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Fourier decomposition of segmented magnets with
radial magnetization in surface-mounted PM machines
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This paper presents a generic field model of radial magnetization (RM) pattern produced by multiple segmented magnets
per rotor pole in surface-mounted permanent magnet (PM) machines. The magnetization vectors from either odd- or even-
number of magnet blocks per pole are described. Fourier decomposition is first employed to derive the field model, and later
integrated with the exact 2D analytical subdomain method to predict the magnetic field distributions and other motor global
quantities. For the assessment purpose, a 12-slot/8-pole surface-mounted PM motor with two segmented magnets per pole
is investigated by using the proposed field model. The electromagnetic performances of the PM machines are intensively
predicted by the proposed magnet field model which include the magnetic field distributions, airgap flux density, phase back-
EMF, cogging torque, and output torque during either open-circuit or on-load operating conditions. The analytical results
are evaluated and compared with those obtained from both 2D and 3D finite element analyses (FEA) where an excellent
agreement has been achieved.

K e y w o r d s: Fourier decomposition, magnet segmentation, permanent magnet synchronous machine, radial magneti-
zation

1 Introduction

The rare-earth magnet materials such as Neodymium
Iron Boron (NdFeB) and Samarium Cobalt (SmCo) have
been widely utilized in the production of surface-mounted
permanent magnet synchronous machines (PMSMs).
However, these high energy magnets tend to make the
PMSMs suffer from excessive cogging torque and dis-
torted phase back-EMF, resulting in undesired torque
ripples and vibration which are detrimental to the over-
all performance and capability of the motor [1, 2]. One
of the methods to suppress the torque vibration in PM
machines is by segmenting the surface-mounted magnet
into several magnet blocks per rotor pole [1, 3, 4]. Since
1992, many researchers have employed the Fourier series
space decompositions to emulate different magnetization
patterns in PMSMs, for example, prediction of motor per-
formance due to the magnet fields with radial magneti-
zation (RM) [5] and parallel magnetization (PaM) [6].
However, they only considered single magnet segment
per rotor pole [5, 6]. Conversely, the analytical models
of multiple segmented magnets per magnetic pole were
reported in [7] and [8], but, the models were derived for
various Halbach configurations. Additionally, the magnet
field models were developed to emulate RM produced by
several magnet blocks per rotor pole [1, 3, 4]. Neverthe-
less, the model reported by Lateb is derived based on an
approximated Fourier coefficient [1], therefore, the mag-
netic field prediction is inaccurate. Also, the formulations

of magnet field models that proposed by Ashabani [3] and
Tiang [4] are complex since they superimpose a high num-
ber of virtual PM blocks in order to obtain the equivalent
field distributions produced by multi-segmented magnets.

Therefore, this motivates us to investigate further on
this topic. A field model based on Fourier series decom-
position is considered here to represent the net effect
of the magnetic field distributions produced by multi-
segmented magnets mounted on the rotor surface in poly-
phase PMSMs. This is important because the analytical
method can provide valuable information and physical
insights of the machine performance during initial design
stage.

2 Fourier series space decomposition of magnet

segmentations for radial magnetization

The radial magnetization (RM) pattern produced by
single magnet per pole is first considered, and its radial
and tangential components, Mr1 and Mα1 , respectively,
are illustrated in Fig. 1. In this case, the rotor positions,
αr1 to αr4 , are indicated, αp1 is the magnet pole-pitch
ratio, and p is the number of pole-pairs. Noted that the
magnet pitch ratio of single magnet segment is solely
determined by αp1 .

Table 1 describes the radial component of magneti-
zation function with its rotor positions for RM pattern
produced by single magnet segment per magnetic pole.
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Fig. 1. Typical RM produced by single magnet segment per magnetic pole: (a) – magnetization pattern, (b) – radial magnetization
component with its indicated rotor positions from αr1 to αr4 , (c) – tangential magnetization component
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Fig. 2. Typical RM produced by two segmented magnets per magnetic pole: (a) – magnetization pattern, (b) – radial magnetization
component with its indicated rotor positions from αr1 to αr8 , (c) – tangential magnetization

Table 1. Radial component of magnetization function with its rotor
positions for RM pattern produced by single magnet segment per

pole

Mr1 Rotor angular position

Br/µ0 −αp1π/(2p) ≤ αr ≤ αp1π/(2p)

