (6) and (7) and the

Maxwell’s equation for determining Ê(x) reads

Ê(x) = − j

ω0ε

[
jk0Hyux +

∂Hy

∂x
uz

]
, (9)

where ε equals either ε1 or ε2 accordingly the respective
region. For the sake of brevity we shall not pursue the
TM case further.

3 Non-homogeneous plane wave with

cosine-like profile: k0 < min[β1, β2]

If the condition k0 < min[β1, β2] is fulfilled, ie the
wavenumber k0 is smaller than any of the two phase
constants β1 , β2 , then the general solution of (6) and
(7) for TE configuration in respective domains x < 0
and x > 0 is of the type

Ey1(x) = A exp(−jq1x) +B exp(jq1x) , (10)

Ey2(x) = C exp(jq2x) +D exp(−jq2x) , (11)

where q1,2 =
√
β2
1,2 − k20 . Taking into account continuity

of the components Ey , Hx and Hz on the boundary
x = 0, one obtains

Ey1(x) = E01 [exp(−jq1x) + ρ exp(jq1x)] +

(1− ρ)E02 exp(jq1x) , x < 0 , (12)

Ey2(x) = E02 [exp(jq2x)− ρ exp(−jq2x)] +

(1 + ρ)E01 exp(−jq2x) , x > 0 , (13)

where
ρ = (q1 − q2)/(q1 + q2) (14)

is the reflection factor and E01 , E02 are two arbitrary
constants expressing the power flow density of the wave.

In fact (12) and (13) represent an interference of the
two independent waves with amplitudes E01 and E02 ,
each of them being reflected and refracted on the bound-
ary x = 0.

Using (12) and (13) the Ĥ(x, z) vector can be easily
obtained from (8).

If both independent waves are of the same magnitude
E01 = E02 = E0 one obtains purely cosine-like ampli-
tude profile of the non-homogeneous plane wave in the
TE configuration propagating along the boundary

Ê1,2(x) = uy2E0 cos(q1,2x) , (15)

Ĥ1,2(x) =
−2E0

ω0µ

[
uxk0 cos(q1,2x) + uzjq1,2 sin(q1,2x)

]
,

(16)
with the Poynting vector equal to

〈
P1,2(x)

〉
= uz

2E2
0

ω0µ
k0 cos

2(q1,2x) , (17)

ie resulting in no power transferred through the boundary
plane x = 0.

If only one independent wave exists, ie E01 = E0 ,
E02 = 0, then in the halfspace x < 0 it consists of the
incident and reflected wave, with reflection coefficient ρ ,

and with resulting Ê , Ĥ vectors equal to

Ê1(x) = uyE0 {exp(−jq1x) + ρ exp(jq1x)} , (18)

Ĥ1(x) = − E0

ω0µ

{
[uxk0 − uzq1] exp(−jq1x)+

ρ[uxk0 + uzq1] exp(jq1x)
}
. (19)

The Poynting vector in the half space x < 0 equals

〈
P1(x)

〉
=

E2
0

2ω0µ

{
uzk0[1 + ρ2 + 2ρ cos(2q1x)]

+ uxq1(1− ρ2)
}
. (20)

In the half space x > 0 the resulting Ê, Ĥ vectors are

Ê2(x) = uyτE0 exp(−jq2x) (21)

Ĥ2(x) = −τE0

ω0µ
[uxk0 − uzq2] exp(−jq2x) , (22)

with the Poynting vector equal to

〈
P2(x)

〉
=

τ2E2
0

2ω0µ
[uzk0 + uxq02] , (23)

where
τ = 1 + ρ = 2q1/(q1 + q2) (24)

is the transmission factor.

The x-components 〈P1x〉 and 〈P2x〉 of the Poynt-
ing vectors 〈P1(x)〉 and 〈P2(x)〉 give the steady flow of
the wave power density in direction perpendicular to the
boundary and on the boundary x = 0 are the same in
medium ε1 and ε2 , ie 〈P1x〉 = 〈P2x〉 |x=0, since (1 −
ρ2)q1 = τ2q2 .

The z -components 〈P1z〉 and 〈P2z〉 give the steady
power flow of the wave along the boundary x = 0. The
cos(2q1x) dependence of 〈P1z〉 in (20) is in fact due
to the interference pattern of the incident and the re-
flected wave. On the boundary itself 〈P1z〉 and 〈P2z〉
are continuous, ie 〈P1z〉 = 〈P2z〉

∣∣
x=0

, since
[
1 + ρ2 +

2ρ cos(2q1x)
]∣∣

x=0
= τ2 .
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4 Evanescent plane wave: β1 > k0 > β2

Assuming ε1 > ε2 and β1 > k0 > β2 the solution
of (6) and (7) for TE configuration reads

Ê1(x) = uyE0

[
exp(−jq0x) + ρ exp(jq0x)

]
=

uy2E0 exp(jΨ) cos(q0x+Ψ) , (25)

Ê2(x) = uyτE0 exp(−κx) =

uy2E0 exp(jΨ) cos(Ψ) exp(−κx) , (26)

where

q0 = q1 =
√
β2
1 − k20 , κ = jq2 =

√
k20 − β2

2 ,

ρ = exp(j2Ψ), τ = 2 cosΨ exp(jΨ), tanΨ = κ/q0.

