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On-line determination of transient stability status
using multilayer perceptron neural network

Emmanuel Asuming Frimpong*, Philip Yaw Okyere *,
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A scheme to predict transient stability status following a disturbance is presented. The scheme is activated upon the
tripping of a line or bus and operates as follows: Two samples of frequency deviation values at all generator buses are
obtained. At each generator bus, the maximum frequency deviation within the two samples is extracted. A vector is then
constructed from the extracted maximum frequency deviations. The Euclidean norm of the constructed vector is calculated
and then fed as input to a trained multilayer perceptron neural network which predicts the stability status of the system. The
scheme was tested using data generated from the New England test system. The scheme successfully predicted the stability

status of all two hundred and five disturbance test cases.
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1 Introduction

The demand for electric power keeps on growing. This
is making power companies to push more power through
existing transmission lines resulting in operations with
reduced stability margins. Additionally, system stability
limits are changing due to the integration of renewable
energy sources [1]. Large disturbances occurring in sys-
tems operating with reduced stability margins may lead
to out-of-step (OS) conditions between generators or gen-
erator groups. OS conditions are usually characterized by
large separation of generator rotor angles, large swings of
power flows and large fluctuations of voltage and current
[2]-[3]. They eventually result in system failure and equip-
ment damage if there is no appropriate remedial action.

Electric power companies are required to maintain
high levels of reliability of electricity supply. It is there-
fore imperative that adequate measures are put in place
to prevent OS conditions. Possible measures that can be
adopted are: out-of-step blocking and tripping, fast-valve
control of turbines, dynamic braking, use of supercon-
ducting magnetic energy storage system, system switch-
ing, modulation of high voltage direct current (HVDC)
link power flow, and controlled islanding with load shed-
ding [4]. The effectiveness of these measures will be
greatly enhanced if out-of-step conditions can be detected
early.

Researchers have proposed a number of schemes for
detecting transient instability [4-14]. These schemes have
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used power system input data such as rotor angle [4-10],
bus voltage [10-14], mechanical input power [7,13], elec-
tromagnetic power [7,13], line current [11,14], generator
frequency [10] and rotor speed [9]. Decision making tools
such as artificial neural network [4], fuzzy logic [14], sup-
port vector machine [7,10] and decision trees [9,14] have
also been employed. Although significant successes have
been chalked, improvements are still required in the ar-
eas of simplicity, reliability, speed of operation and prac-
tical realization. For example, the work presented in [8]
requires 10-12 input data samples per generator which
makes the volume of data required for large systems huge
and consequently delays the response time of the scheme.
Again in [7], thirty four input features are constructed
from generator variables. The work in [9] also requires
a relatively long period of up to 2.5 seconds after fault
clearance to make a decision as to whether the system will
be stable or not. The schemes proposed in [10], [12] use
predetermined templates which make their performance
susceptible to changes in system conditions. Furthermore,
the technique presented in [5] also uses predetermined sta-
bility boundary for each generator, and its application to
real systems requires extensive dynamic simulations to
establish the stability boundaries.

This paper attempts to address these outstanding is-
sues. It presents a simple, highly accurate, speedy and
easy to implement technique for predicting the stability
status of power systems following a disturbance. It uses
generator bus frequency deviations sampled at a sampling
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Fig. 1. Machine terminal frequency deviations for a stable condi-
tion

frequency of 60 samples per second as input data. This
sampling frequency is a typical sampling rate of phasor
measurement units [15]. Only the first two samples of
frequency deviations at each generator bus are required.
From the sampled frequency deviations, the maximum
frequency deviation is obtained for each generator. The
Euclidean norm of a vector with these maximum fre-
quency deviations as elements is calculated. The calcu-
lated norm is then fed into a trained multilayer percep-
tron neutral network (MLPNN) which predicts the stabil-
ity status. The MLPNN gives an output of 0 if the system
will be transient stable and an output of 1 if transient in-
stability will occur.

2 Machine terminal frequency
deviation as input parameter

Generator bus frequencies like rotor angles swing fol-
lowing a power system disturbance. For a stable system,
the bus frequency of all generators may increase or de-
crease but will eventually settle at a synchronous value.
The rates of increase or decrease are all reduced. On the
other hand, for a condition leading to instability, the bus
frequency of one or more generators will increase or de-
crease progressively with higher amplitudes.

