
Journal of ELECTRICAL ENGINEERING, VOL 69 (2018), NO1, 39–45

Exact analytical modeling of magnetic vector
potential in surface inset permanent magnet

DC machines considering magnet segmentation

Ali Jabbari
∗

Surface inset permanent magnet DC machine can be used as an alternative in automation systems due to their high
efficiency and robustness. Magnet segmentation is a common technique in order to mitigate pulsating torque components in
permanent magnet machines. An accurate computation of air-gap magnetic field distribution is necessary in order to calculate
machine performance. An exact analytical method for magnetic vector potential calculation in surface inset permanent

magnet machines considering magnet segmentation has been proposed in this paper. The analytical method is based on the
resolution of Laplace and Poisson equations as well as Maxwell equation in polar coordinate by using sub-domain method.
One of the main contributions of the paper is to derive an expression for the magnetic vector potential in the segmented PM
region by using hyperbolic functions. The developed method is applied on the performance computation of two prototype
surface inset magnet segmented motors with open circuit and on load conditions. The results of these models are validated
through FEM method.
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1 Introduction

Permanent magnet motors are interested in industrial
applications due to their high efficiency and power den-
sity [1, 2]. An accurate prediction of air-gap magnetic field
distribution is necessary in order to calculate machine
performance. A variety of techniques including analyti-
cal and numerical methods has been conducted to evalu-
ate the magnetic vector potential in electrical machines.
Numerical methods like finite element method (FEM)
give accurate results and are time consuming specially in
first step of design stage. Analytical methods including
conformal mapping [3]-[6], Magnetic Equivalent Circuit
(MEC) [7–9], sub-domain model [10–26] and slot rela-
tive permeance calculation [27–30] are reported to model
electrical machines and are useful in first step of per-
formance evaluation and design optimization stage. The
sub-domain model is more accurate than the other an-
alytical models [7]. This method is developed based on
solution of Laplace and Poisson equations in different re-
gions by applying boundary conditions for electrical ma-
chines [10–26].

To author’s knowledge, a few analytical models are
presented to calculate magnetic vector potential in sur-
face inset permanent magnet motors [27–29]. No refer-
ences in the literature addressing the issue of an analyt-
ical model for surface inset magnet segmented machines
were found.

The focus of this paper is to develop an analytical

model based on resolution of Laplace and Poisson equa-

tions in surface inset permanent magnet machines by us-

ing the sub-domain method considering magnet segmen-

tation and slotting effects. It is shown that the developed

model can effectively estimate magnetic vector potential,

magnetic flux density, cogging torque and electromag-

netic torque. This model is applied on the performance

calculation of two prototypes, ie a 2 segmented 5S-2P PM

motor and a 3 segmented 5S-2P PM motor. It is shown

that the results of analytical model are in close agreement

with the results of FEM.

2 Problem statement

The geometrical representation of the investigated per-

manent magnet motor with magnet segmented outer ro-

tor layout is shown in Fig. 1. The machine model is di-

vided into three sub-domains including the armature slots

region (domain j ) which has Q1 slots, the air-gap region

(domain I ) and the permanent magnet region (domain

k ) which has Q2 magnets. The machine parameters in-

cluding the stator yoke radius R1 , the stator surface ra-

dius R2 , the rotor surface radius R3 , and the rotor slot

radius R4 .
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Fig. 1. Schematic representation of a surface inset magnet seg-
mented motor

Fig. 2. Armature slot region (domain j ) with its boundaries

The angular position of the j -th armature slot and
k -th stator permanent magnet are defined as

θj = −
α

2
+

2jπ

Q1
with 1 ≤ j ≤ Q1 , (1)

θk = −
γ

2
+

2kπ

Q2
with 1 ≤ k ≤ Q2 . (2)

3 Magnetic vector potential calculation

General solution of Laplace or Poisson equation in
each sub-domain is developed in this section. The Laplace
equation can be described in polar form as

∂2A

∂r2
+

1

r

∂A

∂r
+

1

r2
∂2A

∂θ2
= 0 for

{

R1 ≤ r ≤ R2 ,
θ1 ≤ θ ≤ θ2 .

