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Convolution implementation with a novel
approach of DGHM multiwavelet image transform
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The purpose of this paper is to develop convolution implementation of DGHM (Donovan, Geronimo, Harding, Massopust)
multiwavelet image transform using a new approach of ordering wavelet coefficients at the second and higher levels. Firstly,
the method of implementation of one-dimensional discrete multiwavelet transform (1D DMWT) for DGHM multiwavelet
using discrete convolution and scalar filters is presented. Then, convolution implementation of DGHM multiwavelet image
transform by application of 1D DMWT for two dimensions (2D) in a separable way is proposed. Next, the second level of
2D DMWT is performed in three possible ways. The novelty of the proposed implementation is in reordering of L subband
wavelet coefficients at the first level into one subimage. The results are evaluated as the energy ratios between the transformed
images in L subband at the second level and the input original image. According to the experimental results, the developed
implementation of 2D DMWT is approximately 5% more effective in energy compression than the ones most commonly
mentioned in the literature. This paper shows a possibility of convolution implementation of 2D DMWT with higher energy
compression.
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1 Introduction

Wavelet transform became popular in the last decades
in the field of image compression [1–5]. Multiwavelets of-
fer better properties and results for applications of im-
age compression compared to scalar wavelets [6–8], which
can be considered as generalization of scalar wavelets.
Multiwavelet transform can have r scale functions and
r wavelet functions, so we can say it has multiplicity of
r . Most of the developed multiwavelet transforms use two
scale functions and two wavelet functions, but theoreti-
cally r can reach an optional value [9]. Properties such
as orthogonality, symmetry, high order of approximation
and short support are the basis for the successful applica-
tion of multiwavelets in image compression [10–12]. Such
properties cannot be achieved by scalar wavelets. Well
known multiwavelets are DGHM (Donovan, Geronimo,
Harding, Massopust), also CL(0,2) and CL(0,3) [13, 14].

The second chapter of the present paper gives convolu-

tion implementation of 1D DMWT with DGHM multi-

wavelets. In this chapter, the input signal preprocess-

ing is presented with the analysis of convolution prop-

erties between pulse responses of scalar filters and ex-

tended input [15]. The third chapter is focused on convo-

lution implementation of 2DDMWT of images for DGHM

multiwavelets. 2DDMWT is achieved by application of

1DDMWT at first on rows and consequently after the

transform on columns [16, 17]. Also, analysis of the sec-

ond level of 2DDMWT is given. There are three options

presented for the second level of transform. Two of these

options are well known and the third was proposed by us.

In chapter four, the results of 2DDMWT of images for

the first and the second levels are presented. The analy-

sis is done on seven input images. The results are evalu-

ated as energy ratios between energy of L subbands of the
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Fig. 1. Implementation of the forward and backward 1D DMWT
for j -level
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Fig. 2. LP multi-filter for r = 2 is composed of scalar filters
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Fig. 3. Filters for 1DDMWT with DGHM multiwavelets:
(a) – pre-filter, and (b) – post-filter

transformed images and the input images. The conclusion
summarizes the achieved results.

2 Convolution implementation of

1D DMWT with DGHM multiwavelets

Implementation of the forward 1DDMWT using banks
of multi (vector) filters and also multi decimators and
interpolators for j -level [18, 19] is given in Fig. 1.

Each multi-filter for one level of the forward and back-
ward 1D DMWT with r = 2 has two inputs and two
outputs, as shown in Fig. 1. For example, low pass multi-
filter (LP) with matrix frequency response

G0(e
jω) =

[

G
(0)
l,m(ejω)

]
∣

∣

2×2
, r, l,m = 2

is composed of scalar filters with frequency responses

G
(0)
1,1(e

jω) as shows Fig. 2, where y0,1(n) and y0,2(n) are

samples of sub-channels on outputs of this multi-filter.
Analogously, it is possible to express high pass multi-filter
(HP) by matrix frequency response G1(e

jω) as well as
with two inputs and outputs.

