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A novel power harmonic analysis method based on Nuttall-Kaiser
combination window double spectrum interpolated FFT algorithm
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Abstract Harmonics pose a great threat to safe and economical operation of power grids. Therefore, it is critical to
detect harmonic parameters accurately to design harmonic compensation equipment. The fast Fourier transform (FFT) is
widely used for electrical popular power harmonics analysis. However, the barrier effect produced by the algorithm itself and
spectrum leakage caused by asynchronous sampling often affects the harmonic analysis accuracy. This paper examines a new
approach for harmonic analysis based on deducing the modifier formulas of frequency, phase angle, and amplitude, utilizing
the Nuttall-Kaiser window double spectrum line interpolation method, which overcomes the shortcomings in traditional FFT
harmonic calculations. The proposed approach is verified numerically and experimentally to be accurate and reliable.
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1 Introduction

The rapid development of smart grid technologies,
large applications of different kinds of nonlinear power
loads and power electronic devices affect stable opera-
tion of the power grid, and the requirements of electric
power measurement have continuously improved [1]. For
example, a rectifier connected to the system draws a cur-
rent that is not necessarily sinusoidal, and it is essen-
tial to detect, analyze, and restrain system harmonics.
FFT is one of the most popular power harmonics anal-
ysis methods and can decompose the current waveform
into a series of simple sinusoids. Wide area measure-
ment systems (WAMS) are becoming more utilized in
real-time measurement of network parameters, and syn-
chronized phasor measurement unit (PMU) data can be
used to support high accuracy harmonic analysis of power
grids [2, 3]. However, PMUs generally measure the data
asynchronously for a variety of reasons. Hence, using FFT
to analyze these harmonic signals can result in large fre-
quency, amplitude, and phase angle errors, from spectral
leakage, caused by time domain truncation, and the picket
fence effect, caused by frequency domain discretization.
Thus, new methods must be developed to ensure correct
harmonic compensation.

Polynomial windows are widely utilized to solve FFT
harmonic analysis problems. Modifying and optimizing
the coefficients of polynomial windows in the time domain
allows the frequency responses to be easily changed [4, 5],
while taking advantage of their relatively low computa-
tional complexity. They are particularly suitable for prac-
tical DSP and FPGA applications. The most widely used
windows for FFT applications are Hamming, Blackman-
Harris, Nuttall, Kaiser and convolution [6-9]. Rapuano
and Harris researched FFT principles and characteris-
tics, such as minimum resolution bandwidth and scal-

loping loss of some window functions, and discussed the
reasons for of spectral leakage and FFT-related issues
when estimating spectra of digitized signals [10]. Based
on four-item cosine windowing using Blackman-Harris,
Rife-Vincent (I), and Rife-Vincent (III) windows, an in-
terpolated windowed FFT algorithm to improve analy-
sis accuracy was proposed by Qian et al [11]. To min-
imize the impact of asynchronous sampling and reduce
the computation load, Zeng, Teng, Cai, et al proposed
a reliable method based on smoothing sampled data by
windowing the signal with the four-term fifth derivative
Nuttall (FFDN) window [12]. For some windowing meth-
ods, if one of the data acquisition instruments fails to
remove system noise, high accuracy harmonic analysis
cannot be obtained since the noise produces a stronger
response for high dynamic range windows than with high
resolution windows. Duda [13] investigated systematic er-
rors and noise sensitivity for analytic interpolation formu-
las and proposed an FFT interpolation algorithm with
optimal Kaiser-Bessel or Dolph-Chebyshev windowing.
Kaiser windows can define a set of adjustable window
functions where the proportion between the width of the
main lobe and the height of the side lobe can be freely
chosen and provides superior performance for multi-tone
detection along with high noise immunity [14]. While
Nuttall widows, have better side lobe behaviour, Kaiser
windowing is able to detect critical parameters, such as
phase angles, precisely [15-17]. Consequently, depending
on the required accuracy, different FFT window combina-
tion methods should be employed for power system har-
monic measurement and analysis [18].