(3)

Replacing r by R1e
−t , one obtains

∂2A

∂t2
+

∂2A

∂θ2
= 0 for

{

ln R1

R2
≤ t ≤ 0 ,

θ1 ≤ θ ≤ θ2 .
(4)

3.1 Magnetic vector potential in the armature slot sub-
domain (Region j )

The Poisson equation in the armature slot sub-domain
is given by

∂2Aj

∂t2
+

∂2Aj

∂θ2
= −µ0J for

{

t1 ≤ t ≤ t2 ,
θj ≤ θ ≤ θj + α

(5)

where t1 = ln
(

R1/R2

)

and t2 = 0.

Neumann boundary conditions at the bottom and at
each side of the slot are obtained as

∂Aj

∂θ

∣

∣

∣

θ=θj
= 0 and
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∣

∣

∣
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∣

∣

∣

t=t2
= 0 . (7)

The general solution of (5) using the separation of
variables method is given by

Aj(t, θ) = aj0 −
1

2
µ0Ji

(

e−t2t+
1

2
e−2t+t2

)

+

∞
∑

h=1

cosh hπ
α
(t− t2)

cosh hπ
α
(t1 − t2)

ajh cos
hπ

α
(θ − θj) (8)

where h is a positive integer and the coefficients aj0 and

ajh are determined based on the continuity and interface
conditions.

The continuity of the magnetic vector potential be-
tween the sub-domain j and the region I leads to

Aj (t1, θ) = AI (t4, θ) for θj ≤ θ ≤ θj + α (9)

Interface condition (9) gives

aj0 =
1

2
µ0Ji

(

e−t2t+
1

2
e−2t+t2

)

+
1

α

θj+α

∫
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AI(t4, θ)dθ, (10)

ajh =
2

α

θj+α

∫
θj

AI (t4, θ) . cos
hπ

α
(θ − θj) dθ . (11)

3.2 Magnetic vector potential in the air-gap sub-domain
(Region I )

The Laplace equation in the air-gap sub-domain is
given by

∂2AI

∂t2
+

∂2AI

∂θ2
= 0 for

{

t3 ≤ t ≤ t4 ,
0 ≤ θ ≤ 2π

(12)

where t3 = ln(R2/R3), t4 = 0.

The general solution of (12) considering periodicity
boundary conditions is obtained as

AI(t, θ) =

∞
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n=1

1

n
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aIn +
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The coefficients aIn , bIn , cIn and dIn are determined
considering the continuity of magnetic vector potential
between the internal air-gap sub-domain I and the region
j and k using a Fourier series expansion of interface
condition (14) and (15) over the air-gap interval.

The continuity of the magnetic vector potential be-
tween the internal air-gap sub-domain I and the regions
j and k leads to

∂AI
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Interface condition (14) gives
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3.3 Magnetic vector potential in the stator permanent
magnet sub-domain (Region k )

The Poisson equation in the stator permanent magnet
sub-domain is given by

∂2Ak

∂t2
+

∂2Ak

∂θ2
= −

µ0e
t

R3

(

Mθk −
∂Mrk

∂θ

)

for t5 ≤ t ≤ t6 , θk ≤ θ ≤ θk + γ (20)

where t5 = ln(R3/R4) and t6 = 0.

Fig. 3. Permanent magnet region (domain k ) with its boundaries

The radial and tangential components of radial mag-
netization for inset design can be expressed as

Mrk = (−1)[
k

s+0.5 ]Br

µ0
with k = 1, 2, . . . , Q2, (21)

Mθk = 0 (22)

where p is number of pole pairs and s is number of
magnet segmentations.

