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Nonlinear power system model
reduction based on empirical Gramians

Hongshan Zhao, Xiaoming Lan, Hui Ren
∗

An effective nonlinear model reduction approach, empirical Gramians balanced reduction approach, is studied, to reduce
the computation complexity in nonlinear power system model application. The realization procedure is: firstly, computing the
empirical controllable and observable Gramians matrices of nonlinear power system model, secondly, by these two matrices,
computing the balance transformation matrix to obtain the balanced system model of the original model, then, computing
the controllable and observable matrices of the balanced system to obtain the diagonal Hankel singular matrix. Finally,
deciding the lower-order subspace to obtain the reduced power system model. A 15-machine power system model is taken
as an example to perform the reduction simulation analysis.
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1 Introduction

In power system analysis and control, nonlinear higher
order models are often chosen for a better description
of systems dynamic behavior, however, with a pay-off
of an increased computation complexity. Especially with
the increasing of the scale of the interconnected modern
power system, the order of power system dynamic model
is increased rapidly, making it almost impossible for the
model-based analysis and control to be implemented in
real time.

Model reduction is one of the effective methods to solve
the above-mentioned obstacle. Many researches have been
conducted in this field, such as dynamic equivalents [1–
3], model analysis [4, 5] and identification [6, 7], singu-
lar perturbation techniques [8], Hankel norm approxima-
tion [9], balanced realization approach [10], etc. There
are already some effective theories and applications pub-
lished on linear power system model reduction. Chanio-
tis [11] uses Krylov subspace method for model reduc-
tion, and gives the mapping of various subspace modes
to coherent generators. Chow [12] uses Gramians method
for model reduction to simplify the design of damping
controllers for interarea oscillations. He proves that the
controller based on the reduced model maintains the dy-
namic characteristics of the original system. Martin [13]
applies Gramians method in a large power system for the
suppression of low frequency oscillation. Especially, An-
toulas and his coworkers [14] provide a general method
for linear model reduction by using Lyapunov equations.
However, in power system application, nonlinear mod-
els are usually preferred because it can better describe
the systems overall dynamic behavior and the designed
controller based on it is more robust. Unfortunately, the
reduction of nonlinear model has not been very well de-
veloped as that of linear system model. Since 19 cen-

tury, it has been known that nonlinear system cannot be
solved by general analytic method, and the intricate be-

havior of the nonlinear system could be very complicated
even only a couple of state variables are involved. Un-

der this context, researchers must use simulation method
to study the dynamic behavior of nonlinear system. In

recent years, some elementary studies have been imple-
mented via Gramians method for nonlinear system model
reduction by researchers as by Sirovich in [15], Lall in [16],

Hahn in [17–19], etc.

In this paper, we apply the empirical Gramians and

balanced realization methods to accomplish the reduction
of nonlinear power system model for the design of its con-

troller. The application of the method in a 15-generators
test system is provided and the effectiveness of the pro-

posed method in nonlinear system model reduction is ver-
ified.

2 Nonlinear System Model Reduction

2. 1 The Karhunen-Loeve (KL) decomposition

The dynamic model of a nonlinear autonomous system
is given by

ẋ(t) = f (x(t)) (1)

where, x(t) ∈ R
n is the state vector of system. The KL

decomposition can be described as the following: for a

given set in R
n , the core idea is to find an r -dimensional

subspace R
r , which makes the error of projecting set

in R
n onto R

r the minimum. In another word, in time

interval (0, T ), there exists a data set {x(t);x(t) ∈ R
n}

decided by the states x(t). By finding a projection H

projecting all data in the set onto the subspace spanned
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by eigenfunction {ϕj(x)}
r
j=1 . The optimal solution can

be obtained by minimizing the error

min

∫ T

0

‖x(t)−Hx(t)‖2dt (2)

In order to find the projection Pr , an n×n correlation
matrix R is defined by

R =

∫ T

0

x(t)x⊤(t)dt . (3)

The eigenvalues λk of R and corresponding eigenfunc-
tions ϕk can be evaluated as

Rϕk = λkϕk , λ1 ≥ · · · ≥ λn ≥ 0 . (4)

The eigenvalues obtained through (4) are nonnegative
real number, as the correlation matrix R is symmetric
and positive semi definite. eigenfunctions could be cho-
sen to be orthogonal. Therefore, each state xi(t) can be
expanded in the following form

xi(t) =
n
∑

k=1

aikϕk

where, aik = 〈xi(t),ϕk〉 , 〈ϕi,ϕk〉 = δik .

