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Robust decentralized power system
controller design: Integrated approach

Vojtech Veselý

A unique approach to the design of gain scheduled controller (GSC) is presented. The proposed design procedure is based
on the Bellman-Lyapunov equation, guaranteed cost and robust stability conditions using the parameter dependent quadratic
stability approach. The obtained feasible design procedures for robust GSC design are in the form of BMI with guaranteed
convex stability conditions. The obtained design results and their properties are illustrated in the simultaneously design
of controllers for simple model (6-order) turbogenerator. The results of the obtained design procedure are a PI automatic

voltage regulator (AVR) for synchronous generator, a PI governor controller and a power system stabilizer for excitation
system.
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1 Introduction

The main objective of power system control is to main-
tain a continuous supply of power with acceptable qual-
ity, to all consumers in the system. There are two basic
controls:

• to achieve reactive power balance, acceptable voltage
profile (automatic voltage control AVC), and

• real power balance-acceptable frequency values (auto-
matic load frequency control) or automatic generation
control.

The problem of Automatic Voltage Control and Auto-
matic Load frequency control has been extensively stud-
ied in the last decade by a number of researchers and
many control design procedures have been reported in lit-
erature, [1–16]. The obtained results can be summarized
as follows. The objective of the paper [1] is to design non-
linear excitation controllers for single-machine infinite bus
power systems. Nonlinear controllers are more effective
in providing large stability margins than linear counter-
parts. The concept of feedback linearization is used. The
proposed excitation controller [3] consists of a stabilizing
PSS loop and voltage regulating loop. Certain connection
between the two loop PSS-AVR schemes are discussed.
In [4] a practical design of an intelligent type controller us-
ing polynomial neural network is explored. The obtained
computer simulation results demonstrate clearly that the
performance of the developed controllers offers compet-
itive damping effects on the generator oscillations. The
papers [5, 24] proposes a nonlinear robust controller for
steam governor control in power systems. The analytical
synthesis problem of a coordinating regulator for power
system consisting of turbogenerators is considered in [6].
A review of the power system stabilizer design methods
is considered in [7]. In [8] a new multi-objective function

as an optimization problem is proposed for the coordi-
nation of power system stabilizer and static synchronous
series compensator. In [9] proposes decentralized excita-
tion controllers. Compared with conventional excitation
controllers a parameter adaptation scheme is proposed
to improve the transient stability of the closed loop sys-
tem. The papers [10, 25] propose optimal and a novel
Lyapunov-based excitation control technique for multi-
machine power system. A completely controllable linear
system is constructed to design the excitation decentral-
ized controller. The papers [11, 23, 25] provide a detailed
account to determine the parameters of the power system
stabilizer using a small signal approach. To tackle the un-
certainty problem, the paper [13] focuses on a new robust
decentralized control design of robust PSS. The conven-
tional lead/lag PSS which are designed without consid-
ering uncertainty may deteriorate a system stability. [14]
deals with the frequency domain design of a robust power
system stabilizer using the equivalent subsystem method.

The Global Asymptotic Stability (GAS) AVR and
power regulation [15] are of critical importance for power
security. However, the simultaneous design of AVR and
governor control has not been achieved. In the above pa-
per a completely controllable linear system is used for
both AVR and power regulation for control system design.
The paper [16] presents a novel procedure for the design
of PSS using the linear quadratic regulator approach. To
model the power system one can use the excellent books
[17–19].

The above short observation implies:

• power system belongs to class of highly nonlinear sys-
tems and therefore it demands use of corresponding
controller design procedure;

• GAS automatic voltage regulation and governor con-
trol are of critical importance for power system secu-
rity;
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• design procedures to determine the controller parame-
ters of excitation and governor controller on the main
stream in the references base on the linearized model
of the power system;

• when the nonlinear model of power system is used for
controller parameters design the Lyapunov function
based approach is preferred or other class of method
of intelligent control.

In this paper we pursue the idea of using an integrated
approach to the design of AVR, governor control and PSS
simultaneously for the nonlinear model of power system.
The power system nonlinear model first we transform
to the linear-parameter-varying (LPV) system, and then
for controller parameters design in this paper a proposed
novel gain scheduling approach [20] with convex stability
conditions has been adapted.