(27)
Here we have simply denoted E01 = E0 since the second
independent constant E02 has to be set to zero from
physical reasons – it leads to the exp(κx) dependence
divergent for x → ∞ .

The pertaining Ĥ vectors are

Ĥ1(x) =
−2E0

ω0 µ
exp(jΨ)×

[
uxk0 cos(q0x+Ψ) + uzjq0 sin(q0x+Ψ)

]
, (28)

Ĥ2(x) =
−2E0

ω0 µ
exp(jΨ) cos(Ψ)

[
uxk0 −uzjκ

]
exp(−κx) .

(29)

The power flow density in the respective medium
equals

〈P1(x)〉 = uz
2E2

0

ω0µ
k0 cos

2(q0x+Ψ), (30)

〈P2(x)〉 = uz
2E2

0

ω0µ
k0 cos

2(Ψ) exp(−2κx) . (31)

Observe that in this case again, no power density flows
through the boundary plane.

Thus, one arrives to the non-homogeneous plane wave
with cosine-like profile in the medium ε1 , x < 0, and
exponentially evanescent profile in medium ε2 , x > 0,
propagating in the z -axis direction with the phase veloc-
ity vf = ω0/k0 , in the medium ε1 higher than the respec-
tive velocity of light c1 = ω0/β1 , and in the medium ε2
smaller than the respective velocity of light c2 = ω0/β2 .
Therefore this kind of wave is sometimes termed a “slow
wave”.

For the limiting case k0 = β2 holds κ = 0, Ψ = 0,

q0 =
√
β2
1 − β2

2 . This leads either from (18) – (23) or
from (25) – (31) to

Ê1(x) = uy2E0 cos(q0x) , Ê2(x) = uy2E0 , (32)

Ĥ1(x) =
−2E0

ω0µ

[
uxβ2 cos(q0x) + uzjq0 sin(q0x)

]
, (33)

Ĥ2(x) =
−2β2E0

ω0µ
ux , (34)

〈P1(x)〉 = uz
2E2

0

ω0µ
β2 cos

2(q0x),

〈P2(x)〉 = uz
2E2

0

ω0µ
β2 ,

(35)

ie in the second medium ε2 – the halfspace x > 0 – a ho-
mogeneous plane wave of constant magnitude propagates
in direction of the boundary without any exponentially
attenuating tail.

5 Standard approach to the

plane wave reflection and

transmission on the plane boundary

Within the framework of the standard treatment of
wave reflection and refraction the results presented in
(18) and (21) represent, as depicted in Fig. 1, the electric
intensity vectors of the incident, reflected and refracted
homogeneous TE-polarised plane wave, expressed as

Êd(r) = uyE0 exp(−jβ1nd · r) , (36)

Êr(r) = ρuyE0 exp(−jβ1nr · r) , (37)

Êp(r) = τuyE0 exp(−jβ2np · r) . (38)

The propagation directions of the incident, reflected and
transmitted plane waves are given by the unit vectors nd ,
nr , np , where

β1nd · r = q1x+ k0z ,

β1nr · r = −q1x+ k0z ,

β2np · r = q2x+ k0z

The incidence, reflection and refraction angles θd , θr ,
θp in Fig. 1 are defined by the directions of propagation

nd = cos θdux + sin θduz ,

nr = − cos θrux + sin θruz ,

np = cos θpux + sin θpuz .

(39)

Comparison with (18) and (21) yields

q1 = β1 cos θd = β1 cos θr , q2 = β2 cos θp ,

tan θd = tan θr = q1/k0 , tan θp = q2/k0 ,

and, as a consequence, two well known formulae (Snellius
law of reflection and refraction),

θd = θr , (40)

k0 = β1 sin θd = β2 sin θp , (41)
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Fig. 1. TE configuration of a plane wave reflection and refraction
on the planar dielectric boundary

are obtained.

The reflection and transmission factors in (14) and
(24) can be expressed as

ρ =
q1 − q2
q1 + q2

=
cos θd −

√
ε2/ε1 − sin2 θd

cos θd +
√
ε2/ε1 − sin2 θd

,
(42)

τ =
2q1

q1 + q2
=

2 cos θd

cos θd +
√
ε2ε1 − sin2 θd

. (43)

The pertaining magnetic intensity vectors of homoge-
neous plane waves are given by

Ĥd(r) = (nd × uy)(E0/Z1) exp(−jβ1nd · r) , (44)

Ĥr(r) = (nr × uy)(ρE0/Z1) exp(−jβ1nr · r) , (45)

Ĥp(r) = (np × uy)(τE0/Z2) exp(−jβ2np · r) , (46)

where Z1 =
√
µ/ε1 and Z2 =

√
µ/ε2 is the wave

impedance of the respective media.