By ignoring eigenfunctions with zero and nearly zero
eigenvalues, a subspace R

r characterized by {ϕ1, . . . ,ϕr}
can be obtained to approximate R

n , and this r -dimen-
sional approximation is given by

x̃i(t) =

r
∑

k=1

aikϕk .

Therefore, projector Pr can be expressed by

Pr =

r
∑

k=1

ϕkϕ
⊤
k (5)

The physical meaning of the corresponding eigenvalue of
the eigenfunction is that they could maximize the average
energy of the projection of data sets on the subspace
spanned by the eigenfunction

argmax
{ϕk}

〈‖Pkx(t)‖
2〉 =

argmin
{ϕk}

〈‖x(t)−Hx(t)‖2〉
(6)

where, 〈·〉 represents the average on the data set. The
matrix Pk is introduced below, (6) has the same meaning
as (2). Especially, the average energy of the data sets (or
the dynamic system) projected onto the subspace can be
described by

∫ T

0

‖Pkx(t)‖
2dt =

r
∑

k=1

λk (7)

Generally, the order r of the dynamic system pro-
jected onto the subspace can be decided by the ratio of
the average energy of dynamic system on the subspace
and that on the original space, that is,

∑r
k=1 λk

∑n
k=1 λk

≥ ε (8)

where, ε is a real number smaller than 1. When ε is
chosen very close to 1, the original dynamic system can
be very well approximated by the subspace spanned by
the eigenfunction ϕ1, . . . ,ϕr . In the back of analysis,
through properly selecting ε , we determine the orders
of the reducted model of nonlinear power system.

2.2 Galerkin projection

Once the eigenfunctions of the subspace are obtained,
the system described by (1) can be projected onto a sub-
space by Galerkin projection. Galerkin projection matrix
can be expressed by

Pk = [Pr 0n−r] (9)

where, 0n−r is an r × (n− r) zero matrix.

By defining a state transformation x̃(t) = Pkx(t), the
reduced-order system is given by

˙̃x(t) = Pkf
(

P⊤
k x̃(t)

)

(10)

where, x̃(t) ∈ R
r ⊂ R

n , P⊤
k is the transposition of Pk .

The initial condition of this reduced-order system is given
by x̃(0) = Pkx(0).

3 Balanced reduction of nonlinear power system

3.1 Empirical Gramians matrix of nonlinear power
system

In this section, a synchronous generator connected to
an infinite bus is taken as an example to explain the
procedure of the reduction of power system model. The
generator is described by the six-order utility dynamic
model [20], and the impedance of transmission line is
XΣ between the generator and the infinite system, so
the nonlinear dynamic model of this simple system can
be described as follows

δ̇ = ω − ω0 ,

Hω̇ = Pm − Pe −D(ω − ω0) ,

T ′
d0Ė

′
q = Ef − E′

q + (xd + x′
d)id ,

T ′
q0Ė

′
d = −E′

d − (xq − x′
q)iq ,

T ′′
d0Ė

′′
q = E′

q − E′′
q + (xd − x′′

d)id ,

T ′′
q0Ė

′′
d = E′

d − E′′
d − (xq − x′′

q )iq .