2 Preliminaries and problem formulation

In this section we transform the nonlinear model of
turbogenerator to the LPV system. Under the well-known
assumptions [17–19] a model of turbogenerator which
consists of synchronous generator (SG) and thermal tur-
bine can be described as follows.

– Third order model of synchronous generator (Eq , δ, ω)
in p.u.

Uq = IdXd + Eq − IqRa ,

Ud = −IqXq − IdRa

UbkG0 = Eq + T ′

d0

dEq

dt
+ T ′

d0

dId
dt

(Xd −X ′

d) ,

Tj
dω

dt
= PT − Pe ,

Pe = P + Pas , Pas
.
= Dω ,

P = EqIq + IdIq(Xd −Xq)−Ra(I
2
d + I2q )

(1)

where Id , Iq – currents flowing in the fictitious d and q

axis armature coils,
Eq – q -axis component of the internal emf, proportional
to the field current, excitation current of SG,
Uq , Ud – voltages across the fictitious d and q axis
armature coils,
Pe – total electric power generated by SG to the system,
Pas –damping power,
Ub – input voltage applied to the field winding,
T ′

d0 – open-circuit d-axis transient time constant,
Tj – inertia coefficient of turbogenerator,
Xd , Xq , X

′

d – reactance and transient reactance of the
fictitious d and q axis armature windings,
Ra – resistance of the armature winding of a SG,

U =
√

(U2
d + U2

q ) – voltage of the generator terminals.

The time derivative of the rotor load angle δ

dδ

dt
= △ω = ω − ωs (2)

is the rotor speed deviation in rad/s and ωs – power
system angular speed.

In the next section the following denotation will used
△ω = ω

Thermal turbine model with governor valve in simplified
structure [19] is given by the following third order transfer
function

GT (s) =
PT (s)

PR(s)
=

sb1 + b0

s3a3 + s2a2 + sa1 + 1
(3)

where PT (s) – output of turbine power,

PR(s) – output of turbine power controller,

b1 = klTh + khTl , b0 = kl + kh = 1 , a3 = TsTlTh ,

a2 = TlTh + Ts(Tl + Th) , a1 = Tl + Th + Ts .

Typical values of the parameters are:
servomotor time constant Ts = 0.1s , low pressure gain
and time constant kl = 0.7 pu, Tl = 4 − 11 s, high pres-
sure gain and time constant kh = 0.3 pu, Th = 0.1 s.

In general, turbogenerators in power system are al-
ways subject to different disturbances, eg periodic load
variation, swings of the other turbogenerators in tran-
sient state, and so on. In order to take account of these
disturbances and determine the stability of such systems
in [27] the authors introduced the One-Machine-to-Quasi-
Infinite Bus System. In the following we will study a sin-
gle machine connected to a large power system through
transmission lines. We will assume that a large power sys-
tem belong to the class of infinite bus system with bus
{voltage, angular speed}= (Us, ωs) [18, 19]. Because of
the relative size of the power system to which the machine
is supplying power, the dynamics associated with the ma-
chine will cause virtually no change in the voltage Us and
frequency ωs . To relaxed the infinite bus model (or made
our obtained results useful for multimachine power sys-
tem model) we are assuming that some system variables
are unknown and lying within two values. Transmission
lines can be transformed to the T equivalent circuit with
impedance z̄1 , z̄2 , and reluctant impedance z̄3 . Using
Kirchhoff’s laws for currents on the d and q axis one can
obtain as follows.

