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Evaluation of Llaima volcano activities for localization
and classification of LP, VT and TR events
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Evaluation of seismic signals is one of the most important research topics on Volcanology. Volcanoes have daily activity;
therefore, high speed evaluation of recorded signals is a challenge for improving the study of the natural phenomena occurring
inside these natural formations. The aim of this paper is the evaluation (denoising, localization and classification) and analysis
of Llaima volcano activities, one of the most actives volcanoes in South America. Different already proposed methods, such as,
Butterworth, Spectral Subtraction (SS) and Wiener Filter (WF) are compared to the proposed Modified Spectral Subtraction
(MSS) and Modified Wiener Filter (MWF) to find the best method for denoising the volcano signals. Then, event localization
based on received signals of volcano is performed. In this step, Time Delay Estimation (TDE)-based method is used on data
acquired from 3 mechanical sensors located in the volcano area. The proposed method is used to estimate the area for event
location. The proposed denoising methods make the starting point for the event more evident to increase the localization
accuracy for events where the starting point is difficult to find. In the last step, a method based on the novel DNN technique
is proposed to classify the three main events occurring in the Llaima volcano (TR (Tremor), LP (Long Period) and VT

(Volcano Tectonic)).
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1 Introduction

Chile is considered as a natural laboratory, where huge
earthquakes and volcanic eruptions occurs frequently.
This is because the subduction between the Nazca and
South American plates [1, 2]. This subduction of the
oceanic cortex below the continental margin has allowed
the development of the major orogenic system called “Los
Andes” [3]. Chile has a sizeable portion of this surface
compared with other countries. Earthquakes and volcanic
eruptions affect the inhabitant’s safety and the infrastruc-
ture due to the proximity of the cities to the threatening
sites.

Chile has around 100 actives volcanoes including in-
dividual stratovolcanoes and groups of monogenetic vol-
canoes [4]. The main active volcanoes are located in the
continent, forming the Andean volcanic belt. Based on
the historic record, 61 of those volcanoes have had more
than 400 eruptions in the last 500 years. Natural disas-
ters, particularly the disasters caused by volcanic erup-
tions have taken the attention of the authorities and the
scientific community. Improving the emergency response
and predict the volcano eruption in previous stages has
become a matter of major concern.

Nowadays the Servicio Nacional de Geologia (Serna-
geomin) by means of the Observatorio Vulcanolégico de
los Andes del sur [5] is monitoring 43 actives volcanoes

which are considered as the most actives and danger-
ous volcanoes in the country. About the 16 % Llaima
volcano belong to the Andean volcanic belt and it is
one of the most active and massive volcanoes in South
America [6]. It is located in the Regién de La Arau-
cania at coordinates 38.698°S and 71.730°W and it is
classified as a stratovolcano [7]. Seismic sensors placed
nearby the volcano are used to record signals, these are
MOT (38.675°S and 71.784°W), LAV (38.705°S and
71.649°W) and LLA (38.774°S and 71.696°W). These
seismic sensors are equipped with seismometers with a
bandwidth of 50 Hz in X, Y and Z directions. The data
recorded about the seismic events is sent in real time to
the OVDAS [8].

There are many possible reasons that gives origin to a
seismic event. Fault fractures and eruptive activity gen-
erate different seismic events. According to their origin,
seismic events can be classified as Body Waves in which
Primary wave (P) and Secondary waves (S) can be found
and Surface Waves where Rayleigh wave (R) and Love
Wave (L) are grouped.

Volcanoes produce a wide variety of signals produced
by the magma flowing and hydrothermal fluids interact-
ing with solid rocks [9]. Events caused by the fracture of
brittle material due to changes produced by the flow of
magma or fluids are called Volcano-Tectonic (VT). Oscil-
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Fig. 1. Top view of Llaima volcano with MOT, LAV and LLA
sensors 8]