(11)
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The output y(t) of the system is defined by

y(t) = [δ ω V ]⊤ (12)

In (11) and (12),

Pe = E′′
d id + E′′

q iq + (x′′
d − x′′

q )idiq ,

id = E′′
q − V0 cos δ/(x

′′
d + xΣ) ,

iq = −E′′
d − V0 sin δ/(x

′′
d + xΣ) ,

ud = −E′′
d − x′′

q iq − raid ,

uq = E′′
q + x′′

did − raiq ,

V = (u2
d + u2

q)
1/2 ,

where, δ and ω are the power angle and angular velocity
of the synchronous generator respectively. E′

d , E′′
d , E′

q ,

and E′′
q are transient and sub-transient voltages of the dq

coordinates of the generator respectively. xd , x
′
d , x

′′
d , xq ,

x′
q , and x′′

q are the synchronous, transient, sub-transient

reactance of the dq coordinates of the generator respec-
tively. T ′

d0 , T
′′
d0 , T

′
q0 , and T ′′

q0 are respectively transient

and sub-transient open-circuit time constant of the dq co-
ordinates. H is the inertia coefficient. D is the constant
damping coefficient of the generator. XΣ is the sum of
the inductance of transformer and transmission line. ud ,
uq , id , and iq are voltages and currents of dq coordinates
respectively. V is the generator terminal voltage. V0 is
the voltage of infinite bus. Ef is the output of excitation
controller. Pm is power of the prime motor.

The power system given above can be expressed in a
form of a general nonlinear power system model

{

ẋ(t) = f (x(t),u(t)) ,

y(t) = h (x(t))
(13)

where, f (x,u) describes the dynamic behavior of the

single-machine-to-infinite bus system, and x(t) ∈ R
6 ,

and u(t) ∈ R
1 , and u(t) = Ef , the output of the sys-

tem, y(t) = h
(

x(t)
)

∈ R
3 , is the nonlinear function of

states x(t), as given in (12). Since we are now consid-
ering a controlled system with inputs, we can make the
assumption that the initial state of the system is zero,
and parametrize the trajectories for principal component
analysis with respect to the system input u .

From the viewpoint of system control theory, the sys-
tems controllability and observability reveal the relations
between systems states, inputs and outputs of the sys-
tem. In general, the controllability describes how the con-
trol input affects systems states, whereas the observability
means that the change of states can be observed through
the output of system. Therefore, the controllable and ob-
servable Gramians matrices can tell how the inputs and
outputs affect the system states.

For a linear system, when doing model reduction, the
controllable and observable Gramians matrices can be
obtained by evaluating the Lyapunov equation. Then, by
analyzing the eigenvalue of Gramians matrix, the order of

the reduced model can be decided [21]. However, for the
nonlinear system, on the one hand the Lyapunov equation
cannot be acquired in general, and on the other hand
there is still no explicit method of directly calculating
the controllable and observable Gramians matrices.

Therefore, in the following, the empirical method pro-
posed by Sirovich is taken. The samples of states and out-
puts of the system are obtained by numerical simulation
first, then be used to construct the empirical controllable
and observable Gramians matrices for the nonlinear sys-
tem.

First, the correlation matrix R is constructed as

R =

∫ ∞

0

(

x(t)− xm
)(

x(t)− xm
)⊤

dt (14)

where, x(t) is the state at time t , and xm is the sample
average of the steady state of the nonlinear system.

Next, the input is applied through impulses u1, . . . , up

to the system in (13), and the corresponding states
x1(t), . . . , xp(t) and outputs y1(t), . . . , yq(t) can be ob-
tained, and then they will be expanded by the KL ex-
pansion to calculate the empirical controllable Gramians
matrix and empirical observable Gramians matrix.

For the sake of the description of the system prac-
tical dynamic behavior, when calculating the empirical
controllable and observable Gramians matrices, the un-
certainty introduced by the changes of the size and di-
rection of each input excitation should be considered. So,
several sets need to be defined in the following [16]

T n =
{

T1, . . . , Tr;Ti ∈ R
n×n, T⊤

i Ti = I, i = 1, . . . , r
}

M = {c1, . . . , cs; ci ∈ R, ci > 0, i = 1, . . . , s}

E = {e1, . . . , en}

where, T n is any set of r orthogonal matrices, Ti is
the direction of excitation input, and M is the set of
s positive constants, ci represents the set of the size of
excitation inputs, and En is the set of n unit vectors. ei
is a unit vector in R

n .