Id = −
Eq

M
+

Us

z12(1 +
Xd−Xq

z11
sinϕ11)

sin(δ + ϕ12) (4)

Iq =
Eq

M tanϕ11
+
Us

z12
×

√

1 +
( (Xd −Xq)cosϕ11

z11 + (Xd −Xq) sinϕ11)

)2

sin(δ + ϕ12 − ψ) (5)

where

M =
z11

sinϕ11
+Xd −Xq ,

ψ = arctan
z11 + (Xd −Xq)sinϕ11

(Xd −Xq) cosϕ11
,

z̄11 = jXq + z̄1 +
z̄2z̄3

z̄2 + z̄3
= z11e

jϕ11 ,

z̄12 = jXq + z̄1 +
z̄2

z̄3
(z̄3 + z̄1 + jXq) = z12e

jϕ12 .
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2.1 Linear parameter varying model of turbogenerator

Now, we are ready to transform (1), (2) and (3) to the
linear parameter varying system. For more detail how to
obtain LPV model for nonlinear system the reader can
consult the survey paper [28]. The gain scheduled model
of turbogenerator is obtain using the following steps.

1. Choose the gain scheduling variable, which captures
parametric dependence of the nonlinear plant model, in
our case we will choose it as the electrical power P pu.

2. Choose working points where LPV model and
nonlinear model have to be equal (w = 1, 2, 3, P =
(0.3, 0.7, 1) pu). For chosen three working points one need
to have p = 2 gain scheduling parameters

3. For robust controller design, choose the uncertain
parameters. To relaxed the infinite bus model (or to made
ours results useful also in case of multimachine power
system model) we are assuming that the values of system
voltage Us and frequency is unknown and lying within
a given two values, (for our case k = 2, Us and instead
of frequency we will use the reluctant inductance Xv3 )
that is one assume that for uncertain parameters the
following holds Us ∈ 〈Usmin, Usmax〉 and z̄3 = jXv3 ,
Xv3 ∈ 〈xv3min, xv3max〉

4. At each chosen working points and two uncertain
parameters, one builds a four (2k = 4 linearized model
of turbogenerator in the form

ẋ = Āwix+ B̄wiu , w = 1, 2, 3, i = 1, 2, 3, 4, y = Cx (6)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the

control vector, y(t) ∈ Rl is the output vector of system
to be controlled.

5. Introduce LPV – gain scheduled model with poly-
topic uncertainties. (Let gain scheduled varying vector
parameter is a function of electrical power θ = f(P ) with
p = 2 gain scheduling variables),

ẋ = A(θ, ξ)x +B(θ, ξ)u , y = Cx

A(θ, ξ) = A0(ξ) +

p
∑

j=1

Aj(ξ)θj ∈ Rn×n,

Aj(ξ) =

2k
∑

i=1

Ajiξi , B(θ, ξ) ∈ Rn×m,

C ∈ Rl×n,

u = [△Ub △PR]
⊤, y = [△U △P ]⊤

(7)

In (7) ξ ≥ 0 is constant or time varying unknown vari-

able which satisfies
∑2k

i=1 ξi = 1 and θ ∈ Rp is a vector of
known constant or time varying real gain-scheduled pa-
rameters. We assume that both lower and upper bounds
are available for these parameters value and variation
rates.
Specifically

• Each parameter θj , j = 1, 2, ..., p ranges between
known extremal values,

θj ∈ Ωθ := {θj ∈ 〈θj , θj〉 , j = 1, 2, ..., p . (8)

• The rate of variation θ̇j is well defined at all times and
satisfies

θ̇j ∈ Ωt := {θ̇j ∈ 〈θj , θj〉 , j = 1, 2, ..., p . (9)

6. For each uncertainties i = 1, 2, 3, 4 and all working
points w = 1, 2, 3 substitute extremal values of gain-
scheduled parameters to (7). We assume that extremal
values are θj = −1 or θj = 1 for j = 1, 2. Note that in
our case θ1 = −1 and θ2 = 1 does not exist. Compare the
obtained results with (6). For each i and working points
w = 1, 2, 3 one has got

Ā1,i=A0i −A1i −A2i, θ1 = −1, θ2 = −1, w = 1 ,

Ā2i = A0i +A1i −A2i , θ1 = 1 , θ2 = −1 , w = 2 ,

Ā3i = A0i +A1i +A2i , θ1 = 1 , θ2 = 1 , w = 3 .

From (8) one obtains the simple equation for calculation
of gain scheduled model for i -uncertainty





I −I −I
I I −I
I I I









A0i

A1i

A2i



 =





Ā1i

Ā2i

Ā3i



 .