Figures 1 and 2 show curves of generator frequency
deviations for a three-phase fault on the line between
buses 16 and 21 of the test system shown in Fig. 5. These
curves were obtained through dynamic simulations using
the Power System Simulator for Engineers (PSSE) soft-
ware [16]. Figure 1 is for the case where the fault lasted for
100 ms resulting in transient stability and Fig. 2 is for the
case where the fault lasted for 400 ms resulting in tran-
sient instability. As was expected, the bus frequencies in
Fig. 1 increased but later showed signs of stabilising. On
the other hand, the bus frequencies of some of the gen-
erators in Fig. 2 increased progressively. The curves in
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Fig. 2. Machine terminal frequency deviations for an unstable
condition

figures 1 and 2 show that it is possible to use the trajec-
tories of bus frequency deviations following a disturbance
to predict whether a system will be stable.

3 Multilayer perceptron neural
network as decision making tool

Artificial neural networks (ANNs) are decision mak-
ing tools that have been widely used in power system
studies. There are different kinds of ANNs. Multilayer
perceptron neural networks (MLPNNs) are one of the
commonly used types. MLPNNS can be used for both
function fitting and pattern recognition problems. They
can also be used for prediction problems. MLPNNs are an
interconnection of artificial neurons (with or without bi-
ases) with each neuron having an activation (or transfer)
function [17]. The transfer functions influence the outputs
of the neurons. Commonly used transfer functions are:
linear, tan-sigmoid, and log-sigmoid [17,18]. The neurons
are organised in layers, namely input layer, hidden layer
(s) and output layer. MLPNNs work by taking an input
signal vector and propagating it to the input layer neu-
rons through connections with weights. The outputs of
the input layer neurons (determined by their activation
functions) become the inputs to the hidden layer neurons.
These new inputs are also propagated through weighted
connections to the hidden layer neurons. The outputs of
the hidden layer neurons are finally propagated to the
output layer where the final output of the network is pro-
duced. The weights of the connections are determined
in a training process where the neural network is pre-
sented with input-output pairs. A training algorithm is
employed to adjust the weights until a desired outcome
is reached. ANNs can be implemented using the MAT-
LAB software [17]. Figure 3 shows the architecture of the
MLPNN used. The variable x is the input data, w;; is
the weight between neurons i and j, w;gis the weight of
the bias of neuron i, and O is the output of the neural
network. The input neuron has a linear transfer function
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while the hidden layer and output neurons have tangent
sigmoid transfer functions.

Fig. 3. Architecture of used MLPNN

The output,y; , of neuron 1 is given by

y1 = f(rwir +wio) = w11 +wio (1)
The output,ys, of neuron 2 is given by

62(y1w12 +wa20) _ 1

Y2 = f(y1w12 + w20) - e2(y1wi2+w2o) +1

The output,ys, of neuron 3 is given by

62(y1w13+w30) -1

ys = f(yr1wiz + wsg) = e2(y1wis+wso) 4 1

The output, O, of MLPNN is thus given by

O = f(yawas + yzwsa + wao) 4)

Hence,
e2(y2wasatyswsatwao) _ |

0= (5)

e2(y2wa2a+yswsatwao) 4 ]

The MLPNN was trained to give an output of either 0
or 1 using the Levenberg-Marquardt training algorithm.
It is one of the most efficient training algorithms [17]. An
output of 0 indicates that the system will be transient
stable, while an output of 1 indicates imminent transient
instability.

In practice, neural networks do not always give exact
outputs of 0 or 1. For example, an expected 0 value may
be presented as -0.015 while an expected value of 1 may
be presented as 0.95. As a result, in this work, (6) and (7)
are used to round the outputs of the MLPNN to either 0
or 1.

0>05—-0=1 (6)

0<05-50=0 (7)

4 Proposed method for predicting
transient stability status

Figure 4 shows a functional block diagram of the pro-
posed technique. The proposed scheme uses the frequency
deviations at generator buses as input data. The input
data is obtained and processed using the procedure out-
lined below.

Sample frequency deviations at all generator buses
using a sampling frequency of 60 samples per second.
For each generator bus, only the first two samples are
required. The first two samples for each generator bus
was found to be the optimal number of samples for the
scheme. Thus, the sampled frequency deviations, fn, at
generator bus n is given as

fn = {fl,nv f2,n}a

where NN is the number of generator buses of the system.

n=1,23,.,N (8)

For each f,, determine the maximum deviation

fn,max = Max(fn) (9)

Real time Determination of
acquisition of -‘ maximum frequency
frequency deviation at each

deviations generator bus

Calculation of Construction of
Power grid Euclidean norm of frequency
with PMUs D; deviation vector
! (Dy)
Feeding of Predicted
calculated distance [==P> stability
into MLPNN status

Fig. 4. Functional block diagram of the proposed technique
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Fig. 5. IEEE 39 -

Construct the frequency deviation vector

Df = [fl,max f2,max ce fN,max] (10)

Determine the Euclidean norm, d, of the frequency
deviation vector

A= P+ Bt + o (1)
Feed obtained Euclidean norm into trained MLPNN
to obtain predicted stability status. That is putz = din

(1) to (5).