The overall electromagnetic field in medium ε1 is given
by the electric intensity vector

Ê1(r) = Êd(r) + Êr(r) = Ê1(x) exp(−jk0z) , (47)

where Ê1(x) is given by (18), and by the magnetic inten-
sity vector

Ĥ1(r) = Ĥd(r) + Ĥr(r) = Ĥ1(x) exp(−jk0z) , (48)

where Ĥ1(x) is given by (19).

The mean value of the power flow density 〈P1(x)〉 in
the medium ε1 is given by (20). The mean value of the
power flow density 〈P2(x)〉 in medium ε2 is given by (23)
for the electric and magnetic intensity vectors

Ê2(r) = Êp(r) = Ê2(x) exp(−jk0z) , (49)

Ĥ2(r) = Ĥp(r) = Ĥ2(x) exp(−jk0z) , (50)

where Ê2(x) and Ĥ2(x) are given by (21) and (22).

6 Critical angle incidence

Let us consider the case ε1 > ε2 , This represents in

optics the so-called internal reflection since the incident
and reflected wave are eg in glass material (ε1 > ε0 ) and

transmitted wave propagates eg in the air (ε2 ≈ ε0 ). For
the so-called critical angle of incidence sin θd = sin θc ,

where

sin θc =
√
ε2/ε1 (51)

one obtains from (41) sin θp = 1 and from (42), (43)
ρ = 1, τ = 2 as well as from (39) np = uz , further

q1 =
√
β2
1 − β2

2 , k0 = β2 , and finally q2 = 0. This is
exactly the case described by (32) – (35).

Thus, in the case sin θd = sin θc =
√
ε2/ε1 , in the

halfspace x < 0, as a consequence of the interference of
the incident and reflected wave, a non-homogeneous plane

wave propagates in z direction, while in the halfspace
x > 0 propagates a simple homogeneous plane wave,

both with the phase velocity vf = ω0/β2 . The power
flow through the boundary x = 0 is zero.

7 Total internal reflection

If angle of incidence θd is larger then the critical angle
θc , ie θd > θc then (41) yields

sin θp = sin θd/ sin θc > 1 . (52)

This can be mathematically resolved by introducing the

complex angle θp = π/2 + jς .

Then

sin θp = sin(π/2 + jς) = cosh ς = sin θd/ sin θc > 1 ,

and cos θp becomes purely imaginary

cos θp = cos(π/2 + jς) = −j sinh ς .

It also means that np becomes a complex vector

np = −j sinh ςux + cosh ςuz , (53)

ie β1 > k0 > β2 , and κ in (27) is expressed as

κ =
√
k20 − β2

2 = β1

√
sin2 θd − sin2 θc .

For the reflection factor one obtains

ρ =
cos θd + j

√
sin2 θd − sin2 θc

cos θd − j
√
sin2 θd − sin2 θc

= exp(j2Ψ) , (54)
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Fig. 2. Definition of the ndA , ndB , nd0 , nrA , nrB , nr0 vectors
and pertaining θa , θb , θd0 angles

with alternative expression to that in (27)

cosΨ = cos θd/ cos θc . (55)

Thus, the complex reflection coefficient has the mag-
nitude equal to one, |ρ| = 1, and the phase 2Ψ. This is
exactly the case described by (27).

For the fields in ε1, and ε2, regions one obtains

Ê1,2(r) = Ê1,2(x) exp(−jk0z) , (56)

Ĥ1,2(r) = Ĥ1,2(x) exp(−jk0z) , (57)

where Ê1(x), Ê2(x), Ĥ1(x), and Ĥ2(x) are given by
(25) – (29).

As already pointed out, mean values of the power flow
densities have only components parallel with the bound-
ary (ie the wave power flows exclusively along the bound-
ary with no power passing through the boundary), are in
the respective media given by (30) and (31) and are con-
tinuous on the boundary plane.

8 Total internal reflection of an nonhomogeneous

plane wave, Goos-Hänchen shift and

penetration of the power flow density

Let us now consider an interference of two incident
homogeneous TE-polarised plane waves propagating in
directions given by ndA and ndB

Êd(r) = uyE0 exp(−jβ1ndA ·r) + uyE0 exp(−jβ1ndB ·r),
(58)

where ndA = cos θAux + sin θAuz , ndB = cos θBux +
sin θBuz , assuming θA > θB .