lating changes in the pressure produced by the dynam-
ics of the fluids inside the ducts or small fissures are de-
nominated Long Period (LP) and TRemor (TR) events.
Long-Period signals (LP) are usually low frequency events
whose duration is bounded by a range from seconds to
minutes. The bandwidth of this event is 4Hz located in
the range of 1Hz to 5 Hz [10]. However, they are of-
ten preceded by small energy movements of frequencies
greater than 5Hz. Another classification group of the seis-
mic events is Volcano Tectonic (VT). These waves may
last from seconds to minutes [11] and are characterized
for having P waves at the beginning of the signal followed
by S waves. Both are clearly defined in the signal graph.
The bandwidth of this kind of events is variable and the
frequency is mainly focused between 2 Hz and 15 Hz. Fi-
nally, Tremor events (TR) are constant vibrations with
a frequency range from 1 Hz to 5 Hz and its duration
can vary from minutes, days and even months [12]. Fig-
ure 1 shows the location of the Llaima volcano and the
distribution of the sensors around the active crater. Also,
Tab. 1 shows position for MOT, LAV and LLA sensors.

Table 1. The position for MOT, LAV and LLA sensors

Code Lat (0) S Long (0) S
Motion MOT 38.675 71.784
Laguna Verde LAV 38.705 71.649
Llaima LLA 38.774 71.696
Noi ..

In this paper the aim is localization and classification
of TR, VT and LP events in Llaima volcano. For this
purpose, one of the most important steps is preprocess-
ing the obtained signal. Received signals from MOT, LAV
and LLA have a high level of noise. Noise is divided to two
main groups: 1) White noise with uniform frequency spec-
trum, and 2) Colorful noise with low frequency spectrum.
For filtering the signal, a comparison between some de-
noising methods applied on volcano signals is performed.
From the denoising process high quality signals will be
obtained: Denoised signals will be used to perform the
localization and classification of the events. Therefore,
the proposed block diagram in this paper can be shown
as Fig. 2.

The signal enhancement tries to improve the quality of
signal to increase the performance of localization and clas-
sification. Several methods have been proposed for sig-
nal enhancement such as: Butterworth filter [13], Spectral
Subtraction [14], Statistical model based methods (Hid-
den Markov Model) [15], sub-space based methods [16],
etc. These methods have a high performance when dealing
with uniform spectrum and additive noise. In this paper,
two of the most effective filters, Spectral Subtraction (SS)
and Wiener Filter (WF), will be applied on the recorded
signals. Also, Modified Spectral Subtraction (MSS) and
Modified Wiener Filter (MWF) will be implemented to
improve the performance of denoising stage. SS and WF
have an appropriate performance when dealing with sta-
tionary uniform spectrum noise. However, recorded sig-
nals of volcano events have colorful noise with low fre-
quency components. Butterworth filter (BW) could re-
move the noise in the event’s frequency range. Because
of this, Butterworth filter with cut-off frequency 30 Hz is
used in a preprocessing step before using SS, WF, MSS
and MWF.

Once the signal has been enhanced, a low complex-
ity localization method with high accuracy to detect the
event’s location is implemented. Events happen in the
depth of the earth. Mechanical waves of the events arrive
to the surface after crossing different earth layers where
can be recorded by the sensors. Useful information about
the volcano can be obtained by means of event’s local-
ization. The most common method used in OVDAS and
in some other volcano logical observatories is the modi-
fied HYPOT71. This technique determines earthquake lo-
cations and magnitudes from seismic network data like
first-arrival P and S arrival times, amplitudes and coda
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Fig. 2. Block diagram of proposed Llaima Volcano signal processing



Journal of ELECTRICAL ENGINEERING 68 (2017), NO5

durations [17]. Also, There are some improvements to
HYPOT1, they can be found in [18,19].

Source localization algorithms are divided to one-stage
and two-stages methods [20]. Two-stages methods esti-
mate the time difference of arrival (TDOA) between each
pair of sensors. Then the location of events is estimated
based on TDOA values and sensor’s location. On the
other hand, in one-stage methods a cost function is cal-
culated for candidate points. Then, the more likely point
is selected as source location. Two-steps methods (based
on TDOA) are faster than one-step methods (based on
energy). Time delay of the signal is estimated using
low complexity equations in two-stages methods. On the
other hand, in one-stage methods its computational com-
plexity is directly depends on the number of candidate
points. One of the main factors that causes detrimen-
tal on the localization estimation in TDE-based meth-
ods is the reverberation of the signal. Nevertheless, the
physical medium in which the event’s mechanical waves
are propagated can be assumed as free space, ie there
is no reverberation. Because of this, a high performance
on the event localization can be achieved by using cross-
correlation based methods.