One of the best known 1D DMWT with multiplicity
r = 2 is designed using Donovan, Geronimo, Harding and
Massopust multiwavelets [13]. Matrix samples of pulse
responses G0(k) and G1(k) as 2× 2 matrices are shown
below

G0(0) =

[

3
10

2
√
2

5

−

√
2

40 −
3
20

]

, G0(1) =

[

3
10 0
9
√
2

40
1
2

]

G0(2) =

[

0 0
9
√
2

40 −
3
20

]

, G0(3) =

[

0 0
−

√
2

40 0

]

(1)

G1(0) =

[

−

√
2

40 −
3
20

−
1
20 −

3
√
2

20

]

, G1(1) =

[

9
√
2

40 −
1
2

9
20 0

]

G1(2) =

[

9
√
2

40 −
3
20

−
9
20

3
√
2

20

]

, G1(3) =

[

−

√
2

40 0

−
1
20 0

]
(2)

Contrary to classical 1DDWT, the input scalar dis-
crete signal has to be transformed to the vector form
before making forward 1DDMWT and has to be re-
stored from the vector form after performing backward
1DDMWT. These two operations are known as pre-
filtering and post-filtering [20, 21].

Figure 3(a) shows the division of the input scalar signal
f(n) into sequences of even and odd samples, ie

[

c0,1(n)
c0,2(n)

]

=

[

f(2n)
f(2n+ 1)

]

. (3)

The post-filtering as an inverse process compared to pre-
filtering is shown in Fig. 3(b). The sequences of even and
odd samples will merge into one sequence f(n).

Table 1. Pulse responses with properties of scalar filters for LP multi-filter

Scalar filter Length Symmetry

G0
1 = G

(0)
1,1 → g01 =

{

3
10
, 3
10

}

Even Even

G0
2 = G

(0)
1,2 → g02 =

{

2
√

2
5

}

Odd Even

G0
3 = G

(0)
2,1 → g03 =

{

−

√
2

40
, 9

√
2

40
, 9

√
2

40
,−

√
2

40

}

Even Odd

G0
4 = G

(0)
2,2 → g04 =

{

−
3
20
, 1
2
,− 3

20

}

Odd Odd

Table 2. Pulse responses with properties of scalar filters for HP multi-filter

Scalar filter Length Symmetry
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Table 3. The properties of convolution depending on the extension and the filters properties

Mode Signal extension
Filter

Properties of convolution
Symmetry Length

1 Even whole-sample Even Odd Even whole-sample

2 Even half-sample Even Even Even whole-sample

3 Even whole-sample Odd Odd Odd whole-sample

4 Even half-sample Odd Even Odd whole-sample
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Fig. 4. The both kinds of extensions WSS: (a) – even, (c) – odd, HSS: (b) – even, (d) – odd
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Convolution Output
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type of extension

Fig. 5. The basic idea of convolution implementation of 1D DMWT

Based on matrix samples G0(k), G1(k) from (1) and
(2) pulse responses for LP and HP multi-filters can be
expressed. Frequency responses of their scalar filters and
the corresponding pulse responses with properties such as
length and symmetry are in Tables 1 and 2.

2.1 Input Signal Preprocessing

As signals c0,1(n), c0,2(n) of the pre-filter are of finite
length, there is a possibility of unwanted border distor-
tion of the calculated convolution with appropriate pulse
responses of the scalar filters. To eliminate this distortion,

the signals c0,1(n), c0,2(n) are extended by two kinds of
symmetrical extensions. The first one is a whole sample
symmetric (WSS) extension and the second one is a half
sample symmetric (HSS) extension [7, 22]. Figure 4 shows
the input signal f(n) (peaks ended by dark spot) and its
possible extensions f ′(n).

Table 3 shows clearly that there are two possible ways
of extension – even half-sample and even whole-sample.
As input sequences are extended, it is possible to cut off
the extension after convolution without any border dis-
tortion. So, the output sequence has the same length as
the input sequence before the extension. It is possible to
say that the convolution result has always properties of
whole-sample symmetry independently of the extension
of the input signal. The basic idea of convolution imple-
mentation of 1DDMWT is given in Fig. 5.