Introducing two perpendicular non-unit vectors nd0

and nAB , Fig. 2, by
nd0 = (ndA + ndB)/2 = cos θAB(cos θd0ux + sin θd0uz),
nAB = (ndA−ndB)/2 = sin θAB(− sin θd0ux+cos θd0uz),

where θd0 = (θA + θB)/2, θAB = (θA − θB)/2,
one may rewrite (58) as

Êd(r) = uy2E0 cos(β1nAB · r) exp(−jβ1nd0 · r) , (59)

ie as an inhomogeneous plane having in direction nAB ,
perpendicular to the propagation direction nd0 , a non-
constant, cos-like, amplitude pattern of the wavefront

2E0 cos(β1nAB · r) =
2E0 cos

{
β1 sin θAB(−x sin θd0 + z cos θd0)

}
, (60)

with the period λq = 2π/β1 sin θAB . This plane wave
propagates in direction nd0 with the propagation factor
exp(−jβ1nd0 · r) equal to

exp{−jβ1 cos θAB(x cos θd0 + z sin θd0)} ,

thus with the wavenumber β1 cos θAB , ie with the phase
velocity vf = ω0/β1 cos θAB higher than the velocity of
light in the given media c1 = ω0/β1 .

If both directions ndA and ndB fulfil the condition
of the total internal reflection θA, θB > θc , then for the
resulting reflected wave one obtains

Êr(r) = uyE0

{
exp(2jΨA) exp(−jβ1nrA · r)+

exp(2jΨB) exp(−jβ1nrB · r)
}
, (61)

where the reflection factors exp(2jΨA) and exp(2jΨB)
pertain to the angles of incidence θA and θB respectively,
and

nrA = − cos θAux + sin θAuz ,

nrB = − cos θBux + sin θBuz .

Denoting similarly as above

nr0=(nrA + nrB)/2 = cos θAB(− cos θd0ux + sin θd0uz) ,

nBA = (nrA − nrB)/2 = sin θAB(sin θd0ux + cos θd0uz) ,

formula (61) can be rewritten into the form

Êr(r) = uy2E0 cos(β1nBA · r −ΨAB)×
exp

{
−j(β1nr0 · r −Ψ0)

}
, (62)

where Ψ0 = ΨA +ΨB and ΨAB = ΨA −ΨB .

The cos-like amplitude pattern of the reflected wave is
now given by

2E0 cos(β1nBA · r −ΨAB) =

2E0 cos
(
β1 sin θAB[sin θd0x+ cos θd0z]−ΨAB

)
, (63)

with the same period as the amplitude pattern of the
incident wave but shifted in the direction of nBA by

s = ΨAB/β1 sin θAB . (64)
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etration into medium with ε2

This effect is called the Goos-Hänchen shift. Along the
boundary plane x = 0 this shift equals

sz = s/ cos θd0 = ΨAB/β1 sin θAB cos θd0 . (65)

The link between Ψ0 = ΨA + ΨB , ΨAB = ΨA − ΨB

and 2θd0 = θA + θB , 2θAB = θA − θB can be easily
established in the form

cosΨ0={cos(2θd0) + cos(2θAB)−∆}
/
2 cos2 θc , (66)

cosΨAB={cos(2θd0) + cos(2θAB) + ∆}
/
2 cos2 θc, (67)

where

∆ =
[
cos2(2θd0) + cos2(2θAB)− sin2(2θc)−

2 cos(2θd0) cos(2θAB) cos(2θc)
]1/2

. (68)

The dependence of ΨAB on θd0 and θAB is depicted in
Figs. 3 and 4, for the interval θd0 ∈ (θc+θAB, π/2−θAB),
with θAB as a parameter of the series of curves. It is seen
in Fig. 3 that for θc = 10◦ except of θB being very close
to θc the phase angle ΨAB converges to the angle very

close to 2θAB . For θ = 60◦ in Fig. 4 the range of the
phase angles ΨAB as a function of θd0 is much broader,
for θd0 → π/2− θAB having the tendency to converge to
the angle 4θAB .

For θAB = π/4 − θc/2 there is only one value of
θd0 = π/4 + θc/2 and ΨAB = π/2 representing the
maximum value of ΨAB attainable.

The overall E -field in the second media with permit-
tivity ε2 equals

Ê2(r)=uy2E0

{
cosΨA exp(−κAx) exp(−j[kAz −ΨA])

+ cosΨB exp(−κBx) exp
(
−j[kAz −ΨB]

)}
(69)

where kA,B = β1 cos θdA,dB , κA,B =
√
k2A,B − β2

2 . For

the H -field in the second media one obtains

Ĥ2(r) = −(2E0/ω0µ)
{
cosΨA(jκAuz + kAux))×

exp(−κAx) exp
(
−j[kAz−ΨA]

)
+cosΨB(jκBuz +kBux)

× exp(−κBx) exp
(
−j[kBz −ΨB]

)
(70)

The z -component of the mean value of the power flow
density 〈P2〉 in the medium ε2 is

〈P2z〉 =
(
2E2

0

/
ω0µ

){
kA cos2 ΨA exp(−2κAx)+

kB cos2 ΨB exp(−2κBx)+

k0 cosΨA cosΨB exp(−κ0x) cos(kABz −ΨAB)
}
, (71)

where κ0 = κA + κB , k0 = kA + kB , kAB = kA − kB =
β1 cos θd0 sin θAB .