Localization methods are divided into parametric and
non-parametric groups. Parametric methods [21] usually
are beam forming or Maximum Likelihood (ML) meth-
ods which define a spatial maximum likelihood function
for event’s positions. Each function can have multiple
maximum in the searching space, making the selection of
the maximum a high complexity process. Non-parametric
methods [22] are based on signal sub-space or Eigen value
analysis. For example, MUSIC [23] and ESPRIT [24] are
two important methods in non-parametric group that
have higher resolution than parametric methods. These
methods are designed for using multiple sensors and nar-
row band signals. In addition to this, some research work
have been done to extend these methods for wide band
signals [25].

In this paper, GCC method is used for localization of
different kind of events [26]. This method has appropri-
ate accuracy and it can be used for real-time application.
Two weighted functions are usually used in combination
with GCC, these are: 1) PHAT (PHAse Transform) and,
2) ML weighted function. PHAT and ML weighted func-
tions are suitable for signals affected by reverberation and
noise respectively. Since the major adverse factor in this
application is noise, GCC is used in combination with ML
weighted function.

The feature extraction is one of the most important
aspects in pattern recognition and classification prob-
lems since the selection of the features can improve or
deteriorate the performance of the system. Most of the
approaches for classification in volcano signal processing
has been made by selecting the spectral based features
in a hand-crafted method which is subjective to percep-
tion of the designers and the optimal set of features is
not always reached. Once the selection of the features is
made, there are several techniques for the classification,
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in particular, techniques from the field of artificial intelli-
gence (such as Support Vector Machines (SVM) and Ar-
tificial Neural Networks (ANN)) has been widely applied
for many classification applications such as classification
of cancel cells [27] real time electro cardiogram classifica-
tion [28], sound event classification [29], electrical distur-
bances [30], internet traffic [31]. Support Vector Machines
or Kernel machines and neural networks with one hidden
layer have a shallow architecture, namely, two levels of
data-dependent computational elements [32]. Recently, a
major advance has been the ability to train deep archi-
tectures of neural networks, that is, networks with many
weights to adapt. The main issue with “deep” architec-
tures is the ability of the training algorithm to propagate
the error and find the best set of weights that minimize
the error. Deep Learning tries to overcome this problem
by first pre-training the network layer by layer by means
of an unsupervised learning algorithm. This pre-training
tries to build an internal representation of the data re-
ducing the dimensionality [33]. Once the weights are ini-
tialized a fine-tuning stage is performed by means of a
supervised learning algorithm using labeled data. Deep
Neural Networks has achieved promising result when used
in for several applications such as acoustic emotion recog-
nition [34], speech recognition [35], oceanographic object
classification [36] and so on. In this paper we propose the
classification of volcano signals by means of a DNN based
classifier.

After introducing SS and WF, we propose MSS and
MWF to improve the methods. The details of GCC and
ML function is introduced, and explained is the way of
using GCC method for this sensor structure. We examine
denoising methods based on 3 sensors to find the best
method for recorded signals enhancement and use en-
hanced signals for localization. The results are shown for
GCC method in combination with ML weighted function.
Finally, DNN-based classification method is also shown.

2 Methodology

The methods used for signal enhancement, event local-
ization and classification will be introduced here. First,
several common denoising methods will be reviewed to
find the best method for denoising the signals obtained by
the mechanical sensors placed on volcano surroundings.
Then Time Delay Estimation (TDE)-based method for lo-
calization of event will be introduced. Finally, a method
based on the novel DNN technique is proposed to classify
the three main events occurring in the Llaima volcano.

2.1 Signal Enhancement

As it was mentioned in previous section, the aim of this
paper is localization and classification of recorded events
from Llaima volcano. A preprocessing stage in which the
noise is removed from the signal must be done because of
the high level of noise. In this section, first SS and WF
methods are introduced. Then, MSS and MWF will be
proposed to improve traditional methods.
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Fig. 4. The block diagram for Wiener filter implementation

2.1.1 Spectral subtraction (SS) method

Spectral Subtraction is a method for power spectral re-
trieval of signal that has been affected by additive noise.
The idea in SS method is based on estimation the am-
plitude for frequency spectrum. This estimation can be
achieved by subtraction between the amplitude of noise
spectrum and noisy signal spectrum. The information re-
lated to noise spectrum is estimated by using the silent
part of noisy signal. SS block diagram has been shown in
Fig. 3.