In general, both kinds of extensions can be used, but
for our convolution implementation of 1D DMWT with
DGHM multiwavelets, the WSS method is used. Possible
extensions and properties of convolution for the different
combinations of symmetry and length of pulse responses
of the scalar filters for multi-filters are listed in Tab. 3.
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Fig. 7. The result of 1D DMWT by rows

L L1 1 L L1 2 L H1 1 L H1 2
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Fig. 8. The arrangement of sub-images at the first level of 2D
DMWT

The input pre-filtered sequence c0,1(n) or c0,2(n) for
the specific type of scalar filter is extended according to
Tab. 3. For LP multi-filter and its corresponding scalar
filters outputs y0,1(k) and y0,2(k) are calculated by

y0,1(k)=
∑

n

g
(0)
1 (k−n)c0,1(n)+

∑

n

g
(0)
2 (k−n)c0,2(n) , (4)

y0,2(k)=
∑

n

g
(0)
3 (k−n)c0,1(n)+

∑

n

g
(0)
4 (k−n)c0,2(n) . (5)

The length of these signals has to be adjusted to the
length of input signals of LP multi-filter before their ex-
tensions. Outputs y1,1(k) and y1,2(k) of HP multi-filters
with subsequent determination of their length are cal-
culated analogically. Finally, the outputs of LP and HP

multi-filters are decimated by decimation factor 2, result-
ing in the first level scale c−1(k) = [c−1,1(k), c−1,2(k)]

⊤

and detail d−1(k) = [d−1,1(k), d−1,2(k)]
⊤ coefficients of

the forward 1DDMWT with DGHM.

3 Convolution implementation

of 2D DMWT of images

1D DMWT implemented in Chapter 2 can be easily

applied on 2DDMWT on the basis of core separation [9].
Figure 7 shows the architecture of 2DDMWT where in
the input there is an original image of size N ×N pixels,

which is pre-filtered by all its rows according to Fig. 3.
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Fig. 9. The reordering of wavelet coefficients of subimages L1L1 ,
L1L2 , L2L1 and L2L2 into one reordered lowpass sub-image

After pre-filtering we have two sub-images of the size
N× (N/2) pixels. As a result of further application of 1D
DMWT for rows of subimages we have four subimages
of wavelets coefficients L1 , L2 , H1 and H2 of the size
N × (N/4) pixels on the outputs of decimators (Fig. 7).

The presented prefiltering and 1D DMWT is then ap-
plied for columns of subimages of wavelet coefficients L1 ,
L2 , H1 and H2 as shown in Fig. 7. This results in 16
subimages of wavelet coefficients L1L1 , L1L2 , L1H1 ,
L1H2 , L2L1 , L2L2 , L2H1 , L2H2 , H1L1 , H1L2 , H1H1 ,
H1H2 , H2L1 , H2L2 , H2H1 and H2H2 at the first level
of 2DDMWT that are shown in Fig. 8.

3.1 The Second Level of 2D DMWT

Calculation for the second level of image transform
by 2DDMWT is analogical to transform at the first
level [14, 23]. But there are three possible options for in-
put of the second level of 2DDMWT. In the first option
(Option 1), the input L subband consisting of subim-
ages L1L1 , L1L2 , L2L1 and L2L2 is considered. These
subimages are transformed together. In this case, the re-
sults are 16 subimages for the second level of 2DDMWT
and also 12 subimages from the first level. In the sec-
ond option (Option 2), the subimages of the L subband

are transformed independently from each other. The re-
sults obtained are 64 subimages of wavelet coefficients (16
for each L subimage from the first level and 12 subim-
ages of details from the first level). The third option (Op-
tion 3) at the second level of 2DDMWT, designed by
us, is based on the reordering of wavelet coefficients of
subimages L1L1 , L1L2 , L2L1 and L2L2 (Fig. 9, on the
left) into one reordered lowpass subimage (Fig. 9, on the
right). After transform of this reordered lowpass subim-
age we get 16 subimages at the second level and from the
first level we have 12 subimages. The third, fourth etc

level of 2DDMWT can be calculated in the same man-
ner, while each next level of 2DDMWT can be achieved
by transform of subimages KLiLj , where K = 2, 3, 4, . . .
and i, j = 1, 2.