The x-component of 〈P2〉 equals

〈P2x〉 = −(2E2
0/ω0µ)kAB cosΨA cosΨB

× exp(−κ0x) sin(kABz −ΨAB) . (72)

The z -component of the power flow on the boundary
is given by

〈P2z〉
∣∣
x=0

= (2E2
0/ω0µ)

{
kA cos2 ΨA + kB cos2 ΨB+

k0 cosΨA cosΨB cos(kABz −ΨAB)
}
, (73)
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and oscillates between the minimum and maximum value

(E2
0/µ)

{
kAB[cos

2 ΨA− cos2 ΨB]+k0[cosΨA± cosΨB]
2
}
.

The power flow through the boundary is given by

〈P2x〉
∣∣
x=0

=

− (2E2
0/µ)kAB cosΨA cosΨB sin(kABz −ΨAB) (74)

and oscillates between the maximum positive and nega-
tive values ±(2E2

0/µ)kAB cosΨA cosΨB as given by the
term sin(kABz−ΨAB in (74). Observe that in the points,
where transversal component 〈P2x〉|x=0 is zero, the lon-
gitudinal component 〈P2z〉|x=0 reaches its maximum, or
minimum.

It means that there are portions of the boundary plane
where the power penetrates from the medium with ε1
into the medium with ε2 and in other portions of the
boundary it returns back from the medium with ε2 into
the medium with ε1 . This is the fundamental difference
between the homogeneous and non-homogeneous plane
wave case and it is the real physical cause of the Goos-
Hänchen shift. In case of the homogeneous plane wave,
the power flows along the boundary plane only, the re-
flected wave obtains the phase shift Ψ but no power pen-
etration into the second medium occurs. In case of the
non-homogeneous plane wave this phase shift is trans-
formed into the spatial shift with the power being trans-
ferred through the second medium. Observe that the
Goos-Hänchen shift on the z -axis (65) equals exactly the
shift of the sin function in (74)

sz = s/ cos θd = ΨAB/β1 sin θAB cos θd = ΨAB/kAB .

9 Total internal reflection of

a monochromatic beam wave

Let us instead of incident plane waves consider a two-
dimensional TE-polarised beam wave

Êd(r) = Êd(ξ, ζ) = uyÊy(ξ, ζ) = uyE0ϕd(ξ, ζ) . (75)

propagating along the longitudinal ζ -axis identical with
the direction of the nd0 under the angle-of-incidence θd0
to the x-axis, with the amplitude profile of the beam wave
along the transversal ξ -axis identical with the direction
of the nAB , perpendicular to ζ -axis, where

ξ = −(x+ x0) sin θd0 + (z − z0) cos θd0 ,

ζ = (x+ x0) cos θd0 + (z − z0) sin θd0 .

The origin of the (ξ, ζ) coordinate system is thus placed
in the point (−x0, z0) of the (x, z) coordinate system.

The beam-wave-profile function ϕd(ξ, ζ) is given in
the plane ζ = 0 by the spatial initial condition ϕd0(ξ),
ie ϕd(ξ, ζ)|ζ=0 = ϕd0(ξ).

In fact the wave given in (59) is an example of such a
wave, however with cos-like amplitude pattern, ie

Êd(r) = uy2E0 cos(q0ξ) exp(−jk0ζ) , (76)

where ϕd(ξ, ζ) = 2 cos(q0ξ) exp(−jk0ζ), q0 = β1 sin θAB ,

k0 =
√
β2
1 − q20 = β1 cos θAB .

As shown in [7], the profile pattern ϕd(ξ, ζ) can be
generally expressed in form of an integral summation of
infinitesimal plane waves Φd(q, ζ) exp(−jqξ)dq with the
spectral density

Φd(q, ζ) = Φd0(q) exp
{
−jζ

√
β2
1 − q2

}
, (77)

where

Φd0(q) =
1

2π

∫
∞

−∞

ϕd0(ξ) exp(jqξ)dξ (78)

is the Fourier transform of the initial profile ϕd0(ξ), ie

ϕd(ξ, ζ) =

∫
∞

−∞

Φd0(q) exp
{
−j

(
qξ+ζ

√
β2
1 − q2

)}
dq . (79)

The infinitesimal plane wave components belonging to
Φd(q, ζ) propagate spanning the angles θq = arcsin(q/β1)
with respect to the beam axis.

The inhomogeneous plane wave in (76) is just an exam-
ple of (79) with a singular spatial-frequency component,
ie Φd0(q) = δ(q− q0)+ δ(q+ q0), where δ(q) is the Dirac
delta-function.