Definition 1. Assume that T n , M , and En are data
sets given above. For a nonlinear system given by (13), the
empirical controllable Gramians matrix Wc is defined by

Wc =

r
∑

l=1

s
∑

m=1

p
∑

i=1

1

rsc2m

∫ ∞

0

Φilm(t)dt (15)

where, Φilm(t) =
(

xilm(t)−xm
)(

xilm(t)−xm
)⊤

∈ R
n×n

and xilm(t) is the system state when the input is applied
through impulse u(t) = um + cmTleiτ(t). um is the
steady input of the controller and τ(t) is impulse func-
tion.

Due to the dynamic behavior of system depends on its
structure, its state change can be reflected through ap-
plying external excitation, here, we use impulsive signal
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τ(t) to simulate the input of external controllers to ob-
tain the sample data of system state. By performing KL
expansion to state variables in (15), the empirical con-
trollable Gramians matrix Wc can be constructed, the
corresponding eigenfunction of the non-zero eigenvalue of
which can span subspace containing all possible states
of the system, so the nonlinear system given in (13) can
be projected onto the subspace by the projection matrix.
Through this approach, the order of the nonlinear power
system model can be reduced.

For a controllable nonlinear system with inputs and
outputs, it is not enough only studying how the inputs
affect the systems states, at the same time the influence
of system state to the output, ie the observability of sys-
tem, should also be considered. The following definition
gives the method to construct the observable empirical
Gramians matrix.

For a controllable nonlinear system with inputs and
outputs, it is not enough only studying how the inputs
affect the systems states, at the same time the influence
of system state to the output, i.e. the observability of sys-
tem, should also be considered. The following definition
gives the method to construct the observable empirical
Gramians matrix.

Definition 2. Assume that T n , M, and En are data
sets given above. For a nonlinear system given in (13),
the empirical observable Gramians matrix W0 is defined
by

W0 =

r
∑

l=1

s
∑

m−1

1

rsc2m

∫ ∞

0

TlΨ
lm(t)T⊤

l dt (16)

where, Ψlm
ij (t) =

(

yilm(t)−ym
)⊤(

yjlm(t)−ym) ∈ R
n×n .

yilm(t) is the output of the system given in (13) under
the initial condition x0 = xm+cmTlei , x

m is the sample
average of the steady state of system, ym is the average
of system output.

Similarly, the corresponding eigenfunction to the non-
zero eigenvalue of W0 can span a new subspace, on which
the nonlinear system given in (13) can then be projected
to obtain the reduced nonlinear system model, which still
maintains the observable characteristic of the original sys-
tem. The corresponding subspaces can respectively be de-
cided according to empirical controllable Gramians ma-
trix Wc and empirical observable Gramians matrix W0

from the view of controllability or observability. However,
in general these two subspaces obtained are different with
each other. It means that the influence of states on inputs
and outputs of system is not consistent, ie certain states
have a great influence on the inputs of the system, but
have little influence on the outputs of the system, or vice
versa. Therefore, for a given nonlinear system, if any one
of the controllable and observable characteristics is em-
phasized, the other one will weaken.

In this paper, in order to maintain both the control-
lability and observability of the system, the balanced re-
alization approach is used to decide which subspace the
original system should be projected onto.

3.2 Balanced approach for model reduction

A system is a balance system if the systems control-
lable and observable Gramians matrices are the same and
diagonal. By transferring the non-balance system to its
corresponding balanced system, the two different sub-
spaces can be transformed into one subspace, where the
original system can be projected for model reduction with
maintaining both the controllability and observability of
the system.

The corresponding balanced system of a nonlinear
power system can be obtained through a non-singular
linear transformation matrix T , without affecting the
systems input-output characteristics. By the coordinate
transformation x(t) = Tx(t), the balanced system model
is then obtained

{

ẋ(t) = Tf
(

T−1x(t),u(t)
)

,

y(t) = h
(

T−1x(t)
) (17)

where, x(t) ∈ R
n is the state of the balanced power

system model. Note that, from the viewpoint of linear
algebra theory, the states of the balanced system x(t) are
the linear combination of the states x(t) of the original
system, so they are equivalent.