Firstly, recorded signals by sensors are windowed with
50 % overlapping. Then, the Fourier transform is imple-
mented on each frame of signal. Noise spectral estimation
is an important part in this method. These noise estima-
tions are achievable of free-event part of signals. Then
recorded signals are divided to equal part with length L
by windowing and are transferred to frequency domain
with Fast Fourier Transform (FFT) function. Windowed
signal can be expressed in frequency domain as

Yo(w) =W (w) *Y (w) = Sw(w) + Ny(w) (1)
where Y, (w), Sy(w) and N, (w) are Fourier transform
for windowed noisy signal, windowed clean signal (event),
and windowed noise respectively and * is convolution
operator. Also Y(w) and W (w) are Fourier transform
for noisy signal and window. Finally, Spectral Subtraction

can be expressed as

S (@)[? = [Yu(w)? = E{|Nu(w)[*} .

(2)
In (2), |Su(w)|? is the spectral subtraction for a clean
signal and E{|Ny(w)|?} is the expected value of the
spectral noise on the silent frames.

Finally, enhanced signal can be expressed as the am-
plitude of estimated spectral and noisy signal phase as

Suln] = FH{|Sw(w)] exp(jarg(Y () } (3)

where F~! is the inverse Fourier transform and §,[n] is
enhanced signal for a frame (window).

212 Wiener Filter (WF) for signal
denoising

WF is a common method for noise reduction. This
method decreases the noise of noisy signal by statisubti-
cal estimation of the noise in time domain. In WF, a filter
is designed based on signal and noise parameters. Noisy
signal is crossed with the filter in order to decrease the
noise level. Then, a new filter is designed based on param-
eter of enhanced signal in the previous step. This process
repeated until the enhanced signal is obtained [37].

Preprocessing is needed to prepare noisy signal for
WF algorithm. Figure 4 shows block diagram for WF
implementation. Wiener Filter transfer function can be

written as )
P (w
4

o (4)

where H(w), Ps(w) and P,(w) are impulse response
of WF, power spectral density for clean signal and noise
respectively. Noise power spectral can be estimated from
silent part of signal. Nevertheless, compute the power
spectral estimation for clean signal is a difficult task.

H(w) =

(W) + Po(w)

2.1.3 Modified Spectral Subtraction
(MSS) method

Some parameters can be modified in spectral subtrac-
tion method to obtain better performance in noise reduc-
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tion process. It means that the noise effect in subtraction
operation can be changed. It should be noted that, in-
creasing the effect of noise estimation can cause a detri-
mental effect on the event’s information. According to
this, Modified spectral subtraction can be written as

[t (@)[* = [Yoo ()|* = BE{| Nu(w)|* } ()

where in this equation, « is attenuation factor and (3 is
over-subtraction factor. The value for § in this equation
has to be selected bigger than 1 for over-subtraction as-
sumption. This means upper band estimation of noise.
The attenuation factor a has to be selected between 0
and 2 (0 < a < 2). A large amount of noise remains with
a = 2 and with « selected close to 2 produce the decre-
ment of the signal amplitude. The value of o and S have
to be selected in order to minimize adverse effects on the
signal.

2.1.4 Modified Wiener Filter (MWF)
method

In Wiener filter method, filters are designed based on
the output signal and they are implemented on input
signal repeatedly. The parameters for WF are obtained
based on signal and noise power spectral estimations. The
equation for modified wiener filter can be written as

Py (w) 0

HMWF(w) = Ps(w) _'_,an(w)

(6)

where v is parameter of noise effect in filter design. The
noise effect in filter design can be increased by increas-
ing the value of this parameter. Another parameters is §
which controls the effect of clean signal spectral estima-
tion. Is this parameter is overvalued a part of the original
signal could be eliminated making the filter unsuitable.
The parameters values can be considered as v > 1 and
0 < § < 2 in order to yield a correct output.