Considering the side lobe characteristics of Nuttall and
Kaiser windows, this paper investigates a Nuttall-Kaiser
combination window function, making use of their differ-
ent advantages, and proposes an improved FFT harmonic
analysis method. The proposed method can successfully
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Fig. 1. Total phase angle error using DFT(N = 32, ∆λ = 0.1)

analyze a synchronous harmonic sampled data with high

accuracy and efficiently eliminate spectral leakage and

picket fence effects caused by signal processing. The per-

formance and efficiency of the proposed harmonic analysis

method were verified by simulation and experiment. This

paper provides a brief review of FFT spectral leakage due

to asynchronous sampling, analyses of the spectral char-

acteristics of Nuttall and Kaiser windows, proposes the

Nuttall-Kaiser window double spectrum line interpola-

tion method, and investigates its application to harmonic

analysis and assesses the proposed method performance

by simulation and experiment.

2 FFT Harmonic analysis problem

The time domain representation of a sampled signal

may be expressed as

x(n) = A sin
(

2π
f0
fs

n+ θ
)

, (1)

where f0 is the fundamental frequency, A is the am-

plitude, θ is the initial phase angle, fs is the sampling

frequency, and n = 0, 1, 2, . . . , N − 1. N is the number

of sampling points. Applying a window function, w(n) ,

and continuous Fourier transform, the discrete approxi-

mation sequences of the sampled signal in frequency do-

main X(f) can be obtained

X(f) =

∞
∑

n=−∞

x(n)w(n)e−j2πfn =

A

2j

[

ejθW
(2π(f − f0)

fs

)

− e−jθW
(2π(f + f0)

fs

)]

. (2)

Ignoring the side lobe impact of the peak of negative
frequency, −f0 , the continuous spectrum function near
the positive frequency, f0 , can be expressed as

X+(f) =
A

2j
ejθW

(2π(f − f0)

fs

)

, (3)

which may be discretely sampled, giving the discrete
Fourier transform

X+(k∆f) =
A

2j
ejθW

(2π(k∆f − f0)

fs

)

, (4)

where k = 0, 1, 2, . . . , N − 1, ∆f = fs
N , N is the length

of data truncation, W is the frequency function of w(n),
and k is the coefficient of the frequency of interest f .

Phase angle is a very import parameter in power sys-
tems, both theoretically and practically, and it is critical
to measure phase angle to high precision. If ∆f is the
frequency resolution, ie , the frequency deviation rate is
∆λ = ∆f/f0 , then the static phase angle error caused by
asynchronous sampling using discrete Fourier transform
(DFT) is

∆ϕ1 =
∆λπ(N − 1)

N
(5)

and the dynamic phase angle error is

∆ϕ2 ≈
sin(π∆λ/N)

sin[π(2 + ∆λ)/N ]
sin θ. (6)

In most situations ∆f is very small, and N > 10, so (6)
can be simplified to

∆ϕ2 ≈
∆λ

2 + ∆λ
sin

[

2θ +
2π(N − 1)(1 + ∆λ)

N

]

. (7)

Thus, phase angle static error in asynchronous condi-
tions is proportional to the frequency deviation rate ∆λ
and can be easily determined. However, phase angle dy-
namic error is not only related to ∆λ , but also to the
initial phase angle, hence the calculation is complex and

Table 1. Coefficients and characteristic parameters of four typical Nuttall window functions

Side lobe

Window type
Coefficients HSSL decaying rate

b0 b1 b2 b3 (dB) (dB/oct)

Minimum 3-term 0.4243801 0.4973406 0.0782793 – –71.46 6

First order 4-term 0.3557680 0.4873960 0.1442320 0.0126040 –93.34 18

Third order 4-term 0.3389460 0.4819730 0.1610540 0.0180270 –82.73 30

Minimum 4-term 0.3635819 0.4891775 0.1365995 0.0106411 –95.89 6
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Fig. 2. Discretised spectrum analysis for sampling: (a) – syn-
chronous sampling, (b) – asynchronous sampling

an accurate estimate is difficult. Figure 1 shows the total

error of phase angle for fundamental frequency 50 Hz, in

black and the dynamic error in blue.