Balanced transformation matrix T can be computed
by the empirical controllable and observable Gramians
matrices. The computation procedure is listed below:

1) Performing Cholesky decomposition to the empiri-
cal Gramians matrices Wc and W0 to obtain matrices
Lc and L0 .

Wc = LcL
⊤
c ,

W0 = L0L
⊤
0

2) Multiplying matrices L⊤
0 Lc , then performing singu-

lar value decomposition to L⊤
0 Lc to obtain the diagonal

matrix Σ1 , orthogonal matrices U and V ,

L⊤
0 Lc,= UΣ1V .

3) Computing the nonsingular transformation matrix

T = LcVΣ
−1/2
1

The balanced system in (17) has exactly the same
inputs and outputs behavior as the original system de-

scribed in (13), and its controllable Gramians matrix W c

and observable Gramians matrix W 0 are the same, and
can be computed by the balanced transformation matrix
T as listed below

W c = TWcT
⊤,

W 0 = (T−1)⊤W0T
−1,

W c = W 0 = Σ
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where, Σ is diagonal matrix, and λi , the elements of Σ ,
are the Hankel singular value, satisfying λ1 ≥ . . . λn ≥ 0.

The zero λi is then dumped, as the corresponding
input and output does not affect the state of system. Also,
λi with very small value may also be omitted, therefore
reducing the order of the system model even further.
Finally, the states of the balanced system can be classified
as important r states and unimportant (n−r) ones, that
is,

x(t) =

(

x̃1(t)
x̃2(t)

)

where, x̃1(t) = Px̃(t) ∈ R
r are important state variables

preserved in the reduced model, whereas x̃2(t) = Qx̃(t) ∈
R

n−r are unimportant ones being omitted. Then the bal-
anced model of system in (13) is described by















˙̃x1(t) = PTf
(

T−1 [x̃1(t) x̃2(t)]
⊤ ,u(t)

)

,

˙̃x2(t) = QTf
(

T−1 [x̃1(t) x̃2(t)]
⊤
,u(t)

)

,

y(t) = h
(

T−1 [x̃1(t) x̃2(t)]
⊤ )

,

where P = [Ir 0r,(n−r)] ∈ R
r×n , Q = [0(n−r),r I(n−r)] ∈

R
(n−r)×n , Ir is the identical matrix, and 0n1,n2 is the

0-matrix.

By using the truncation method, equations with ˙̃x2(t)

can be eliminated. After rewriting x̃1(t), ˙̃x1(t) as x(t)

and ˙̃x(t), the balanced reduced model of the nonlinear
power system is then given by

{

˙̃x1(t) = PTf
(

T−1P⊤x̃(t),u(t)
)

,

y(t) = h
(

T−1P⊤x̃(t)
)

,
(18)

where x̃(t) ∈ R
r .

4 Balanced reduction of

nonlinear power system model

4.1 Computation of empirical Gramians matrix

Because of involving integral calculation, the compu-
tation burden is heavy for computing empirical control-
lable Gramians matrix in (15) and observable Gramians
matrix in (16). We use data samples of systems states and
outputs under various excitations obtained by simulation
method to reduce the computation complexity. Assume
that all these data samples are obtained at discrete time
interval t1, . . . , tq , then the correlation matrix of states or
outputs in (14) can be expressed in the following discrete
manner,

R =

q
∑

k=1

(xk − xm)(xk − xm)⊤. (19)

therefore the discrete form of Wc and W0 can be ex-
pressed as

Wc =

r
∑

l=1

s
∑

m=1

p
∑

i=1

1

rsc2m

q
∑

k=0

Φilm
k , (20)

W0 =

r
∑

l=1

s
∑

m=1

1

rsc2m

q
∑

k=0

TlΨ
lm
kijT

⊤
l , (21)

where Φilm
k =

(

xilm
k − xm

)

(xilm
k − xm

)⊤
,

Ψlm
kij =

(

yilm
k − ym

)⊤(
y
jlm
k − ym

)

.