2.2 Generalized Cross Correlation (GCC) function for
event localization

Generalized Cross Correlation is a useful method for
TDOA estimation between two sensors. The source loca-
tion can be obtained by estimating the TDOAs between
multiple sensor pairs. Figure 5 shows an example of de-
lay between sensors on event location for three sensors

(m =1,2,3). The relation between distance and propa-
(s)

gation delay can be written as 7, = ‘==

= [26] where 7,

. . S . .
is delay between event location and sensor m, n(n) is dis-

tance between event location and sensor m and c is the
wave speed in stone. The variable 7;;, shows the TDOA
between sensors | and ¢ and it can be expressed as a
difference between propagation delays as 74 = 7 — 74.

329
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Fig. 5. Parametrization of event location by TDOA estimations

TDOA estimations can be expressed as a function of

distance between the event and sensor location. This can
() _.(s)
be expressed mathematically as 74 = # Then,

TDOAs parameterize the event location and we can lo-
calize the place of event with a number of TDOAs. Sen-
sor signal model can be written in real condition for
sensors | and ¢ as z[n] = Tills[n — 7] + m[n] and
zq[n] = %[n — 74] + ng[n] where z[n] is the received
signal by sensors (I or ¢), n[n] is additive noise and s[n|
is transmitted signal in event location. GCC function has
a peak when shifted samples of s[n] are match to 7.
The Fourier transform of cross correlation function can
be expressed as cross spectral density between signals

Clg(w) = X1 (w) Xy (w) (7)

where Cjy(w) is Fourier transform of cross-correlation
function, X;(w) is Fourier transform of x;[n] and X/ (w)
is the complex conjugate of Fourier transform for z,[n].

Generalized Cross-Correlation function (R, (7)) is the
cross-correlation between filtered version of ;[n] and

x4[n]. GCC function can be expressed by Fourier trans-
form of these filters (G;(w), G4(w)) as

—+o0

Ryq(7) = % /(Gl(W)Xl(w))(Gq(w)Xq(w))'ijdw. (8)

— 00

The GCC function can be rewritten by frequency-based
weighted function by using 1y (w) = G1(w)G (w).

The Generalize cross-correlation function between sen-
sors | and ¢ has a peak in range of 7 (7 € D) based
on TDOA between these two sensors. In fact, TDOA
is time difference that can maximize Rj,(7) as 74 =
arg max R (7) where D is the space for all of possible di-
rections. Equation (8) has multiple local maximum. The
amplitude and distance between these maximums are re-
lated to some factors such as the separating distance be-
tween sensors, the type of events, the noise signal and the
type of weighted function 4 (w).

ML weighted function is an unbiased and effective es-
timator in non-reflection conditions and by uncorrelated
noise and signals. ML weighted function can be shown as
power spectral density (PSD) of event (S(w) ) and PSD
of noise in sensors {(V(w)) and ¢(V,(w)) as in [38]

5() S@)] | 15E) "
|w<w>||v;<w>|{”|w<w>| |v<w>|} - )

Yig(w) =
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It has been shown that a smooth reflection can de-
crease the performance of ML weighted function ex-
tremely. An approximation for this weighted function
that works well on short frames of events can be rewrit-
ten as PSD of sensors signals and noises [38]. | X;(w)| and
| X, (w)| are Fourier transform of sensors signals |V (w)]
and |V (w)| are Fourier transform of additive noise that
can be estimated in silent part of recorded signals. The
combination between GCC and ML weighted function is
called GCC-ML. The GCC-ML function has appropriate
performance in noisy condition as the same condition for
recorded signals in this paper.

2.3 Deep Neural Networks (DNN) for event classifica-
tion

DNNs contain multiple hidden layers, each hidden
layer is connected with the next. The DNN architecture
used in this paper is shown in Fig. 6. The DNN takes the
first 2000 values of the magnitude of the Fourier trans-
form in order to obtain from these features the hidden
representation of the signals.

First the DNN is trained layer by layer with an unsu-
pervised learning algorithm (Auto encoder), then, when
the unsupervised stage is accomplished the DNN is fine-
tuned by using the back propagation algorithm.

Auto encoders is one type of unsupervised neural net-
work. The auto encoder network firstly transforms high-
dimensional space data into a low-dimensional space by
means of an encoder extracting some features from the in-
put. This procedure reduces the dimensionality and, sub-
sequently, the complexity of the network. Once the data is
encoded a decoder network reconstructs the inputs from
the corresponding coded data.