−Br/µ0 (2− αp1)π/(2p) ≤ αr ≤
(

2 + αp1)π/(2p)
5

The Fourier field model of RM pattern produced by
single magnet segment per magnetic pole can be obtained
in [2] and rewritten as below

Mr1 =
∑

k=1,3,5,...
Mrck1 cos(kα) +Mrsk1 sin(kα) , (1)

Mα1 =
∑

k=1,3,5,...
Mαck1 cos(kα)+Mαsk1 sin(kα) , (2)

Mrck1 = Mrk1 cos(kωrt+ kα0) , (3)

Mrsk1 = Mrk1 sin(kωrt+ kα0) , (4)

Mαck1 = −Mαk1 sin(kωrt+ kα0) , (5)

Mαsk1 = Mαk1 cos(kωrt+ kα0) (6)

where α0 is the rotor position at initial location, ωr is
the angular speed of the rotor, Mrk1 and Mαk1 are the
normal and circumferential components of magnetization
vector with the kth harmonic number for RM pattern
produced by single magnet segment per pole. As can be
seen in Fig. 1(c), the tangential component of magne-
tization vector is always zero, therefore, Mαk1 is zero;
meanwhile, Mrk1 can be expanded into Fourier series as

Mrk1 =
pBr

πµ0

{

∫ αr1

αr2

cos(kαr)dαr −

∫ αr3

αr4

cos(kαr)dαr

}

=
∑

k/p=1,3,5,...
4pBr sin(kπαp1/2p)

/

kπµ0 , (7)

Mαk1 = 0 . (8)

Next, the RM pattern produced by two segmented
magnets per magnetic pole is considered and its radial
and tangential components, Mr2 and Mα2 , respectively,
are illustrated in Fig. 2. In this case, the rotor positions,
αr1 to αr8 , are indicated, while αp1 and αp2 are the pitch
ratios. Noted that the magnet spans are determined by
the differences between αp1 and αp2 . The radial com-
ponent of magnetization function with its rotor positions
for RM pattern produced by two segmented magnets per
magnetic pole is fully outlined in Tab. 2

Table 2. Radial component of magnetization function with its rotor
positions for rm pattern produced by two segmented magnets per

pole

Mr2 Rotor angular position

Br/µ0 −αp1π/(2p) ≤ αr ≤ −αp2π/(2p)

Br/µ0 αp2π/(2p) ≤ αr ≤ αp1π/(2p)

−Br/µ0 (2− αp1)π/(2p) ≤ αr ≤ (2− αp2)π/(2p)

−Br/µ0 (2 + αp2)π/(2p) ≤ αr ≤ (2 + αp1)π/(2p)

Therefore, the field model of RM pattern produced
by two segmented magnets per magnetic pole can be
obtained as

Mr2 =
∑

k=1,3,5,...
Mrck2 cos(kα) +Mrsk2 sin(kα) , (9)

Mα2 =
∑

k=1,3,5,...
Mαck2 cos(kα)+Mαsk2 sin(kα) , (10)

Mrck2 = Mrk2 cos(kωrt+ kα0) , (11)
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Fig. 3. Typical RM produced by three segmented magnets per magnetic pole: (a) – magnetization pattern, (b) – radial magnetization
component with its indicated rotor positions from αr1 to αr12 , (c) – tangential magnetization component

Mrsk2 = Mrk2 sin(kωrt+ kα0) , (12)

Mαck2 = −Mαk2 sin(kωrt+ kα0) , (13)

Mαsk2 = Mαk2 cos(kωrt+ kα0) (14)

where Mrk2 and Mαk2 are the normal and circumfer-
ential components of magnetization vector with the kth

harmonic number for RM pattern produced by two seg-
mented magnets per pole. As can be seen in Fig. 2(c), the
tangential component of magnetization vector is always
zero, therefore, Mαk2 is zero; meanwhile, Mrk2 can be
expanded into Fourier series as

Mrk2 = pBr/πµ0

{

∫ αr3

αr4

cos(kαr)dαr+

∫ αr2

αr1

cos(kαr)dαr

−

∫ αr7

αr8

cos(kαr)dαr −

∫ αr6

αr5

cos(kαr)dαr

}

=

∑

k/p=1,3,5,...