If considering spatially-bandlimited beams, ie if
Φd0(q) = 0 for q > qmax , then, if qmax ≪ β1 , the Fresnel

(or parabolic) approximation of
√
β2
1 − q2

√
β2
1 − q2 ≈ β1 − q2/2β1

can be used in the phase terms of (77) and (79). Then
the phase term can be approximately written as

ζ
√

β2
1 − q2 ≈ β1ζ − q2ζ/2β1 = 2π

{
(ζ/λ)− (ζ/2ζF )

}
,

(80)
where the characteristic length ζF is defined by ζF =
2πβ1/q

2 = λ2
q/λ and λ = 2π/β1 , λq = 2π/q . Until

the propagation path ζ is much smaller than ζF min ,
ie ζ/ζF min ≪ 1, where ζF min and λqmin correspond to
qmax , the beam wave behaviour mimics the propagation
of a plane wave having nearly planar wavefront with small
changes of the beam profile. For ζ/ζF min ≫ 1 the beam
wave diverges, the beam-profile spreads-out, reaching in
the limiting case z → ∞ the form of a spherical wave.

If, in parabolic approximation, the ratio ζmax/ζF min

(the so called Fresnel number) is invariant for various
initial beam widths and various propagation path lengths,
then the propagation-characteristics of all various beams
are identical.

The beam wave expressed by (79) consists for |q| >
β1 also of evanescent waves. If the beam wave should
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Fig. 6. Initial beam-amplitude profile ϕd0(ξ) = h(ξ) for N = 4
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Fig. 7. Initial beam-intensity profile |ϕd0(ξ)|
2 of Fig. 6
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Fig. 8. Incident beam intensity along the propagation path ζ ∈
(0, ζmax) for ζmax/λ = 4, λ/λq min = 0.2, and ζmax/ζF max = 0.16

consist only of homogeneous plane waves then the in-
tegration in (79) has to by bounded to interval q ∈
(−β1, β1). To each value of q corresponds the angle of in-
cidence of the pertaining plane wave θ = θd0 + θq , where
θq = arcsin(q/β1) and θd0 is the angle of the beam axis
spanned with the x-axis.

Since we require that all of the spatial spectral com-
ponents fulfil the condition of the total reflection, then
any angle of incidence θ must be larger than the critical

angle, θ > θc , and smaller than π/2 (grazing incidence).
After the substitution β1 sin(θ−θd0) = q one obtains (79)
expressed in terms of incidence angles θ

ϕd(ξ, ζ) = β1

∫ π/2

θc

Φd0(θ) exp
{
−jζβ1 cos(θ − θd0)

}

× exp
{
−jβ1 sin(θ − θd0)ξ

}
cos(θ − θd0)dθ . (81)

In order to have θ within the angle interval θ ∈
(θc, π/2) of the total reflection for the symmetrical po-
sition of the beam axis θd0 = θc/2 + π/4, the pertain-
ing θq = arcsin(q/β1) must be from the angle interval
θq ∈ (−θmax, θmax), θmax = π/4 − θc/2. The bounds of
the integral in (79) are then given by q ∈ (−qmax, qmax),
where

qmax = β1 sin(π/4− θc/2) . (82)

The reflected wave

Êr(χ, η) = uyÊy(χ, η) = uyE0ϕr(χ, η) (83)

can be obtained from the integral

ϕr(χ, η) = β1

∫ π/2

θc

Φd0(θ) exp
{
−jηβ1 cos(θ−θd0)+jΨ0

}

× exp
{
−jβ1 sin(θ − θd0)χ−Ψq

}
cos(θ − θd0)dθ , (84)

where the propagation direction is given along the lon-
gitudinal η -axis identical vith the direction of the nr0 ,
and the amplitude profile of the beam wave is given along
the transversal χ-axis identical vith the direction of the
nBA , where

χ = (x− x0) sin θd0 + (z − z0) cos θd0 ,

η = −(x− x0) cos θd0 + (z − z0) sin θd0 .

The origin of the coordinate system (χ, η) is placed in
the point (x0, z0), mirrored to the origin of the (ξ, ζ)
coordinate system with respect to the x = 0 plane. The
both phase angles Ψ0 and Ψq in exp-functions i (84) are
due to (66) and (67) functions of θd0 and θq .

The refracted evanescent beam wave is given by the
integral

Ê2(r) = uy2β1E0

∫ π/2

θc

{
cosΨ×

exp(−κx) exp
(
−j[kz − πΨ]

)
cos(θ − θd0)

}
dθ , (85)

where k = β1 cos θ , κ =
√
k2 − β2

2 , θ = θd0 + θq .

The pertaining Ĥ vectors can be obtained applying (8)
to the integrals (81), (84) and (85).