7. For each working point w = 1, 2, 3 one obtain 4
matrices Awi which lying in the polytope vertices of un-
certain gain scheduled model of turbogenerator.

For I-part gain scheduled controller design the states
of original system (7) need to be extended, for more detail
see [21]. The control algorithm for PID controller is

u(t) = Kpy(t) +Ki

∫ t

0

Cx(τ)dτ +Kdẏ(t) . (10)

Integral term can be included into the state vector in the

way defining the auxiliary state z =
∫ t

0 x(τ)dτ and PID
control algorithm is

u(t) = [Kp Ki]C

[

x(t)
z(t)

]

+ [KdCd 0]

[

ẋ(t)
ż(t)

]

(11)

With controller integral term the new state and out-

put vectors are given as X(t) = [x(t)⊤, z(t)⊤]⊤ , Y (t) =

[y(t)⊤, (Cz(t))⊤]⊤ , for other type of controller the plant
state and output do not changes. In the next, for all
type of controller, we will assume that without changing
the denotation of state and output vectors x(t) = X(t),
y(t) = Y (t), matrices and matrices dimensions the static
output feedback control algorithm can provide the pro-
portional and integral parts of the designed robust gain
scheduled PID controller using (7).

The following problem is studied in this paper. Design
a robust output feedback gain scheduled PID controller
with control algorithm

u = K(θ)y +Kd(θ)ẏ = K(θ)Cx +Kd(θ)Cdẋ (12)
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where K(θ) = K0 +
∑p

j=1Kjθj = [Kp(θ) Ki(θ)] ∈

Rm×2l , Kd(θ) = Kd0+
∑p

j=1Kdjθj ∈ Rm×l . For more de-

tail to obtained new plant model with PID controller see
[21]. Cd ∈ Rl×n is the SG output matrix for the derivative
part of controller such that the controller ensures robust
parameter dependent quadratic stability and guaranteed
cost with respect to the closed loop system, (7)+(12). To
assess the performance quality, the quadratic cost func-
tion is used

Jc =

∫ ∞

t0

J(x, u, ẋ, θ)dt (13)

J(x, u, ẋ, θ) = x⊤Q(θ)x+ u⊤Ru+ ẋ⊤S(θ)ẋ ,

Q(θ) = Q0 +

p
∑

j=1

Qjθj ∈ Rn×n ,

S(θ) = S0 +

p
∑

j=1

Sjθj ∈ Rn×n

matrices are positive definite (semidefinite) and R ∈
Rm×m is positive definite matrix.

Lemma 1. Consider the system (7) with control algo-
rithm (10). Control algorithm (10) is the guaranteed cost
control law for a closed loop system if and only if there
is a Lyapunov function V (θ, ξ) , such that the following
condition holds:

Be(θ, ξ) = max
u

(
dV (θ, ξ)

dt
+ J(x, u, ẋ, θ) ≤ 0 . (14)

Equation (14) is known as the Bellman-Lyapunov
equation and function V (θ, ξ) which satisfies (14) is the
Lyapunov function. For a particular structure of the Lya-
punov function V (θ, ξ) the obtained gain scheduled de-
sign procedure reduces from “if and only if” to “if”.

3 Design of gain scheduled PID controller

This section formulates the theoretical approach to the
robust PID gain-scheduled controller design with con-
vex stability conditions for uncertain polytopic system
(7). This ensures closed-loop system parameter depen-
dent quadratic stability (PDQS) and guaranteed cost for
all uncertain plant parameters Π ∈ Ω, gain scheduled pa-

rameters θ ∈ Ωθ and θ̇ ∈ Ωt . Assume that in (14) the
Lyapunov function is in the form

V (x, θ, ξ) = x⊤P (θ, ξ)x

P (θ, ξ) = P0(ξ) +

p
∑

j=1

Pj(ξ)θj ,

Pj(ξ) =
N
∑

i=1

Pjiξi , j = 0, 1, 2, ..., p , N = 2k.