4pBr

kπµ0

[

sin(kπαp1/2p)− sin(kπαp2/2p)
]

, (15)

Mαk2 = 0 . (16)

Following similar steps, the RM pattern produced by
three segmented magnets per magnetic pole is now con-
sidered and its radial and tangential components, Mr3

and Mα3 , respectively, are illustrated in Fig. 3. In this
case, the rotor positions, αr1 to αr12 , are indicated, while
αp1 , αp2 , and αp3 are the pitch ratios. Noted that the
magnet span of mid-magnet is determined by αp3 . Mean-
while, the magnet spans of side-magnets are determined
by the differences between αp1 and αp2 . The radial com-
ponent of magnetization function with its rotor positions
for RM pattern produced by three segmented magnets per
magnetic pole is given in Tab. 3, the Fourier field model
of RM pattern produced by three segmented magnets per
magnetic pole can be obtained as

Mr3 =
∑

k=1,3,5,...
Mrck3 cos(kα)+Mrsk3 sin(kα) , (17)

Mα3 =
∑

k=1,3,5,...
Mαck3 cos(kα)+Mαsk3 sin(kα) , (18)

Mrck3 = Mrk3 cos(kωrt+ kα0) , (19)

Mrsk3 = Mrk3 sin(kωrt+ kα0) , (20)

Mαck3 = −Mαk3 sin(kωrt+ kα0) , (21)

Mαsk3 = Mαk3 cos(kωrt+ kα0) (22)

where Mrk3 and Mαk3 are the normal and circumfer-
ential components of magnetization vector with the kth

harmonic number for RM pattern produced by three seg-
mented magnets per pole.

Table 3. Radial component of magnetization function with its rotor
positions for RM pattern produced by three segmented magnets per

pole

Mr3 Rotor angular position

Br/µ0 −αp1π/(2p) ≤ αr ≤ −αp2π/(2p)

Br/µ0 −αp3π/(2p) ≤ αr ≤ αp3π/(2p)

Br/µ0 αp2π/(2p) ≤ αr ≤ αp1π/(2p)

−Br/µ0 (2− αp1)π/(2p) ≤ αr ≤ (2− αp2)π/(2p)

−Br/µ0 (2− αp3)π/(2p) ≤ αr ≤ (2 + αp3)π/(2p)

−Br/µ0 (2 + αp2)π/(2p) ≤ αr ≤ (2 + αp1)π/(2p)

As can be seen in Fig. 3(c), the tangential component
of magnetization vector is always zero, therefore, Mαk3

is zero; meanwhile, Mrk3 can be expanded into Fourier
series as

Mrk3 = pBr

/

πµ0

{

∫ αp5

αp6

cos(kαr)dαr+

∫ αp1

αp4

cos(kαr)dαr

+

∫ αp3

αp2

cos(kαr)dαr −

∫ αp11

αp12

cos(kαr)dαr

−

∫ αp7

αp10

cos(kαr)dαr −

∫ αp9

αp8

cos(kαr)dαr

}

=
∑

k/p=1,3,5,...
4pBr

/

kπµ0

{

sin(kπαp1

/

2p)

− sin(kπαp2

)

+ sin(kπαp3

/

2p)
}

, (23)

Mαk3 = 0 . (24)

Based on the Fourier series space decomposition to
emulate the RM pattern produced by single magnet seg-
ment, two segmented magnets, and three segmented mag-
nets per magnetic pole, the Fourier coefficients of Mαk1 ,
Mαk2 , and Mαk3 are always zero. On the other hand, the
Fourier coefficients of Mrk1 , Mrk2 , and Mrk3 demon-
strate a common and generic expression, which can be
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Table 4. Main Parameters of 12s/8p Surface-Mounted PM Motor with 2SM per Pole

Parameters Value Parameters Value

Slot number, Ns 12 Pole number, 2p 8

Remanence, Br (T) 1.12 Tooth-tips edge (mm) 3

Airgap length, lg (mm) 1.0 Active length, la (mm) 50

Winding turns/coil, Nc 30 Stator yoke height (mm) 7.5

Bottom slots radius, Rsb (mm) 42.5 Magnet thickness, hm (mm) 3

PM surface radius, Rm (mm) 26 Stator inner radius, Rs (mm) 50

Stator outer radius (mm) 50 Magnetization pattern RM

Winding slot angle, bsa 15 Rotor yoke inner radius, Rr (mm) 23
(mech. deg.)

Slot-opening angle, boa 5.5 Relative recoil permeability, 1.5
(mech. deg.)