Neumann boundary conditions at the bottom and
both sides of the permanent magnet slot are obtained
as
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The general solution of (20) is

Ak(t, θ)=ak0+R3(e
−(t−t5)+t)(−1)[

k
s+0.5 ]Br

(

θ − θk −
γ

2

)

,

(26)

Xk
h =







4(−1)[
k

s+0.5 ]Br

γz2(z2
−1) if h = 1, 3, 5, . . .
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(27)

where z = hπ/γ , h is a positive integer and the coeffi-

cients ak0 and akh are determined based on the continuity
and interface conditions.

The continuity of the magnetic vector potential be-
tween the sub-domain k and the regions I leads to

Ak(t6, θ) = AI(t3, θ) for θk ≤ θ ≤ θk + γ . (28)

Interface condition (28) gives

ak0 = R2(−1)[
k
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(
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2

)

+
1

γ
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2

γ
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θk
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4 Performance calculation and model evaluation

4.1 Performance computation

The electromagnetic torque is obtained using the
Maxwell stress tensor and expressed as

Te =
Ls

µ0

2π

∫
0
BIr(te, θ)BIθ(te, θ) dθ (31)

where Ls is the axial length of the motor and

te = ln
R2

Re

, Re = (R2 + R3)/2 . (32)
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Table 1. Parameters of the investigated 5s-2p motors

Symbol Quantity S = 2 S = 3

R1 Inner radius of the armature slot 10 mm 10mm

R2 Outer radius of the armature slot 16.4 mm 16.4mm

R3 Inner radius of the stator PMs 17.4 mm 17.4mm

R4 Outer radius of the stator PMs 20.5 mm 20.5mm

θj Angular position of the first slot 17.5 17.5

θk Angular position of the first PM 15 15

α Slot opening angle 37 37

γ PMs opening angle 60 30

p Pole pairs-number 12 12

Br Remanence of the PMs 0.7 T 0.7T

Ls Axial length 35 mm 35mm

Fig. 4. Two segmented surface inset PM motor: (a) – the schematic representation, (b) – magnetic flux distribution

Fig. 5. Three segmented surface inset PM motor: (a) – the schematic representation, (b) – magnetic flux distribution

4.2 Model evaluation

In this section, the proposed analytical model is used

to study the open circuit and on load magnetic flux den-

sity, open circuit cogging torque and on load electromag-

netic torque of two prototype motors. The results of an-

alytical method are then verified by the results of finite

element method. The motors parameters are given in Ta-

ble 1. The schematic representation model of two inves-

tigated 5S-2P surface inset PM motors and their corre-

sponding magnetic flux distribution obtained by FEA are

shown in Fig. 4 and Fig. 5, respectively.
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Fig. 6. No load analytical and numerical comparison of radial flux density for: (a) – 2 segment pm motor, (b) – 3 segment PM motor

Fig. 7. On load analytical and numerical comparison of radial flux density for: (a) – 2 segment pm motor, (b) – 3 segment PM motor

Fig. 8. Open circuit analytical and numerical comparison of cogging torque for: (a) – 2 segment pm motor, (b) – 3 segment PM motor

Fig. 9. On load analytical and numerical comparison of electromagnetic torque for: (a) – 2 segment pm motor, (b) – 3 segment PM
motor
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2D finite element method is applied on performance
calculation of the two magnet segmented and three mag-
net segmented surface inset permanent magnet motors.
A comparison of open circuit and on load analytical and
numerical results of radial flux density, cogging torque
and electromagnetic torque in the investigated motors are
shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9, respectively.

5 Conclusion

An exact analytical model for performance prediction
in surface inset permanent magnet machines considering
slotting effects and magnet segmentation has been devel-
oped in this paper. Fourier analysis method based on sub-
domain method is applied to derive analytical expressions
for calculation of magnetic vector potential, magnetic flux
density, cogging torque and electromagnetic torque in sur-
face inset permanent magnet machines. This model is ap-
plied for performance computation of two prototype mo-
tors and the results of proposed model are verified thanks
to FEM results.
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