Wc and W0 can be obtained by (20), (21) with empir-

ical data samples. The computation accuracy of Wc and

W0 depends on the number of data samples and param-

eters such as r, s , and cm . The more the data samples,

the higher the accuracy, although with a cost of heavier

computation burden.

4.2 Balanced reduction algorithm of nonlinear power

system model (BRNPS)

After obtaining the Wc and W0 by the method in the

last section, we can calculate the transformation matrix

T , then the calculated empirical controllable Gramians

matrix W c and empirical observable Gramians matrix

W 0 of the balanced system, which, according to Sec-

tion 2.2, are the same and a diagonal Hankel singular

matrix. The optimal value of rank of the subspace can be

determined by the elements of the Hankel matrix. Fur-

thermore, the Galerkin projection matrix P is decided.

And the reduction model of nonlinear power system is

finally obtained. The procedure is described by the fol-

lowing algorithm.

Algorithm: Balanced Reduction of Nonlinear Power

System(BRNPS)

Input: Empirical controllable Gramians matrix Wc

and observable Gramians matrix W0 .

Output: Reduction model of non-linear power system.

it Initialization: The error threshold ε .

• Computing balanced transformation matrix T

(1) STEP 1: Applying Cholesky decomposition method to
Wc and W0 to obtain Lc and L0 .

(2) Computing the diagonal matrix Σ1 , orthogonal U

and V .

(3) Computing the balanced transformation matrix T .

(4) Obtaining the balanced system (17).

• STEP 2: Computing balanced controllable Gramian
matrix Wc and balanced observable Gramian matrix
W0

• STEP 3: Computing Hankel singular matrix Σ .

• STEP 4: Computing non-linear reduction model (18)
via T and P .

• STEP 5: Stop
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Fig. 1. The relation between the balanced and the original

4.3 The relation between the balanced reduction model
and original system model

Figure 1 explains the relation between the abstract
nonlinear power system model and its balanced reduc-
tion model to help understand how the method of model
reduction above can be used in various power system ap-
plications.

For a real power system, u(t) is the input of ex-
ternal controller, and y0 is the output of the sys-
tem,ie measurements of sensors.

The object of model reduction refers to power sys-
tem model, hence for its controllers, such as excitation
controllers, power system stabilizers, static var compen-
sators and so on, should not be considered in the process
of power system model order reduction. The reason is that
when the power system model includes its controllers, the
reduced order model obtained is difficult to use in prac-
tice, especially for the controller design.

Nonlinear model in (13) can be used to describe a
power system with input u(t) and output y(t). The input
of the model, which is the same as the real power system,
can be obtained from the output of various power system
controllers, while the initial values of system state x(t)
can be obtained by suitable transformation of outputs of
sensors, that is,

x(0) = h−1(y0) . (22)

Therefore, the output of power system model y(t) should
be similar to the output of real measurements y0 , mean-
ing that the nonlinear model could be used to describe
the real power system.

The balanced reduction model in (18) has the same
inputs as those of the original system model in (13), and
the outputs of controllers can be directly applied to the

inputs of the reduction model. Although the states x̃(t)
of the balanced model do not have clear physical mean-
ing, its application in power system is not affected. Be-
cause the information the states contains is the same as
the physically meaningful states x(t) of the original sys-
tem model, and every state in x̃ contains much dynamic
information of all states of original system, and there ex-
ists a transformation between x̃(t) and x(t) by balanced
transformation matrix T and Galerkin projection matrix
P as

x(t) = T−1P⊤x̃(t) . (23)

Therefore, the output of the balanced reduction system
is also similar to those of the measuring sensors, and
the reduction model by the empirical Gramians balanced
reduction method can approximate the original system
with an acceptable error.

When doing disturbance analysis by the reduced sys-
tem model, the disturbance can also be transformed to
the equivalent balanced model by matrix T and P ,
as described in (18). Therefore, different failures in real
power system can also be simulated in the reduced system
model.

