
Journal of ELECTRICAL ENGINEERING, VOL 68 (2017), NO5, 401–404
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Construction for obtaining trellis run length limited
error control codes from convolutional codes
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Recently a new construction of run length limited block error control codes based on control matrices of linear block
codes was proposed. In this paper a similar construction for obtaining trellis run length limited error control codes from
convolutional codes is described. The main advantage of it, beyond its simplicity is that it does not require any additional
redundancy except the one which is already contained in the original convolutional error control code. One example is
presented how to get such a code from a convolutional low density parity check code.

K e y w o r d s: run length limited code error correcting code, convolutional code, convolutional low density parity check
code, trellis run length limited error control code

1 Introduction

Run length limited (RLL) codes are used in commu-
nications and storage systems in order to fulfill numer-
ous practical requirements eg to support synchronization
or decrease DC component in signals or adapt the spec-
tral characteristics of the signal to a channel or others.
In digital domain the functions and constructions of a
RLL codes are closely related to channel model, which
describes these requirements in exact form. The most
common channel models are state diagram, trellis and
incidence matrix [1]. In theoretical considerations it is
supposed that the model of the constrained channel is
errorless [1]. It is possible to specify the tasks of RLL en-
coder and decoder very simply in connection with such
errorfree constrained channel model.
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Fig. 1. Concatenation of an inner RLL encoder/decoder and the

outer ECC encoder/decoder used in most practical applications

Namely, the task of the RLL encoder is to translate
an arbitrary sequence of digital symbols, which comes
to its input to a sequence on its output which fulfills
the channel constraints. The task of the decoder is to

translate the sequence received from a channel into a
sequence which is identical to the original sequence on the
input of the encoder. It is obvious that in practice this
task is complicated by the fact that a real noisy channel
could cause errors in the received sequence. Therefore, in
practical applications, error control code (ECC) is used
in cascade with RLL code usually as illustrated in Fig. 1.

However this concatenation is problematic because the
inner RLL decoder cannot correct errors and in some
cases it can even cause error propagation [2]. This can
seriously decrease the performance of the overall sys-
tem. Therefore it is advantageous to use a combined run
length limited error control code(RLL–ECC). This could
be obtained by incorporating the error correction capa-
bilities into the RLL code or by incorporating RLL prop-
erties into an ECC or constructing the RLL–ECC from a
scratch by other methods.

Let us shortly describe the state of the art in the con-
struction techniques area of trellis RLL–ECCs (t–RLL–
ECCs). (For block RLL–ECC codes it could be found
in [3].) Trellis RLL codes and trellis ECCs were and are
used for long in practical applications. The first RLL trel-
lis codes were simple line codes such as Non Return to
Zero Inverted (NRZI) and Miller Code. NRZI line code
was applied for example in 9 track magnetic tape data
storage for IBM System 360. More recent example is
from [4], where it was proposed to use the Miller code
in concatenation with another convolutional code for vis-
ible light communication. The idea to combine RLL and
ECC codes was for the first time proposed in [5]. So called
combined correction/modulation codes (CCMC) were in-
troduced there. The first construction presented in [5] is
based on exploiting set partitioning and the second on
using convolutional codes together with precoders. Other
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Fig. 2. Illustration how a modifier could be used in order to ob-
tain an RLL–ECC from ECC without adding any redundancy and

without requiring the ECC decoder to be modified.

constructions for obtaining CCMCs could be found in [6].
In [7] it was proposed to modify linear binary block codes
into RLL–ECCs without introducing of additional redun-
dant symbols. The construction in [7] exploits two par-
ticular properties, which are present in generator matrix
G of some linear binary codes and a binary vector m

called the modifier, which is added to each codeword.
This technique was applied later on convolutional codes
in [9] and on TurboCodes in [10] and [11] in order to ob-
tain trellis RLL–ECCs. In recent time low density parity
check (LDPC) codes started to be very popular for practi-
cal applications thanks to their excellent error correction
capabilities. However in practical systems, which behind
error correcting capabilities require also RLL properties,
they were used mostly in concatenation arrangement de-
picted in Fig. 1, [11–14]. The first attempt to incorpo-
rate the RLL properties into block LDPC codes was done
in [15]. In [15] bit flipping (error insertion) was used to
fulfill RLL constraints, but at the cost of deteriorating
the error correction capabilities of the underlying LDPC
codes because each flipped bit was treated as error. This
means it had to be corrected and as a consequence the
number of correctable errors which occurred in channel
was decreased. The method was later improved gradually
in [16–18] up to the stage that the error control deteriora-
tion caused by bit flipping was eliminated on the expense
of quite complicated decoding techniques. Recently new
construction method for obtaining RLL–ECCs from lin-
ear binary block ECCs was proposed in [19]. In this short
communication it is shown that this method could be
adapted also for obtaining trellis t–RLL–ECCs from con-
volutional ECCs (c–ECC). More specifically it could be
applied to transform any c–ECC which has a special prop-
erty in its control matrix into the t–RLL–ECC. However
for practical applications probably the most attractive
consequence is that also c–LDPC codes, which possess

this property in their control matrices, could be trans-
formed into t–RLL–ECCs. Therefore the construction is
explained in this manuscript using one c–LDPC as an
illustrative example.