5 Test system and simulations

Development and testing of the proposed scheme was
done using the IEEE 39-bus test system which is also
known as the New England test system. This test system
is a standard test system widely used for small and large
signal stability studies [2,4,5,10,12]. The system consists
of 10 generators, one of which is a generator representing
a large system. The system is shown in Fig. 5.

Transient stability analysis of the test system was per-
formed using the PSSE software [16]. A detailed dynamic

bus test system

model which includes prime mover and excitation sys-
tem dynamics was used. Several fault simulations were
obtained by varying the following: (i) fault location, (ii)
fault duration, (iii) system loading, (iv) network topology,
and (v) generator availability.

As regards fault location, bus and line faults at differ-
ent locations were simulated. Fault durations were also
varied by starting with short durations which resulted
in transient stability and extending them gradually un-
til instability occurred. The loading conditions simulated
were base load, 80% of base load, 90% of base load, 110%
of base load and 120% of base load. The effect of shut-
ting down a generator due to low loading conditions or
for purposes of maintenance was also considered. For ex-
ample, for a loading level of 80% base load, generator
10 (G10) was removed from circuit before disturbances
were applied. Additionally, the effect of changes in net-
work topology was investigated by considering N-1 con-
tingency. For example, for some of the simulations, the
line between bus 18 and bus 17 was removed before the
application of faults.

A total of two hundred and nine three-phase bus and
line faults were simulated. One hundred and four of the
faults simulated resulted in transient stability while the
remaining 105 resulted in transient instability. Frequency
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deviation data from four fault conditions comprising 2
unstable fault cases and 2 stable cases were used to train
the MLPNN. The remaining 205 fault cases were used to
test the MLPNN. Thus only 1.91% of data generated was
used for training the MLPNN. Compared with existing
schemes in literature, such as in [2] which used 75% of
total generated data for training, the training data used
in the proposed scheme is very low. Such a low volume
of training data will make simple, the application of this
technique to real systems with large number of genera-
tors. The low volume of data used to train the MLPNN
was made possible due to the fact that the calculated
Euclidean norm values, d, for stable cases were so dis-
tinct from those of unstable cases. This goes to show the
strength of the proposed technique over existing ones.

6 Results and analysis

6.1 Architecture of trained neural network

Figure 6 shows the architecture of the neural network
(with obtained weight values) after training using Eu-
clidean norm data obtained from the four fault cases. The
fault cases were: (i) 1 stable fault condition on the line
between buses 2 & 25, and 1 unstable fault condition on
the same line, all at 120% base loading, and (ii) 1 sta-
ble and 1 unstable fault condition on the line between
buses 22 & 23 at 110% base loading. The training data
as presented in MATLAB is given as follows:

Input data= [0.0071 0.0034 0.057 0.0551],
Target data = [0 0 1 1]

-0.51785

0.91433
d

—0.029249

Fig. 6. Architecture of trained MLPNN

It is important to note that the neural network train-
ing process in MATLAB involves the use of processing
functions that transform user input data to a form that
is easier or more efficient for the network. For instance,
mapminmax processing function transforms input data so
that all values fall into the interval [-1, 1]. Also, output
processing functions are used to transform user-provided
target vectors for network use. These processing functions
become part of the trained neural network and influence
its outputs in the testing (or utilisation) phase [17].

6.2 Test results

The scheme was tested using frequency deviation data
extracted from two hundred and five fault cases. All test
cases were predicted successful. Two sample cases invlo-
ing one stable and one unstable fault case on the line
between buses 16 & 21 at base load are presented below
to demonstrated the prediction processes of the proposed
scheme.

Table 1 shows sampled frequency deviations at the
various generator buses in accordance with (8) for a fault
on the line between buses 16 and 21 (base load case)
which resulted in transient stability. The Table also shows
maximum frequency deviation values in accordance with
(9). Table 2 on the other hand shows sampled frequency
deviations at the various generator buses for the same
fault condition but which resulted in transient instability
due to delayed fault clearance in line with (8). It also
shows maximum frequency deviation values in line with

(9)-

Table 1. Frequency deviations for line 16-21 stable fault condition

Gen. bus fi S Sfrmax
1 0.0003  0.0009  0.0009
2 0.0001  0.0006  0.0006
3 0.0003 0.0011 0.0011
4 0.0017  0.0036  0.0036
5 0.0007  0.0019  0.0019
6 0.0011 0.003 0.003
7 0.0012  0.0028 0.0028
8 0.0003  0.0009  0.0009
9 0.0007  0.0017  0.0017
10 0.0001  0.0003 0.0003