σp1 (elect. deg.) 147.6 σp2 (elect. deg.) 11.2
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Fig. 4. A typical geometry and its symbols of a surface-mounted

PMSM (Region 1, 2, 3i , and 4i represent magnet, airgap, the ith

winding slot, and the ith slot-opening

deduced for the vth segmented magnets per pole as

Mrk =
∑

ν=1,2,3,...
k/p=1,3,5,...

(−1)(v+1) 4pBr

kπµ0
sin

kπαpv

2p
, (25)

Mαk = 0 . (26)

Also, the normal and tangential components of magneti-
zation functions can be rewritten as

Mr =
∑

k=1,3,5,...
Mrck cos(kα) +Mrsk sin(kα) , (27)

Mα =
∑

k=1,3,5,...
Mαck cos(kα) +Mαsk sin(kα) , (28)

Mrck = Mrk cos(kωrt+ kα0) , (29)

Mrsk = Mrk sin(kωrt+ kα0) , (30)

Mαck = −Mαk sin(kωrt+ kα0) , (31)

Mαsk = Mαk cos(kωrt+ kα0) . (32)

From here, the magneto-quasi Maxwell equations are
solved using separable variables technique to compute
the magnetic field in every subdomain [2], of a surface-
mounted PMSM, as shown in Fig. 4. Several important
assumptions are also considered as reported in [4]. Sub-
sequently, the motor global quantities can be evaluated,
eg the back-EMFs, cogging torque, and output torque,
which can be found in [2].

3 Analysis and validations

In this paper, the proposed field model based on
Fourier series space decomposition of RM pattern pro-
duced by multiple segmented magnets per pole is inte-
grated with the 2D exact subdomain model [2, 4] to pre-
dict the magnetic fields in semi-closed surface-mounted
PM machines. The magnetic field distributions and the
motor global quantities that include phase back-EMF,
cogging torque, and output torque of a three-phase,
12s/8p surface-mounted PMSM are then calculated by
the analytical method. Meanwhile, 2D and 3D FEA for
the PM motor are evaluated by employing a commercial
FE software, ie, Cobham Vector Field Opera 2D/3D to
validate the computed analytical results. The symbols
of typical surface-mounted PM motor are displayed in
Fig. 4, and the main parameters of 12s/8p , three-phase,
surface-mounted PM motor are given in Tab. 4.

Figure 5 shows the magnetic field distributions as pre-
dicted by the 2D and 3D FEA for the 12s/8p PM ma-
chine during open-circuit and on-load conditions. As can
be seen in Figs. 5(a) and 5(c), the airgap spacings be-
tween the segmented magnets and magnet interpoles pro-
vide alternative flux paths among the PMs, instead of
direct interaction between the magnets and stator teeth.
The magnetic forces between magnets and slot-openings
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can be minimized by having multiple segmented mag-

nets mounted on the rotor surface. Hence, smaller cogging

torque is realized. Whereas, the magnetic field distribu-

tions in 3D model are shown in Figs. 5(b) and 5(d).

Furthermore, Fig. 6 shows the magnetic flux density

distributions as predicted by the proposed Fourier field

model in the mid-airgap (r = 26.5 mm) during open-

circuit and on-load conditions, which are validated by the
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2D and 3D FEA, for both radial and tangential compo-
nents. An excellent agreement has been achieved.

Additionally, the predicted phase back-EMF, cogging
torque, and output torque by the proposed model us-
ing Fourier series space decomposition are presented in
Fig. 7. For the output torque computation, the motor has
been excited with sinusoidal phase currents of 5A peak.
They are also compared and verified with the 2D and
3D FEA respectively. All analytically predicted results
have demonstrated a very good agreement with the FE
simulated results. Therefore, the 2D and 3D FE simu-
lated results confirm the effectiveness of the proposed field
model.

4 Conclusion

This paper has presented a generic field model of ra-
dial magnetization (RM) pattern produced by multiple
segmented magnets per rotor pole in surface-mounted
permanent magnet (PM) machines. The rotor magnets
can be formed by odd- or even-number of magnet blocks.
Fourier decomposition is used to formulate the field
model, and later integrated with the exact 2D analytical
subdomain method to predict the magnetic field distri-
butions and other motor quantities such as airgap flux
density, phase back-EMF, cogging torque, and output
torque during either open-circuit or on-load operating
conditions. The analytical results are evaluated and com-
pared with those obtained from both 2D and 3D finite
element analyses (FEA) where an excellent agreement
has been achieved.
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