10 Numerical implementation

Various numerical implementation aspects of the beam-
wave-propagation simulation are thoroughly discussed
in [7]. Here we briefly review some of them.
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Fig. 9. Incident beam intensity along the propagation path ζ ∈
(0, ζmax) for ζmax/λ = 40, λ/λq min = 0.2, ζmax/ζF min = 16
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h = 0

hmax

Fig. 10. Reflected beam intensity along the propagation path ζ ∈
(0, ζmax) for ζmax/λ = 40, λ/λq min = 0.2, ζmax/ζF min = 16

In the numerical modelling only the limited number
2N + 1 (for the simplicity we shall consider the odd
number only) of the discrete harmonics of the incident
beam wave Φdn(ζ) = Φd(qn, ζ), instead of continuous
Φd(q, ζ) in (77), can be used, where

Φd(qn, ζ) = Φd0(qn) exp
(
−jζ

√
β2
1 − q2n

)
, qn = n∆q ,

n ∈ {−N,N} . Using the Fourier series

ϕ̃d(ξ, ζ) =

N∑

n=−N

Φdn(ζ) exp(−jn∆qξ) (86)

instead of the Fourier transform (79), one obtains a pe-
riodic function ϕ̃d(ξ, ζ) approximating ϕd(ξ, ζ) on the

interval
(
− 1

2ξmax,
1
2ξmax

)
, ξmax = 2π/∆q . In the points

ξk = k∆ξ , k ∈ {−N, . . . , N} , where ∆ξ = ξmax/(2N+1),
the values ϕ̃dk(ζ) = ϕ̃d(ξk, ζ) are obtained as

ϕ̃dk(ζ) =

N∑

n=−N

Φdn(ζ) exp
{
−jπkn

/(
N + 1

2

)}
. (87)

As known from the theory of Fourier series [8], the
values ϕ̃dk(ζ) = ϕ̃d(ξk, ζ) are exactly equal to ϕd(ξk, ζ)
only if ϕd(ξ, ζ) were equal to zero outside the interval(
− 1

2ξmax,
1
2ξmax

)
– situation that never occurs due to the

diffraction integral (79), even if it were true for ϕd0(ξ)
in (78). Otherwise the following relation

ϕ̃dk(ζ) =
∞∑

ℓ=−∞

ϕd(m∆ξ, ζ) , m = k + ℓ(2N + 1) (88)

between the “exact” ϕd(ξk, ζ) and “approximate” ϕ̃dk(ζ)
values holds. Therefore usually using the finite set of
harmonics only the “approximate” discrete values ϕ̃dk(ζ)
are obtained.

The formula (87) exactly corresponds to the definition
of the inverse discrete Fourier transform. Therefore also

Φdn =
1

2N + 1

N∑

k=−N

ϕ̃dk exp
{
jπkn

/(
N + 1

2

)}
(89)

holds. Substituting (89) into (86) after having performed
summation with respect to index n yields

ϕ̃d(ξ, ζ) =
1

2N + 1

N∑

k=−N

ϕ̃dk(ζ)×

sin
{(

N + 1
2

)
∆qξ − πk

}/
sin

{
1
2∆qξ −

πk

2N + 1

}
. (90)

The last formula (90) in fact means an interpolation of
the bandlimited function ϕ̃d(ξ, ζ) between its sampled
values ϕ̃dk(ζ) in the sampling points equal to ξk = k∆ξ .

The necessity of using the boundary conditions on the
boundaries of the computational window

(
−1

2 ξmax,
1
2ξmax

)

leads to either “electric wall periodic boundary condition”
where Φ0(−n)(ζ) = −Φ0n(ζ) holds, or to “magnetic wall

periodic boundary condition”, where the Φd(−n)(ζ) =

Φdn(ζ) condition is met. As shown in [7] the use of “mag-
netic wall” condition leads to the lower deterioration of
the beam wave spreading due to diffraction effects. Then
ϕ̃d(ξ, ζ) instead of (86) can be expressed by

ϕ̃d(ξ, ζ) = Φd0(ζ) +

N∑

n=1

2Φdn(ζ) cos(n∆qξ) . (91)

11 Modeling of the incident

and reflected beam wave

For the numerical investigation of the propagation and
total reflection effects we take in place of a initial beam
profile ϕd0(ξ) directly the kernel function h(ξ) in (90),
ϕd0(ξ) = h(ξ), where

h(ξ) = sin
{(

N + 1
2

)
∆qξ

}/
(2N + 1) sin

(
1
2∆qξ

)
. (92)

Having modeled propagation and reflection of the wave
with this profile provides us with the possibility to con-
struct any beam profile by simple superposition in form
of (90). The additional advantage is that it possesses
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Fig. 11. The central portion (zoomed 10 : 3) of initial beam-
intensity profile for N = 4, of (a) – incident wave (Fig. 8, ζ =
0), (b) – reflected wave (Fig. 10, η = 0), (c) reflected wave for

λ/λq min = 0.36
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Fig. 12. The central portion (zoomed 10 : 3) of the initial beam-
intensity profile for N = 7, of (a) incident wave, (b) – reflected
wave for λ/λq min = 0.2, (c) – reflected wave for λ/λq min = 0.36

the discrete band-limited spatial frequency spectrum with
constat amplitude Hn = 1/(2N + 1), n ∈ {−N,N} , ie

h(ξ) =
N∑

n=−N

Hn exp(−jqnξ) =
1

2N + 1

N∑

n=−N

exp(−jqnξ)

=
1

2N + 1
+

N∑

n=1

cos(qn(ξ)
/(

N + 1
2

)
,

where qn = n∆q .