(15)

The time derivative of (15) is

dV (·)

dt
= ẋ⊤P (θ, ξ)x + x⊤P (θ̇, ξ)x+ x⊤P (θ, ξ)ẋ =

[ẋ⊤ x⊤ u⊤]





0 P (θ, ξ) 0

P (θ, ξ) P (θ̇, ξ) 0
0 0 0









ẋ

x

u



 (16)

P (θ̇, ξ) =

p
∑

j=1

Pj(ξ)θ̇j ≤

p
∑

j=1

Pj(ξ)ρj

assuming that Pj(ξ) ≥ 0 and max |θ̇j | ≤ ρj > 0. Note
that for the case of PDQS it is assumed that uncertain
parameters are constants but LPV model system param-

eters can be changed by rate determined of θ̇ . For the
case of quadratic stability (QS) the rate of uncertain pa-
rameters changes may reach any values. For this case in
(15) the Lyapunov matrix changes to

P (θ) = P0 +

p
∑

j=1

Pjθj .

In the next developments we will assume that PDQS
approach is used. To separate matrix P (·) from matrices

A(·), B(·) introduce Ni ∈ Rn×n , i = 1, 2; N3 ∈ Rn×m ;
Ni ∈ Rm×n , i = 4, 5; N6 ∈ Rm×m auxiliary matrices of
corresponding dimensions in the following form

1) 2(N1ẋ+N2x+N3u)
⊤(ẋ−A(θ, ξ)x −B(θ, ξ)u) = 0,

2) 2(N4ẋ+N5x+N6u)
⊤(u−K(θ)Cx −Kd(θ)Cdẋ) = 0.

(17)
Summarizing (17) and (16) for the time derivative of the
Lyapunov function one obtains

V̇ (x, θ, ξ) = z⊤W (θ, ξ)z (18)

where z⊤ = [ẋ⊤ x⊤ u⊤] and W (θ, ξ) = {wij(θ, ξ)}3×3

and

w11(θ, ξ) = N⊤

1 +N1 −N⊤

4 Kd(θ)Cd − C⊤

d Kd(θ)
⊤N4 ,

w12(·) = −N⊤

1 A(θ, ξ) +N2 + P (θ, ξ)−N⊤

4 K(θ)C−

C⊤

d Kd(θ)
⊤N5 ,

w13(·) = −N⊤

1 B(θ, ξ) +N3 +N⊤

4 − C⊤

d Kd(θ)
⊤N6 ,

w22(·) = −N⊤

2 A(θ, ξ) −A(θ, ξ)⊤N2 + P (θ̇, ξ)−

N⊤

5 K(θ)C − C⊤K(θ)⊤N5 ,

w23(·) = −N⊤

2 B(θ, ξ)−A⊤(θ, ξ)N3 +N⊤

5 −

C⊤K(θ)⊤N6 ,

w33(·) = −N⊤

3 B(θ, ξ)−B(θ, ξ)⊤N3 +N⊤

6 +N6 .

System (7) with control algorithm (12) is parameter-

dependent quadratically stable for θ ∈ Ωθ, θ̇ ∈ Ωt and
uncertainty ξ if the matrix W (θ, ξ) is negative definite
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(semidefinite). To obtain the guaranteed cost control al-
gorithm substitute the time derivative of the Lyapunov
function (16) and performance index (13) to the Bellman-
Lyapunov equation (14)

Be = V̇ (x, θ, ξ) + J(x, u, ẋ, θ) = z⊤H(θ, ξ)z ≤ 0 (19)

where H(θ, ξ) = {hij(θ, ξ)}3×3 and

h11(θ, ξ) = w11(θ, ξ) + S(θ), h12(θ, ξ) = w12(θ, ξ) ,

h13(θ, ξ) = w13(θ, ξ), h22(θ, ξ) = w22(θ, ξ) +Q(θ) ,

h23(θ, ξ) = w23(θ, ξ), h33(θ, ξ) = w33(θ, ξ) +R .