4 Experimental results

Based on the given theory, the convolution implemen-
tation of 2DDMWT was done. For illustration, Fig. 10(a)
gives subimages of 2DDMWT of image Lena of the size
512× 512 pixels at the first level. Figure 10(b) shows the
result of 2DDMWT at the second level using Option 1.
Figure 10(c) shows the transform result at the second
level using Option 2. The transform result at the second
level using Option 3 is shown in Fig. 10(d).

Figure 11 shows a normalized energy distribution of
the transformed image of Lena. The distribution at the
first level is shown in Fig. 11(a). Energy distribution for
2DDMWT at the second level achieved by Options 1, 2
and 3 is shown in Fig. 11(b),(c),(d), respectively. For bet-
ter presentation, the energies are normalized by a maxi-
mum value of the transformed images.

From Fig. 10(a) and Fig. 11(a) it is obvious that
subimages L1L1 , L1L2 , L2L1 and L2L2 are highly cor-
related and have high energy (they represent low-pass
subband). Otherwise, all other subimages at the first
level L1H1 , L1H2 , L2H1 , L2H2 , H1L1 , H1L2 , H1H1 ,
H1H2 , H2L1 , H2L2 , H2H1 , H2H2 are uncorrelated and
have low energy (they represent high-pass subband). Ana-
logically, this is also true for subimages at the second
level of 2DDMWT. Subimages 2L1L1 ,

2L1L2 ,
2L2L1 ,

2L2L2 remain correlated and have high energy. All other

(c)(a) (d)(b)

Fig. 10. The subimages of 2D DMWT of image Lena of the size 512 × 512 pixels: (a) – at the first level and sub-images at the second
level of 2D DMWT for: (b) – Option 1, (c) – Option 2, and (d) – Option 3
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Fig. 11. A normalized energy distribution of 2D DMWT of the Lena image: (a) – at the first level and at the second level for (b) – Option 1,
(c) – Option 2, (d) – Option 3

Table 4. The alignment of the energy ratios in % into the subim-
ages at the first level of 2D DMWT

L1 L2 H1 H2

L1 45.9 19.93 1.86 0.25

L2 19.88 8.68 0.81 0.15

H1 1.86 0.81 0.08 0.02

H2 0.16 0.11 0.02 0.07

subimages 2DDMWT at the second level 2L1H1 ,
2L1H2 ,

2L2H1 ,
2L2H2 ,

2H1L1 ,
2H1L2 ,

2H1H1 ,
2H1H2 ,

2H2L1 ,

2H2L2 ,
2H2H1 ,

2H2H2 are uncorrelated with low en-
ergy. Energy is calculated as a sum of quadratic values
of wavelets coefficients. Ratios (in %) of the energy of
separate wavelet subimages to the energy of the input
Lena image for the first level 2D DMWT are listed in
Tab. 4.

From Tab. 4 it is obvious that at the first level of
2DDMWT the ratio of energies of the lowpass quadrant
L (represented by subimages L1L1 , L1L2 , L2L1 and
L2L2 ) to the total energy is 94.39%. The rest 5.61%
of the energy ratio is divided between twelve subim-
ages L1H1 , L1H2 , L2H1 , L2H2 , H1L1 , H1L2 , H1H1 ,
H1H2 , H2L1 , H2L2 , H2H1 and H2H2 , which represent
the highpass quadrants. From the data given above, it can

Table 5. The resultant energy ratios (in %) at the first and second level for Options 1, 2 and 3 of 2D DMWT

Energy ratio between L
Energy ratio between L subband Difference between ratios

subband of the first
of the second level and input image Option1 Option1 Option2

level and input image
& & &

Input image Option 1 Option 2 Option 3 Option 2 Option 3 Option 3

Baboon 93.5 87.05 87.23 92.37 0.18 5.32 5.14

Forrest 94.5 87.06 87.72 93.78 0.66 6.73 6.06

Apache 94.5 88.74 88.88 93.99 0.14 5.26 5.12

Castle 94.5 88.75 88.81 93.79 0.06 5.05 4.99

Lena 94.4 88.19 88.33 93.58 0.14 5.39 5.25

Missouri 94.5 88.97 89.03 94.01 0.06 5.04 4.98

Elephant 94.5 88.62 88.75 93.78 0.13 5.16 5.03

Dog 94.6 89.07 89.26 94.20 0.19 5.13 4.94

Average 94.4 88.32 88.50 93.69 0.19 5.38 5.19

Deviation 0.33 0.76 0.65 0.53 0.18 0.52 0.34
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. Input images: (a) – Baboon, (b) – Forrest, (c) – Apache, (d) – Castle, (e) – Lena, (f) – Missouri, (g) – Elephant, (h) – Dog