The frequency spectrum for synchronous and asyn-

chronous sampling based on the above analysis is shown

in Fig. 2. Figure 2(a) shows that, for synchronous sam-

pling, the spectrum peak of discrete points can accurately

reflect the frequency and amplitude of the original signal.

However, asynchronously sampling the signal, Fig. 2(b),

causes the spectrum peak of discrete points to deviate

from the actual values, in Fig. 2(b), the frequency devia-

tion is 0.2 Hz, and amplitude deviation is 0.0627 V.

With asynchronous sampling, the signal energy is not

focused at the spectrum peak spectrum, and spectral

leakage will occur for FFT calculation. Thus, FFT pro-

cessing is inaccurate and must be revised.

3 Proposed Nuttall-Kaiser

interpolated FFT method

3.1 Spectral characteristics of Nuttall and Kaiser win-

dows

The Nuttall window is a cosine combination window,

and the discrete time domain Nuttall window can be

expressed as [19]

wN (n) =

M−1
∑

m=0

(−1)mbm cos
2πm

N
, (8)

where N is the total number of samples; M is the number
of terms of the window function; n = 0, 1, 2, . . . , N−1 and

bm are the window coefficients, which satisfy
∑M−1

m=0 bm =

1,
∑M−1

m=0 (−1)mbm = 0. Applying the discrete Fourier
transform to (8), the spectrum functional expression of
the Nuttall window can be expressed as

WN (ω)=

M−1
∑

m=0

(−1)m
bm
2

[

WR

(

ω−
2π

N
m
)

+WR

(

ω+
2π

N
m
)]

(9)
where ω is the angular frequency,

WR(ω) =
(

sin Nω
2 / sin ω

2

)

e−j N−1

2
ω .

Window function coefficients have been widely re-
searched and discussed to achieve faster decaying side-
lobes and guarantee a given width of the main lobe
[20, 21], and common Nuttall window functions are min-
imum 3-term, first order 4-term, third order 4-term, and
minimum 4-term, with coefficients as listed in Table 1.
Figure 3 shows the normalized magnitude frequency re-
sponse curves of the above Nuttall window functions, and
some characteristic parameters are also listed in Table 1.

In Fig. 3 the highest side lobe level (HSLL) for the min-
imum 4-term Nuttall window is 95.89 dB, with side lobe
decaying rate 6 dB/oct. The HSLL for the first order 4-
term window is less than the minimum 4-term (93.34 dB),
but has superior side lobe decaying rate (18 dB/oct). The
third order 4-term Nuttall window has HSLL = 82.73 dB,
with side lobe decaying rate 30 dB/oct. Thus, the third
order 4-term Nuttall window has the best side lobe char-
acteristics, and was adopted to develop a method to sup-
press spectral leakage errors in harmonic analysis.

The Kaiser window can customize a set of adjustable
window functions to provide superior performance for
multi-tonal detection, especially for harmonic analysis,
and its time domain representation can be expressed as
[22]

wK(n) =
I0

(

β
√

1−
(

n
N/2

)2
)

I0(β)
, (10)

where β is the shape parameter of window function, and
I0(β) is the first class modified Bessel function. After
Fourier transform, the frequency domain functional ex-
pression of the Kaiser window can be expressed written
as

WK(ω) =
N

I0(β)

sinh
√

β2 − (Nω/2)2
√

β2 − (Nω/2)2
. (11)

Applying the same (N−1)/2 translation as in the Nuttall
window, the range satisfies [0, N − 1], and

WK(ω)=
N − 1

I0(β)

sinh
√

β2 − (N − 1)ω/2
√

β2 − (N − 1)ω/2
e−j N−1

N
πk. (12)
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Fig. 3. Normalized logarithm spectra for Nuttall windows: (a) – minimum 3-term, (b) – first order 4-term, (c) – third order 4-term,
(d) – minimum 4-term
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Fig. 4. Normalized logarithm spectra for Kaiser windows: (a) – β = 0, (b) – β = 4, (c) – β = 8, (d) – β = 11

Figure 4 shows the normalized logarithmic spectrum of

the Kaiser window for β = 0, 4, 8, and 11. As β increases,

the side lobe peaks of the Kaiser window reduce, and the

decay rate increases. When β = 11, the side lobe peak is

82.59 dB, and decay rate is = 18 dB/oct. If continued to

increase, the side lobe peaks would continue to decline,

but the main lobe would widen, which would reduce the
frequency resolution.