The propagating incident wave can be easily calculated
as

ϕ̃d(ξ, ζ) =
1

2N + 1

N∑

n=−N

exp
(
−jζ

√
β2
1 − q2n

)
exp(−jqnξ) ,

(93)
or due to the symmetry simply by

ϕ̃d(ξ, ζ) =
1

2N + 1
exp(−jβ1ζ)+

N∑

n=1

exp
(
−jζ

√
β2
1 − q2n

)
cos(qnξ)

/(
N + 1

2

)
. (94)

The reflected wave is then given by

ϕ̃r(χ, η) =
1

2N + 1
exp{−j(β1η −Ψ0)}+

2

2N + 1

N∑

n=1

exp
{
−j

(
η
√
β2
1 − q2n −Ψn0

)}
cos(qnχ−Ψn) .

(95)

12 Simulation Results

As an example we have constructed the initial beam
amplitude profile ϕ̃d0(ξ) = h(ξ) accordingly (92) in the
plane ζ = 0 within the computational window ξ ∈

(
− 1

2ξmax,
1
2ξmax

)
with N = 4, ie with 9 sampling points

as shown in Fig. 6. The sampling points are eight zero
points of the profile in Fig. 6 and the central point. The
distance of the two central zeros can be considered as a
diameter of the beam, ie 2ξmax/9 in Fig. 6.

The distribution of intensity is depicted in Fig. 7,
showing the good confinement of the beam.

From Fig. 8, where is depicted the propagation along
the length ζmax/λ = 4, is clearly seen that the wave be-
haves essentially as a spatially localised plane wave. In
the course of further propagation as depicted in Fig. 9
for ζmax/λ = 40 the beam spreads-out, the spatial locali-
sation disappears and the wave takes effectively form of a
spherical wave. In fact in Fig. 8 is depicted the first part
of the propagation path of the Fig. 9.

The reflected wave is calculated assuming the criti-
cal angle θc = 10◦ and the angle of beam incidence
θd0 = 50◦ . Propagation of the reflected beam is depicted
in Fig. 10 showing its slightly different propagation char-
acteristics as compared to the incident wave in Fig. 8.

Table 1. The angles (in degrees) θqn pertaining to A: λ/λq min =

0.2 and B: λ/λq min = 0.36

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

A 2.9 5.7 8.6 11.5 14.5 14.5 20.5

B 5.2 10.4 15.7 21.1 26.7 32.7 39.1

Table 2. The angles (in degrees) Ψ0 , Ψ0n and Ψqn

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

A 98.5 98.5 98.5 98.4 98.4 98.3 98.2 81.9

A Ψqn 5.9 11.8 17.7 23.7 29.8 36.0 42.3

B 98.5 98.5 98.4 98.3 98.1 97.6 96.8 86.5

B Ψqn 10.6 21.3 32.2 43.5 55.4 68.4 84.6

The zoomed central part of the initial profiles for ζ =
0, η = 0, of the incident and reflected beam waves are
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in Fig. 11, showing the Goos-Hänchen shift (the curves a
and b). The curve c shows larger shift of the (1.8 times)
narrower beam with respect to wavelength.

To the N = 4 spatial spectral plane wave compo-
nents pertain the propagation angles shown in Table 1,
the case A for the broader beam and the case B for the
narrower beam with respect to the wavelength. The per-
taining angles of the reflection factors Ψ0 , Ψ0n and Ψqn

are shown in Table 2.

If one takes instead of N = 4, ie instead of 9 sampling
points, higher number of harmonics N = 7, ie 15 sam-
pling points, one arrives at the Goos-Hänchen shift de-
picted in Fig. 12. This is with θq7 = 39.1◦ and Ψq7 =
84.6◦ near to the limiting case θqmax = 40◦ , Ψqmax = 90◦

for θc = 10◦ and θd0 = 50◦ .

13 Conclusions

The reflection and refraction of beam waves on the
planar dielectric dielectric boundary has been thoroughly
analysed. The simple beam formation in terms of Fourier
series of discrete homogeneous plane wave components
has been elaborated.

The analysis shows that the more spectral compo-
nents one takes, the narrower the beam is. But the Goos-
Hänchen shift never exceeds 90◦ , ie one quarter of the
period of the highest harmonics – in our case approxi-
mately one quarter of the beam width. Therefore making
the beam narrower cannot increase the relative beam shift
magnitude.

As shown, there is a fundamental difference between
the homogeneous and non-homogeneous plane wave. In
case of the homogeneous plane wave, the power flows
along the boundary plane only, and no power penetra-
tion through the boundary plane exists. For an non-
homogeneous plane wave a steady flow of the power den-
sity through the boundary between the two media exists
transporting the power from incident to the reflected wave
through the second media and so giving the rise to the
shifted wave.
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