be stated that by 2DDMWT energy compression of image

is achieved. The ratio for the second level of 2DDMWT

in lowpass subimages is 88.188% (in case of Option 1)

and 88.331% (in case of Option 2). Maximum energy ra-

tio 93.579% is achieved by reordered lowpass subimages

(Option 3). From the above and from Fig. 10 and Fig. 11

we can see that a better degree of energy compression at

the second level of 2DDMWT is achieved by transform

of the L subimages reordered into one subimage. The ex-

periment described above was performed with other seven

input images in Fig. 12. In Tab. 5 the energy ratios at the

second level of 2DDMWT for each image are listed.

From Tab. 5 it is apparent that the energy ratios of

well-known methods represented by Option 1 and 2 are

similar. The average value for Option 1 is 88.306% and

for Option 2 it is 88.502%. Energy ratio of all of the in-

put images does not exceeded 90%. The average value

of differences between Option 1 and 2 is only 0.196%

with deviation 0.182%. On the other hand, the average

value of energy ratios for Option 3 is 93.69% with devia-

tion 0.529%. Our proposed convolution implementation

of 2DDMWT with a novel approach at the second level

achieves higher energy ratio of L subband for each of the

input images. Also, it can be seen that most of the image

energy at the second level is compressed into L subband

and in the other subbands there remains only low energy.

The average value of the increase of the energy ratio of L

subband for Option 3 compared to the energy ratio of the

L subband for Option 2 is 5.188% with deviation 0.345%

and 5.384% for Option 1 with deviation 0.521%.

6 Conclusion

Application of 1DDMWT to multiwavelet image trans-
form is a generally known approach. The input signal
is divided into even and odd sequences by using pre-
filters and after that the convolution between the pulse
responses of four scalar filters of lowpass and highpass
multi-filters and symmetrically extended sequences is
used in 1DDMWT. 1DDMWT can be easily applied to
2DDMWT on the basis of the core separation. One of the
goals of this paper is to analyse energy compression. The
energy ratio is calculated and evaluated as ratio energy
of L subimages to the energy of the input image. DMWT
energy is compressed into a zone of low frequencies -
into L subbands that is the same as in other orthogonal
transforms. The main purpose of this paper is convolu-
tion implementation with a novel approach at the second
and higher levels of 2DDMWT of images. From theory it
is known that the inputs of the second level of 2DDMWT
are wavelet coefficients from the first level. For the trans-
form at the second level, however, there arises a question,
which of the subbands are supposed to be the input to
the processor 2DDMWT at the second level. There are
only two ways mentioned in the literature. The first one
is based on the transform of all subimages of L subband
together. In the paper, this method is called as Option 1.
The advantage of this approach is that there is no need of
subbands reordering. However, from the point of view of
energy compression ratio this method is the worst. The
second approach (Option 2) is that the inputs of the sec-
ond level are all L subimages transformed one by one.
In this way, a little higher energy ratio is achieved, but
the disadvantage is creation of 64 subimages at the sec-
ond level of 2DDMWT. The proposed convolution imple-
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mentation with a novel approach (Option 3) is that the
input is indeed all L subimages, but before the trans-
form itself, the wavelet coefficients are reordered into one
L subimage. Using this approach, a higher energy ratio
is achieved compared to the ones of transform of non-
reordered L subimages. We demonstrated this approach
on the set of input images and achieved an average of
5.2% enhancement of the energy ratio for all of them
shown in this paper. Experimental results demonstrated
that the proposed technique provided sufficient higher
energy compression ratios compared to other traditional
techniques, which enables to achieve higher data com-
pression of the image coding systems using 2DDMWT.
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Košice. His PhD thesis topic was focused to texture generat-

ing, 3D modeling and coding of human head. Since June 2015,

he has been working as assistant professor at the Department

of Technologies in Electronics, Technical University of Košice.
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