Matrix H(θ, ξ) is linear with respect to the gain sched-
uled parameter θ and uncertainty ξ therefore H(θ, ξ)
can be split into

H(θ, ξ) = H0(ξ) +

p
∑

j=1

Hj(ξ)θj =

N
∑

i=1

(

H0i +

p
∑

j=1

Hijθj
)

ξi .

(20)
The main results of the gain scheduled PID controller de-
sign, which ensure robust parameter-dependent quadratic
stability and guaranteed cost, are given in the next theo-
rem.

Theorem 1.

The uncertain system (7) with PID gain scheduled con-
troller (12) is a robust parameter dependent quadratically
stable with guaranteed cost if there exists a positive defi-
nite matrix P (θ, ξ) ∈ Rn×n , matrices Ni , i = 1, 2, . . . , 6 ,
Q(θ) , S(θ) , and R such that

H0i +

p
∑

j=1

Hijθj ≤ 0 , (21)

i = 1, 2, . . . , N ; θ ∈ Ωθ; θ̇ ∈ Ωt

where H0i = {h0ikl}3×3,

h0i11 = N⊤

1 +N1 −N⊤

4 K
⊤

d0Cd − C⊤

d K
⊤

d0N4 + S0 ,

h0i12 = −N⊤

1 A0i +N2 + P0i −N⊤

4 K0C − C⊤

d K
⊤

d0N5 ,

h0i13 = −N⊤

1 B0i +N3 +N⊤

4 − CdK
⊤

d0N6 ,

h0i22 = −N⊤

2 A0i −A⊤

0iN2 +

p
∑

j=1

Pjiρj−

N⊤

5 K0C − C⊤K⊤

0 N5 +Q0 ,

h0i23 = −N⊤

2 B0i −A⊤

0iN3 +N⊤

5 − C⊤K⊤

0 N6 ,

h0i33 = −N⊤

3 B0i −B⊤

0iN3 +N⊤

6 +N6 +R ,

Hij = {hklij}3×3 ,

h11ij = −N⊤

4 KdjCd − C⊤

d K
⊤

djN4 + Sj ,

h12ij = −N⊤

1 Aij + Pij −N⊤

4 KjC − C⊤

d K
⊤

djN5 ,

h13ij = −N⊤

1 Bij − C⊤

d k
⊤

djN6 ,

h22ij = −N⊤

2 Aij −A⊤

ijN2 −N⊤

5 KjC − C⊤K⊤

j N5 +Qj ,

h23ij = −N⊤

2 Bij −A⊤

ijN3 − C⊤K⊤

j N6 ,

h33ij = −N⊤

3 Bij −B⊤

ijN3 .

Note that inequality (21) is convex with respect to the

gain scheduled parameter θ and uncertain parameter ξ ,

therefore (21) holds if and only if it is negative definite

(semidefinite) for all i = 1, 2, . . . , N (ξ - vertices) and

j = 1, 2, . . . , p (θ -vertices). Proof of theorem sufficient

robust stability condition is based on the Lemma 1, and

equations (15), (16) and (17). Note that for calculation

of feasible robust gain scheduled controller the designer

need to insert to a program some values of variables. One

of these values is the maximal value of rate to disturbance

changes (in our case ̺i = 10 pu/s If the inequalities

(bilinear matrix inequalities) BMI (21) are feasible with

the given data the obtained PID gain scheduled controller

ensure the parameter dependent quadratic stability and

guaranteed cost for all defined regime of turbogenerator

and disturbance rate.

4 Example

For the purpose of demonstrating the advantages of

the proposed method we will use the case of a simple

turbogenerator connected to a large-scale power system

trough transmission lines. Because of the relative size of

a large scale power system to which the turbogenerator

is supplying power, the dynamics associated with the

machine will cause virtually no change in the system

voltage Us and frequency ωs . In general, generators in

power systems are always subject to periodic or other

type disturbances, eg periodic load variations, swings of

the other generators in transient state, and so on, [27].