3.2 Nuttall-Kaiser window for interpolated FFT

Suppose a signal x(t) contains harmonic components,
with fundamental frequency, amplitude, and phase angle
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Fig. 5. Spectrum features of Nuttall, Kaiser, and Nuttall-Kaiser
combination windows

Table 2. Fundamental and harmonic components of the simulated
signal

Harmonic
Frequency Amplitude Phase

(Hz) (V) (rad)

1 50.2 220 π/3

2 100.4 0.5 π/3

3 150.6 25 π/3

4 200.8 0.4 π/3

5 251.0 6 π

6 301.2 0.3 π/3

7 351.4 4 π/3

8 401.6 0.2 π

9 451.8 2 2π/3

f1 , A1 , and θ1 , respectively. Using sampling frequency
fs to obtain uniform sampling, the discrete time signal is

x(n) =
I

∑

i=1

Ai sin
(

2π
if1
fs

n+ θi

)

, (13)

where i is the harmonic order. When i 6= 1, Ai and
θi represent the harmonic amplitude and phase angle of
the i -th harmonic, respectively. A combination Nuttall-
Kaiser window function method is proposed to deal with
signals such as equation (13),

W (ω) = χ×WN (ω) + γ ×WK(ω) , (14)

where χ, γ are the scale factors of the Nuttall and Kaiser
windows, respectively. The discrete Fourier expression of
the sampling signal is

X(k∆f) =
Ai

2j
ejθiW

(2π(k∆f − fi)

fs

)

. (15)

Usually, a narrow window main lobe is desired to re-
duce the noise effect, but the benefit of reducing the side
lobe peak is larger than the cost of the loss of frequency
resolution [23]. Based on many simulations and experi-
ments, this paper proposes utilizing the Kaiser window

with β = 25, combined with the third order 4-term Nut-
tall window with χ, γ = 0.5, to meet the accuracy re-
quirement of power system harmonic analysis.

The angular frequency ω can be described as ω =
2πk/N , then

W

(

2π

N
k
)

= 0.5
{

sinπk e−jπk

×

[M−1
∑

m=0

(−1)m
bm
2

sin 2πk
N

sin π(k−m)
N sin π(k+m)

N

]

+
N − 1

I0(β)

sinh

√

β2 −
[

N−1
N πk

]2

√

β2 −
[

N−1
N πk

]2
e−j N−1

N
πk

}

(16)

When sampling asynchronously, the peak frequency
is fi 6= ki∆f , where k is the actual peak point corre-
sponding to the line. Suppose the maximum spectrum
line is ki1 , with the second largest line ki2(= ki1 + 1),
ki1 ≤ ki ≤ ki2 , and y1 and y2 are the amplitudes of the

two lines. Let δ = y2−y1

y2+y1

, α = ki− ki1− 0.5, so the range

of α is (−0.5, 0.5), then

δ =

∣

∣

∣
W

(

2π(−α+0.5)
N

)∣

∣

∣
−
∣

∣

∣
W

(

2π(−α−0.5)
N

)∣

∣

∣

∣

∣

∣
W

(

2π(−α+0.5)
N

)
∣

∣

∣
+
∣

∣

∣
W

(

2π(−α−0.5)
N

)
∣

∣

∣

. (17)

Since N is generally very large, let k = −α± 0.5, and
equation (16) becomes
∣

∣

∣

∣

W
(2π(−α+ 0.5)

N

)

∣

∣

∣

∣

≈ 0.5

{

∣

∣

∣

∣

sinπ(−α± 0.5)