5 Case study

In this section, two different test systems are used to
demonstrate the effectiveness of the proposed method of
model order reduction.

The balanced reduction method firstly makes the orig-
inal system model transform onto the balanced one whose
the model orders are the same as the original system
through the transformation matrix, and then the dy-
namic model of balanced system is projected onto the
low-dimensional space from the high one, ie some bal-
anced state variables which have little influence on the
input and output of system are truncated. However, it is
not meaning that some states of the original power system
are vanished. The reason is that the states of balanced re-
duction system are still the principal components of all
states of original system even though the balanced system
model is reduced to a 1-order differential equation. The
balanced reduction method is not simplified or ignored
the certain physical parameters of original system model.
Its reduced principal is different in essence with the equiv-
alent method usually used in power system. Because any
parameters of original system model is not simplified in
the process of the balanced reduction, and it is not suit-
able for comparing the balanced reduction method with
the traditional equivalent simplified method, so it is more
reasonable to compare the various-order reduced model
with the original system model in the following simula-
tion and analysis.

In power system steady state, the simulation results
of all balancing reduced order models compared with
the original system model are completely overlapped due
to the same initial state, and the effectiveness of the
model order reduction can not be demonstrated. There-
fore, power system behavior under failures is considered
to compare the dynamics of the reduced power system
model with the original power system model to verify the
proposed model reduction method.

5.1 Single-machine-to-infinite system model analysis
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Table 1. Parameters of single generator-to-infinite bus system pa-
rameters of single generator-to-infinite bus system

Parameter Data Parameter Data

xd 2.07 H 6

xq 1.99 T
′

d0 4.1

x
′

d 0.28 T
′

q0 0.215

x
′

q 0.49 T
′′

d0 0.033

x
′′

d 0.215 T
′′

d0 0.56

x
′′

q 0.49 xΣ 0.1

Using the method introduced in Section 2.2 and 3.1,

the diagonal singular matrix Σ and matrices W c and

W 0 can be calculated as

Σ = W c = W 0 =

= diag
{

0.40311, 0.07592,

0.05340, 0.00080,

0.00018, 0.00001
}

As we can see that λ3 ≫ λ4 , or from the view of the
energy, the first 3 singular values carry about 99.8% of
the overall energy, therefore, the 6-order nonlinear system
can be reduced to a 3-order system.

Figures 2–4 give the outputs of the reduced system
and the original system under three-phase short circuit
failure, ie the simulation curves of power angle, angular
velocity, and generator terminal voltage. It can be clearly
seen, in Figs. 2–4, that the dynamics of 5-order, 4-order,
and 3-order reduced system are almost exactly the same
as that of the original system, with very small errors.
When the system is further reduced to 2-order system,
even 1-order system, the error along the dynamics is rel-
atively big because too much energy is lost. In another
word, the dynamic behavior between system input and
output and system states can be enough preserved when
using 3-order reduced system to approximate the original
6-order system. Although there is 3-order utility model
of the synchronous machine in the power system gener-
ator model, the 3-order reduction model has the similar
precision of 6-order model of the synchronous machine
and the approximative calculation complexity of 3-order
utility model of the synchronous machine.

5.2 Multi-generator power system model analysis

A 15-generator power system model is taken as an
example for model reduction analysis, and its topology
is given in Fig. 5.

In Fig. 5, a synchronous generator model is described
by its six-order utility dynamic model, and the load mod-
els can be chosen to be the constant impedance, the con-
stant current and the constant power. The parameters
for synchronous generators, transmission lines and loads
in Fig. 5 are from [22].

Because the generator model is described under dq
coordinates, and the network model is about xy coor-
dinates, the xy–dq coordinate transformation is needed
for the interconnection of generators and network. Mean-
while, the constant current loads and the constant power
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Fig. 5. 15-generator test system

loads are the non-conforming loads, and they are con-
nected to the network via the current injections which
are functions of the load buses voltages. Therefore, the
equations the transmission network with generators and
loads are

[

IxyG
IxyL

]

= −Y

[

VxyG

VxyL

]

. (24)

Finally, a 90-order nonlinear power system dynamic
model in the form of (13) is obtained. This 90-order non-
linear model is a dynamic model of the whole power sys-
tem, and should not be seen as just the generator model,
only due to not considering dynamic model of loads in
the test system.