Table 2. Frequency deviations for line 16-21 unstable fault condi-

tion
Gen. bus f1 f2 frmax
1 0.0142 0.0154 0.0154
2 0.0153 0.0159 0.0159
3 0.0149  0.0152  0.0152
4 0.0312  0.0308  0.0312
5 0.0321 0.0324 0.0324
6 0.0375  0.0375  0.0375
7 0.0376  0.0382  0.0382
8 0.0142  0.0150  0.0150
9 0.0159 0.0164 0.0164
10 0.0125 0.0134 0.0134
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It can be observed from Tables 1 and 2 that the devi-
ations for the unstable case are higher than those for the
stable case. The corresponding maximum deviations for
the unstable case are thus higher than those for the stable
case. These results are representative of results obtained
for the other fault conditions simulated.

Applying (10) to the maximum frequency deviation
data in Tables 1 and 2, the deviation vector for the stable
and unstable cases are obtained as follows:

r0.00097 r0.015417
0.0006 0.0159
0.0011 0.0152
0.0036 0.0312
0.0019 0.0324
Df,stable = 0.0030 | ° Df,unstable = 0.0375
0.0028 0.0382
0.0009 0.0150
0.0017 0.0164
L0.0003 L0.0134 ]

Applying (11) to the obtained deviation vectors, the
Euclidean norms for the stable and unstable cases are
obtained as follows: dgiapie = 0.00629126, dynstable =
0.07926676

Putting « = dstapie = 0.00629126 and = = dypstaple =
0.07926676 in (1) to (5) together with the application
of MATLAB processing functions yields the following
MLPNN outputs: Ostapre = 0.000017143, Ounstable =
0.99992

Finally, applying (6) and (7), the final MLPNN out-
puts are: Ostable = 0; Ounstable =1

Additional summarized results are presented in Tables
3 and 4. The results presented in Tables 3 and 4 are repre-
sentative of results obtained for the other fault conditions
simulated.

Table 3. Euclidean norms and corresponding MLPNN outputs for
stable cases at 80% base loading

MLPNN output

Fault D Actual Final
Bus 11 0.0054 0.000017 0
Bus 14 0.0056 0.0000171 0
Bus 21 0.006 0.0000169 0
Bus 24 0.0053 0.0000169 0
Bus 28 0.0049 0.000017 0
Line 5-6 0.0055 0.000017 0
Line 6-7 0.0056 0.0000169 0
Line 6-11  0.0056 0.0000169 0
Line 11-12  0.0053 0.0000169 0
Line 13-14  0.0052 0.0000169 0
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Table 4. Euclidean norms and corresponding MLPNN outputs for
unstable cases at 80% base loading

MLPNN output

Fault D Actual Final
Bus 11 0.0674 0.999919 1
Bus 14 0.0560 0.999918

Bus 21 0.0608 0.999919 1
Bus 24 0.0459 0.999901 1
Bus 28 0.0432 0.999879 1
Line 5-6 0.0673 0.999919 1
Line 6-7 0.0683 0.999919 1
Line 6-11  0.0705 0.999919 1
Line 11-12 0.0727 0.999920 1
Line 13-14  0.0664 0.999919 1

The execution time of the proposed scheme is esti-
mated to be 238 ms. This time is made up of 34 ms of
input data capture (ie two frequency deviation samples at
a sampling rate of 60 samples per second), typical wide
area measurement (WAM) delay time of 200 ms [19], and
algorithm data processing and decision making time of 4
ms (Using Intel(R) Core(TM) i5-3230M CPU @ 2.60 GHz
processor). This time compares more favourably with the
average algorithm execution time of 700 ms in [5] and
2.5 s algorithm execution time in [9]. Also, using a simple
data processing approach, the scheme constructs a sin-
gle input feature per generator as against 34 features per
generator in [7]. For the proposed scheme, the final input
to the decision tool is also single, irrespective of the num-
ber of system generators. Furthermore, no predetermined
templates are required by the proposed scheme, unlike
in [5] where a complex simulation process is required to
determine generator boundaries.

7 Conclusion

In this paper, a scheme for predicting transient sta-
bility status of power systems following disturbances has
been presented. The input data required by the scheme
can be captured by phasor measurement units which are
now deployed in modern power systems. The sampling
frequency used in the development of the scheme con-
forms to the sampling rate of deployed phasor measure-
ments units. The approach to input data processing and
decision making is simple. The short window of input data
capture coupled with the simple input data processing
and decision making approach will enable speedy opera-
tion, which is critical. The overall methodology used by
the scheme is simple and can be easily inculcated in exist-
ing numeral relays. The scheme accurately predicted the
stability status of two hundred and five disturbance cases
simulated. The scheme is thus highly accurate. Compared
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with other schemes in literature, the proposed approach
is simpler and easier to implement.
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