M−1
∑

m=0

(−1)m
bm
π

N(−α± 0.5)

(−α± 0.5)2 −m2

∣

∣

∣

∣

+

∣

∣

∣

∣

N − 1

I0(β)

sinh
√

β2 − (πk)2
√

β2 − (πk)2

∣

∣

∣

∣

}

, (18)

where the frequency modifier formula is

fi = ki∆f = (α+ ki1 + 0.5)∆f . (19)

Thus, the amplitude correction is

Ai =
Ai1

∣

∣

∣
W

( 2π(ki1−ki)
N

)

∣

∣

∣
+Ai2

∣

∣

∣
W

( 2π(ki2−ki)
N

)

∣

∣

∣

∣

∣

∣
W

( 2π(ki1−ki)
N

)

∣

∣

∣
+
∣

∣

∣
W

( 2π(ki2−ki)
N

)

∣

∣

∣

=
2(y1 + y2)

∣

∣

∣
W

( 2π(−α+0.5)
N

)

∣

∣

∣
+
∣

∣

∣
W

( 2π(−α−0.5)
N

)

∣

∣

∣

(20)

where Ai1 is the amplitude of ki1 , Ai2 is the amplitude
of ki2 .

As above, N is usually large, so using the polynomial
fitting approximation, the simplified amplitude value is

Ai =
y1 + y2

N
g(α) (21)

and the phase angle correction for the combination win-
dow is

θi = arg [X(ki1∆f)] +
π

2
− arg

[

W (
2π(ki1∆f − fi)

fs)

]

,

(22)
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Table 3. Relative amplitude errors

Amplitude estimation relative errors×106

Window ∆A1 ∆A2 ∆A3 ∆A4 ∆A5 ∆A6 ∆A7 ∆A8 ∆A9

Nuttall 0.46 211.68 1.03 1262.22 2.16 0.90 159.12 1.43 1044.99

Kaiser 0.09 42.00 0.20 254.89 0.42 0.17 31.41 0.27 210.40

Nuttall-Kaiser 0.07 99.97 0.67 608.51 1.04 0.13 75.02 0.87 502.43

Table 4. Relative phase angle errors

Relative errors of phase angle estimation×106

Window ∆A1 ∆A2 ∆A3 ∆A4 ∆A5 ∆A6 ∆A7 ∆A8 ∆A9

Hamming 2372.65 2183.59 1251.37 1655.04 44.19 2541.57 972.63 449.30 1040.89

Blackman-Harris 2370.26 3556.04 1262.27 4086.23 74.09 2788.36 1071.12 1036.32 1127.82

*Nuttall 2362.14 17343.54 1294.06 13766.50 207.22 4124.66 1563.27 3797.37 1649.41

Rife-Vincent 4-I 2371.88 1115.59 1256.25 2231.25 46.87 2512.50 975.00 465.62 1045.31

Nuttall-Kaiser 2880.05 1348.31 1519.80 2584.08 54.80 3052.06 1179.16 563.64 1220.05

*minimum side lobe

Relative Error (%)
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Fig. 6. Relative phase angle errors for Nuttall, Kaiser, and Nuttall-
Kaiser combination of windows
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Fig. 7. Relative amplitude errors for different windows

For the proposed Nuttall-Kaiser combination window,
the Kaiser window shape parameter is β = 25, and we
use the third order 4-term Nuttall window, with range
α = −0.49 to +0.49, varied every 0.001. Substituting
these values into the equations, a set of δ and g(α) can be
obtained. Using a polynomial fit, the optimal combination
window coefficients can be obtained as follows:

• Third order 4-term Nuttall window
α = 0.0922872370β5 + 0.1767199245β3 + 2.9549451336β ,

g(α) = 0.1472993230α4 +0.9187462015α2 +3.2097613145.

• Kaiser window (β = 25)
α = 0.2883590681β5 + 0.6405439881β3 + 5.2774745762β ,

g(α) = 0.0661584096α4 +0.7247717487α2 +4.2082828094.