For take account above disturbances and guarantee the

stability of closed-loop systems one can introduce the

uncertainties to model of turbogenerator. We will assume

that the system voltage is unknown and lying within two

values Us ∈ 〈0.9, 1.1〉 pu and the second uncertainty to

model above disturbances can be line reactance, which

lying Xv3 ∈ 〈0.2, 2〉pu. If we take the system frequency as

a unknown variable the calculation load is very increased

because when frequency is changed then all reactance of

our model changes too (lines, SG and other parameters).

Above two uncertainties relax the infinite bus model and

made our obtained result more useful for multimachine

power system model. Parameters of SG and transmission

lines are as follows.

Tj = 0.02245 s2, T ′

d0 = 0.4 s, Xd = 2pu,X ′

d = 0.247 pu,

Xq = 1.75 pu,Ra = 0, Xv1 = 0.127 pu,Xv2 = 0.12 pu.

Thermal turbine.

Ts = 0.4s,Tl = 5.4 s,Th = 0.25, kl = 0.75, kn = 0.25 .
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Fig. 6. Dynamic behavior of load angle and terminal voltage with
PI controllers

Working points are given as (Uz, Pz – set points of ter-
minal voltage and electrical power).

Uz = 1pu, Pz = 0.9, P = 〈0.3, 0.7, 1〉 .

Performance quality and other parameters

Q0 = 0.5 ∗ I, Qi = 0, S0 = 0, Si = 0, R = I,

ρi = 10 pu/s, i = 1, 2, θi ∈ 〈−1, 1〉, ‖P (θ)‖ ≤ ro = 1000 .

Note that the dimensions of turbogenerator state, in-
put and output matrices are A ∈ R8×8 , B ∈ R8×2 ,
C ∈ R4×8 , Cd ∈ R4×8 and output y = [yp yi] where

yp , yi are output vectors of terminal voltage and ac-

tive power for proportional and respectively integral of

terminal voltage and active power for integral part of

controller. Derivative part controller output is ẏp . Pa-

rameters of designed decentralized PI robust gain sched-

uled controller for excitation control with terminal volt-
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Fig. 7. Dynamic behavior of load angle and terminal voltage with

proposed controllers Xv3 = 2 pu

age feedback .

RU = 5.2335 +
2.5175

s
−

(

0.1044 +
0.7

s
)θ1 − (0.8072 +

0.7074

s

)

θ2 .

Parameters of designed decentralized PI robust gain
scheduled controller for governor control.

RT = 3.5512 +
0.6671

s
−

(

0.0648 +
0.1309

s

)

θ1 −
(

0.0440 +
0.0443

s

)

θ2 .

Parameters of decentralized power system stabilizer for
excitation controller as the first derivative of electrical
power.

PSS = −0.6849− 0.064θ1 − 0.0316θ2 .

Above results have been obtained using YALMIP with
solver penbmi (free). In this example we assume that

θj ∈ 〈−1, 1〉 , j = 1, 2 .

Simulation results of nonlinear turbogenerators model
with designed controllers RU , RT , and PSS proves that
the turbogenerator is stable with the performance of all
four vertices of uncertain box. The subsequent two simu-
lation experiments are:

• at time t = 40 s two phase short circuits were realized
in the place of system voltage Us when within the
time=0.2 s the voltage Us shut down from 1 pu to
0.2 pu,

• ar time t = 80 s the terminal voltage set point Uz was
changed from 1.05 pu to 1 pu.

Simulation results of the above two experiments are
given in the following figures. In Figs. 1–5 there is the
dynamic behavior of many variables of synchronous gen-
erator. From the stability point of view, the load angle
of SG and terminal voltage play a very important role.

In Figs. 6 and 7 one can see in more detail the dynamic
behavior of the above mentioned two synchronous gener-
ator variables for classical PI and the paper proposed a
robust gain scheduled controller for the case of two phase
short circuits.

The above figures imply:

• the performance of closed loop systems for all defined
regimes with proposed controllers is less to oscillate
than with classical PI ones,

• the proposed controller guarantee the performance,
stability and robustness properties of a closed loop
system in the given uncertainty box and for all defined
SG’s regimes,

• the rate of disturbance changes for which the perfor-
mance, stability and robustness properties are guaran-
teed could be given by a designer,

• for the disturbances from a given uncertainty box and
allowed rates the performance, stability and robust-
ness properties are guaranteed.