2 High level description of the method

The basic idea which allows obtaining RLL–ECCs
from binary LBC-ECCs is illustrated in Fig. 2.

After the message is encoded by the binary ECC, a
specific fixed binary vector m , called the modifier, is
added to each codeword. The result of this addition is
that the positions corresponding to ones in a modifier
will be inverted in each codeword. This addition does not
introduce any additional redundancy into the encoded
codeword and the inversions could be eliminated by a
second addition of the same modifier to the transmitted
word at the input of the receiver. The consequence is that
the original decoder used for the underlying ECC does not
have to be modified. This simple idea was proposed in [7]
and was based on two properties which could often be
found in generator matrix of LBC ECC. Unfortunately
some codes are not specified by generator matrices. For
example the most advanced codes used nowadays in many
standards namely the LDPC codes and c–LDPC codes
are defined by their control matrices H . It means that the
methods based on generator matrices properties observed
in [7] could not be applied directly to such codes. In [19]
another property was proposed as an alternative, which
could be observed in many H matrices in binary LBS–
ECCs. Namely, if an even number of ones is discovered
in a row of a control matrix in a set of positions ℜ , then
negating an odd number of corresponding positions in a
codeword will cause these positions to not all be the same.
In other words they will not contain all ones or all zeros.
Because of this, the resulting codeword will have RLL
properties. We will show that the same property could
also be used for binary convolutional codes and so also
for c–LDPC codes.

3 Trellis RLL–ECC obtained

based on control matrices

The simplest way of explaining the new construction
of t–RLL–ECC is to use an example. Convolutional ECC
could be specified via their control matrices. In contrast
to control matrices of block codes, these control matrices
are infinite. Typically they have nonzero entries only in
a region around a diagonal, which has a form similar to
a stair case. In Fig. 3 there is an example of a c-LDPC
code obtained by unwrapping a code constructed by Gal-
lager [20] using the method proposed in [21].

It is obvious that a modifier for such a code also has to
be infinite in case we would like to use a method depicted
in Fig. 2. One can observe that the code is a regular c-
LDPC code with 3 ones and 4 ones in each column and
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Fig. 3. Convolutional regular LDPC code control matrix obtained using construction [21] from a Gallager LDPC code published in [20].
The same staircase structure of the first 20 columns repeats itself periodically, empty spaces, outside staircase–like border contain zeros.

row respectively. From this it follows that each row in its
H contains a set with 4 ones. In other words, each row
specifies one control equation in which 4 symbols of the
codeword take part. However each symbol is contained in
3 different control equations. Therefore it is necessary to
choose nonoverlapping subsets of intervals, which cover
some of the control equations or, more precisely, the cor-
responding subsets of symbols, which take part in them
and which are between them in a row. We will call these
intervals a row spans. Because the goal is to select an odd
number of negations in each such span to get an infinite
modifier, it is appropriate to find a rule, which will allow
specify the positions of ones in the modifier without to
write it down. For example, a periodic rule could be a
convenient way to do it. On the other hand it would be
appropriate to choose the intervals covering symbols par-
ticipating in control equations as short as possible and, if
possible, without any gaps between them in order to get
minimal lengths of runs with identical symbols. In the
matrix depicted in Fig 3 consecutive quadruples of ones
are in rows (given in order corresponding to a sliding win-
dow with 20 columns): 1, 17, 18, 19, 20, 16, 32, 33, 34, 35,
31, 47, 48, 49, 50. These observations and requirements
should be considered in the approach to construct an ap-
propriate modifier. Applying them in our example, the
appropriate modifier could have an odd number of ones
in each block of 4 bits. For example

m = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, . . .)
(1)

Adding modifier (1) to the infinite codeword in prac-

tice means that the first and then each following fourth

symbol coming from a encoder output should be inverted.

This simple operation will result in the longest run of

identical symbols in a codeword at most 6 bits long. In the

receiver the same positions should be negated and there-

fore a synchronizing the inversions, or in other words, the

modifier is necessary. In case that the inversions will be

done in synchronism, then no modification of the c–LDCP

decoder will be needed.

4 Conclusions

In this manuscript a method was proposed which could

be used to construct trellis RLL–ECCs. It was illustrated

using an example in which a t–RLL–ECC was obtained

from a c-LDPC code without introducing any additional

redundancy into the encoded sequence. The method could

be used with any c-ECC which is defined by a control

matrix, which possesses rows with even number of ones

in them.
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[7] P. Farkaš and H. Weinrichter, ”Transcontrol Codes with Run-
Length Limitation” AEU Int. J. Electron. Commun., vol. 50,

no. 6, 1996, pp. 353–356.
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