• Combination Nuttall-Kaiser window
α = 1.2618269186β5 + 1.0368877011β3 + 3.6499846828β

g(α) = 0.1068160200α4 +0.8628506225α2 +3.6418169592.

Figure 5 shows normalized logarithmic spectra of Nut-
tall, Kaiser (β = 25), and proposed Nuttall-Kaiser com-

bination windows. Windows with a narrow main lobe
have better noise immunity, and the proposed combina-
tion window has better noise immunity than the Kaiser
window, but also improved side lobe features than the
Nuttall window. Thus, the proposed window will provide
good accuracy for most power system harmonic analysis
conditions.

4 Simulations and Experiments

4.1 Simulation Case Analysis

To verify the performance of the proposed Nuttall-
Kaiser combination window interpolated FFT method,
a 9-th harmonic signal model was used for simulations,

x(n) =
9

∑

i=1

Ai sin
(

2π
if1
fs

n+ θi

)

. (23)
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From the GB/T 15945-2008 standard of China, the
frequency deviation limit for power systems is ±0.2 Hz
under normal operating conditions, so this paper consid-
ers the extreme condition, 50.2 Hz, as the fundamental
frequency f1 . The sampling frequency was 1000 Hz, data
length of the truncated signal N = 1024, and fi , Ai and
θi represent harmonic frequency, amplitude, and phase
angle, respectively. The fundamental and harmonic com-
ponents of the simulated signal are shown in Table 2.

Nuttall, Kaiser, and the proposed Nuttall-Kaiser com-
bination windows were used to process the simulation
signal, with the results shown in Table 3 and Fig. 6.
The amplitude error of the Nuttall window is larger than
the Kaiser and Nuttall-Kaiser combination windows, al-
though the phase angle error is smaller. The Nuttall win-
dow has minimum phase angle error and the Kaiser win-
dow has minimum amplitude error, so it follows that the
proposed Nuttall-Kaiser combination window integrates
their advantages, providing good amplitude as well as
good phase angle estimations.

For the same simulated signal, all three window sys-
tems provide good frequency estimates. For example, the
relative error of the fundamental wave frequency pro-
vided by the proposed Nuttall-Kaiser combination win-
dow is lower than 0.8141 × 10−6%. The 4th harmonic
produces the largest relative error, but it is still lower
than 20.3625× 10−6%.

To show the effects further, comparisons between dif-
ferent windows as Hamming, Blackman-Harris, Minimum
sidelobe of Nuttall, Rife-Vincent 4-I, and the Nuttall-
Kaiser combination window have also been made in Fig. 7
and Table 4. From the figure and table, although Rife-
Vincent 4-I window exhibits the highest sidelobe decay
rate among all cosine windows, it can be concluded that
when it is taken amplitude and phase angle together the
proposed Nuttall-Kaiser combination window has better
performance than others [24].

Real measurements are always corrupted by noise. al-
ways noise signals doping the actual signals, which inter-
feres with the measurement results. Therefore, to inves-
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tigate systematic errors and noise sensitivity, we added
white Gaussian noise with 45 dB of signal to noise ratio
was added to the simulation signal model in Table 2 and
tested the performance of the proposed Nuttall-Kaiser
combination window interpolation FFT method was eval-
uated. Table 5 shows the relative errors.

The proposed method still provides high accuracy and
good performance in this noisy environment, with reliable
accuracy at 3, 5, and 7th harmonics.

Table 5. Relative frequency, amplitude, and phase errors for the
proposed Nuttall-Kaiser combination window

Relative errors of

Harmonic Frequency Amplitude Phase

(%) (×102%) (×102%)

1 0.00049798 0.00031259 0.00423752

2 0.01377363 0.05061023 0.18528018

3 0.00130134 0.00088214 0.00896885

4 0.23410102 0.0561084 1.45858127

5 0.00111195 0.01129458 0.00201986

6 0.03878151 0.29010884 0.25090039

7 0.00025585 0.00304216 0.01170572

8 0.05228783 0.16742284 0.29721858

9 0.01844717 0.04743541 0.11619199

4 Experiment and discussion

To verify the proposed Nuttall-Kaiser combination
window double spectrum line interpolation FFT har-
monic analysis method, harmonic signals were obtained
from a Chinese grid, as where the fundamental frequency
is 50 Hz and the standard voltage is 220 V. The power
detection hardware which is utilized to detect the power
signal is described in Fig. 8. In this device, in order to
obtained high accuracy, a synchronous clock module is
added to the hardware system.