5 CONCLUSIONS

A unique approach to the design of gain scheduled
controller (GSC) is presented. The proposed design pro-
cedure is based on the Bellman-Lyapunov equation, guar-
anteed cost and robust stability conditions using the Pa-
rameter Dependent Quadratic Stability approach. The
obtained feasible design procedures for robust GSC design
are in the form of BMI with guaranteed convex stability
conditions. The obtained design results and their prop-
erties are illustrated in the simultaneously design of con-
trollers for a simple model (6-order) turbogenerator. The
results of the obtained design procedure are a PI auto-
matic voltage regulator (AVR) for synchronous generator,
a PI governor controller, and a power system stabilizer
for excitation system. All simulation results performed
using nonlinear 6-order model of turbogenerator with de-
signed of gain scheduled controllers. The obtained dy-
namic behavior exhibits that in the paper proposed con-
trollers for all the defined turbogenerator regimes guar-
antee stability, performance and robustness properties of
closed loop system, and give superior performance than
classical PI controllers. A very important, factor is that
the designer can define the rate of disturbance changes
for which the stability and robustness properties need to
be ensured. When the rate of turbogenerator parameters

changes are known, the θ̇ , one can take it account to
guarantee the stability of closed loop system with nonlin-
ear model and gain scheduled controller. Theory of large
scale system implies that for increasing the stability of
large scale system, the performances of all subsystems
need to be increased (overshoot need to be decreased).
From this point of view investigation of a single machine
infinite bus power system gives the way how to possible
improve the stability of multimachine power system. Due
to proposed relaxed infinite bus model, we suppose that
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multimachine power system with designed controller pa-
rameters will be stable and the controller parameters will
be near to the optimal value. For practical implementa-
tion of proposed gain scheduled controller the controller
parameters need to be tuned a such a way that for all
outputs (terminal voltage and electrical power) the over-
shoot need to be decreased without changing the settling
time.
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[21] V. Veselý and D. Rosinová, ”Robust PID-PSD Controller De-
sign: BMI Approach”, Asian Journal of Control, vol. 15, no. 2,

2013, pp. 469–478.

[22] V. M. Kuncevic and M. M. Lycak, ”Control Systems Design usg
Lyapunov Function Approach”, Nauka, Moskau, 1977, Russian.

[23] M. R. Esmaili, A. Khodabakhshian, P. Ghaebi Panah, and S.
Azirkhan, ”A New Robust Multi-Machine Power System Sta-
bilizer Design using Quantitative Feedback Theory”, Procedia

Technology vol. 11, 2013, pp. 75–85.

[24] A. E. Leona, J. M. Mauriciob and J. A. Solsonaa, ”Multi-Ma-
chine Power System Stability Improvement usg an Observer-
Based Nonlinear Controller”, Electric Power Systems Research,
vol. 89, 2012, pp. 204-214.

[25] A. Khodabakhshian and R. Hemmati, ”Robust Decentralized
Multi-Machine Power System Stabilizer Design usg Quantita-
tive Feedback Theory”, Electrical Power and Energy Systems,
vol. 41, 2012, pp. 112-119.

[26] T. Bian, Y. Jiang, and Z. P. Jiang, ”Decentralized Adaptive
Optimal Control of Large-Scale Systems with Application to
Power Systems”, IEEE Transactions on dustri, vol. 62, no. 4,
2015, pp. 2439–2447.

[27] Y. Tamura and N. Yoro, ”Possibility of Auto-Hetero-Para-
metric Resonances Power Systems and their Relationship with
Long-Term Dynamics”, IEEE Trans on Power Systems, vol.
PWRS-2, no. 4, Nov 1987, pp. 890–896.

[28] D. J. Leith and W. E. Leithead, ”Survey of Ga-Schedulg Analy-

sis and Design”, International Journal of Control, vol. 73, no. 11,
2000,pp. 1001–1025.

Received 10 February 2017

Vojtech Veselý was born in Velké Kapušany, Slovakia in
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