By using the previous model reduction algorithm
(BRNPS), the balanced transformation matrix T and

Galerkin projection P can be obtained. The distribution
of the Hankel singular values of the balanced system is
given in Fig. 6.

When we choose the threshold ε to be 0.99, the orig-
inal 90-order nonlinear power system can be projected
onto a 35-order subspace; when ε is 0.95, the order of
the reduced system is 19. The smaller the ε , the lower
the order of the reduced system model, and also the big-
ger the distortion of the dynamic behavior of the reduced
system. Careful consideration is needed when choosing
ε . The comparison of various ε and the simulation of the
corresponding simulation result are given in Figs. 7–9.

In the simulation, governor control and excitation con-
trol for each generator are considered, and the parameters
of these controllers are kept the same in the reduce system
model and in the original system model. Reduced model
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with different orders are simulated under a three-phase
short circuit failure.

Without loss generality, any generator or bus in the
test system could be chosen for detail analysis. Figure 5
gives the simulation curves of the generator G14 with a
three-phase short circuit failure on the line L11 . Since the
dynamics (such as the frequency and the amplitude of the
output) in 20-order and above reduced systems are almost
the same as those of the original systems, only power
angle, angular velocity and generators terminal voltage
of the original system, the 19-order reduced system to
the 16-order reduced system are given in Figs. 7–9.

It can be seen from Figs. 7–9 that, for the 19-order
reduced system, the errors of angular velocity and the
amplitude of the voltage are very small, while that of the
power angle are a little bigger, especially, the frequency
response of the three variables (that is, the transients)
are almost the same, compared to those of the original
system. When the order of the model is reduced to 18, the
amplitudes of the three outputs change very little, while
the frequencies of those outputs have bigger changes, and
there are distortions in the transients. When the system
model is further reduced to 16, even bigger distortions
happen in the amplitude and frequency of the outputs.
By analyzing Hankel singular values, the energy projected
onto from the 16-order to the 19-order subspaces is about

93.22%, 94.04%, 94.8% and 95.36% of the original
system respectively.

By analyzing the simulation result of all nodes in the
15-generatro test system, it is found when ε > 0.94, the
error introduced by model reduction is small, and the
dynamics of the original system can be maintained very
well. Therefore, ε = 0.95 is chosen for the test system,
and the order of the reduced system is chosen to be 19.

Meantime, it is can be seen from the simulation results
that, for the reduced system with various orders, the out-
puts steady states of the reduced system and those of the
original system are equal. Especially, empirical Gramians
balanced reduction approach can keep the systems steady
state the same for lower order (even 1-order) reduced sys-
tem.

6 Conclusion

In this paper, an empirical Gramians balanced reduc-
tion approach for multi-generator nonlinear power system
model is proposed, and simulation tests are performed
on a single generator-to-infinite bus power system and
15-generator nonlinear power system. Simulation results
show that the reduced model can preserve the dynamics
of inputs and outputs and the steady state of the original
nonlinear power system. Especially, for the 15-generator
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nonlinear power system, the order of the 90-order non-
linear dynamic model can be reduced to 19, being 1/5
of that of the original system model. Simulation results
verify the effectiveness of the proposed approach.

Meantime, the research of the paper shows that the
order of the reduced model can be chosen according to
the accuracy requirements of the power system applica-
tion. When focusing on the overall dynamic behaviors of
the power system (for example, the higher level dynamic
model in hierarchical control), a subspace with a lower
order could be chosen, and a rough dynamic model main-
taining the overall dynamic behavior can be obtained;
while when focusing on the transient behavior of the sys-
tem, a subspace with a higher order could be chosen to
obtain a reduced model with smaller error to the original
system.

Our further research work will be on studying the error
analysis method of the balanced reduced nonlinear power
system model.
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