The proposed algorithm flowchart is shown in Fig. 9.
After obtaining the power data, the algorithm initial-
izes the parameters, including system parameters and
window functions’ parameters, such as sampling points
N , sampling frequency fs , coefficients of Nuttall window
b0, b1, b2, b3 , and the shape parameter of Kaiser window
β . Before using FFT to calculate the discrete spectrum
W

(

2π
N k

)

, the discrete power data X(f) was be trun-

cated by the proposed Nuttall-Kaiser combination win-
dow function.

The following steps show how to use the double spec-
trum line method to obtain the optimal parameters of
the proposed algorithm. When the maximum spectrum
line ki1 and the second largest line ki2 are found at arbi-
trary integer harmonics in real-time detection, their am-
plitudes can be calculated as y1, y2 . By (17), parameter
δ is gotten, then α and g(α) can be obtained by polyno-
mial fitting. Utilizing equation (19), (21), and (22), the

harmonic frequency fi , amplitude Ai and phase angle θi
will be calculated. After a series of iterations, the optimal
solutions of harmonic analysis will be reached. The key
issue of the proposed algorithm is to get α and g(α) in
the iterations.

Figure 10 shows that for traditional FFT spectrum
analysis, since the harmonic signal is complex and in-
cludes many different types of noise, only frequencies near
50 Hz and 150 Hz can be analysed clearly because of the
low harmonic amplitude.

Amplitude (V)

Frequency (Hz)
0 200 300100

0.5

400 500

1.5

2

2.5

1

240 245 250 255

0

0.4

342 346 350

0.02

0

Fig. 10. Traditional FFT spectrum analysis of the signal shown in

Fig. 8

The proposed Nuttall-Kaiser combination window in-
terpolation FFT harmonic analysis method provides su-
perior amplitude, frequency, and phase angle estimates
than the traditional FFT harmonic analysis method. Ta-
ble 5 shows the frequency analysis for the traditional and
proposed methods. The actual harmonic signal includes
mainly the fundamental, 3, 5, and 7th harmonics. The
relative fundamental frequency error by traditional FFT
is 0.02 %, whereas for the proposed method it is 0.0022 %.
The same analysis for the 5th harmonic results in an error
of 0.8% for the traditional method and 0.1489% for the
proposed method. Thus, the proposed method provides
superior estimate accuracy than the traditional FFT har-
monic analysis method.

5 Conclusions

This paper analyzed features of Nuttall and Kaiser
windows, and showed they have good resistance to spec-
trum leakage caused by asynchronous non-integer dis-
cretization. The Nuttall window has higher phase an-
gle precision with lower amplitude precision compared to
the Kaiser window model. Therefore, this paper proposed
a combination windowing model, combining the Nuttall
and Kaiser window advantages to obtain more reliable
estimates of harmonic amplitude and phase angle. Ex-
perimental results verified the proposed method has bet-
ter stability and reliability. For non-integer discretization,
the relative error of the fundamental frequency is lower
than 0.815 × 10−6%, while the amplitude error of the
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Table 6. Frequency estimates from the signal shown in Fig. 8

FFT Nuttall-Kaiser window

Harmonic Frequency Actual value Relative error Actual value Relative error

order (Hz) (Hz) (%) (Hz) (%)

1 50 49.9 0.02 50 0.0022

3 150 148.1 1.27 150 0.0078

5 250 248 0.80 250 0.1489

7 350 346 1.14 350 0.1019

9th harmonic is lower than 0.051%, and phase angle er-
ror is lower than 0.123%. Future research work will focus
on how to improve the combination window resolution in
complex power environments.
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