The input signal 2™ € R form a dataset of length
M: {a™}M_ | which is the features input for the first
layer of the network, is represented by a coded version
named as h™ where

A" = fo(z™). (10)
Correspondingly the decoded version of the inputs z™
can be expressed as

™ =gg(h™). (11)

The parameters set (§ and 0') of the encoder and
decoder are learned on the task of reconstructing the

Denoised Volcano Signal

[IFFTII

original input minimizing the error between the features
and the reconstructed features L(z,#) where L(-) is a
loss function between x and Z. The above explanation is
mathematically proposed by

| M
min o 7;11:(95,@) (12)
where the loss function L(-) is
L™, &™) = ™ — &2, (13)

The reconstruction of the features Z is obtained by

#7 = g0 (fola™) (14
fo(z™) =np(Wa™ +b), (15)
goT(x™) =ng (WTz™ +d) (16)

where ny and n, are the encoder and decoder activation
ﬁ which
is the sigmoid function. The parameters set § = {W, b}
and 0 = {W7T d} are the weight and bias matrices of

the encoder and decoder respectively.

functions. In this paper we use ng = ny =

This formulation can be used to pre-train an N-layered
neural network. Given an initial input signal of features
data set {z™}M_, in the input layer, the first encoder
is trained to obtain the coded version of the initial fea-
tures. Once the first layer is trained, the coded features
are now used as the inputs of the next layer. The inner
representation of the initial features is represented as

1= fo. (z™). (17)

Since the coded features are the input data for the next
layer the N-th encode vector of the features matrix is
represented as

hi = fon (R-1)

where 0y is the parameter set of the N-th auto encoder.
The pre training held to the DNN to obtain a better local
minimum compared to the random initialization of the
weights and achieves better generalization performance
in classification problems [32]. After the pre-training is
performed the output targets for the classification task
are used in a fine-tuning training stage. The output of
the DNN for the input signal ™ is given by

ym = f0N+1 (h}(rl)

(18)

(19)

: g
|
Threshold

Fig. 6. DNN architecture for event classification
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Fig. 7. Frequency spectrum for LP , VT and TR events [41]

where 641 is the parameter set of the output layer. The
Back Propagation (BP) algorithm is used to minimize the
error between the target data and the DNN output. The
above explanation is formally proposed as

min 19DNN (20)

1 M
ZLy dm)
m:l

where d™ is the target data. The parameter set of the
network 0 = {61,0s,...,0n+1} is updates as it follows

0UpNN
Opt1 = 0p —0——— 20

(21)
where 641 is the updated weight matrix and 6 is the
current weight matrix of the network. The parameter ¢
is the learning rate of the fine tuning in order to obtain a
binary output a threshold function was selected to guar-
antee that only one output will have a positive value, e
yi =1 if y; = maxy and y; =0 if y; # maxy.

2.3.1 Performance indices

For measuring the performance of the DNN in the clas-
sification task different metrics have been used to measure
the agreement in the decision between the classification
method and the expert. First the Cohen’s Kappa coeffi-
cient which is a statistic measurement of the inter-rater
agreement when independent observers are evaluating the
same thing [39,40]. The kappa coefficient (k) is defined
as
PO - Pe

I{;:
1-PF,

(22)

where Py is the observed agreement between the expert
and the classification method and P, is the probability
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of agreement. The previous variables are mathematically
defined as

C C
POZZPCC7 Pezzpcpc-
c=1 c=1

(23,24)

The results of the classification are shown in a contin-
gency table. The result of the Kappa index can determine
if there is a high or low agreement, where the qualitative
evaluation of the Kappa index numerical result is given.
k < 0 less than chance agreement, 0.01 < k < 0.20 slight
agreement, 0.21 < k < 0.40 fair agreement, 0.41 < k <
0.60 moderate agreement, 0.61 < k < 0.80 substantial
agreement and 0.81 < k < 0.99 almost perfect agree-
ment.

Also a binary approach for the performance measure-
ment is carried out. Sensitivity (Se), Specificity (Sp),
Exactitude (Exz) and Error (Er). The first shows if the
classifier is good recognizing the positive class, the sec-
ond shows the ability for recognizing events for a different
class, finally, Exactitude and Error show the success and
the error of the classifier. The indices explained above are
mathematically proposed by

Fx = 100M , (25)
n
FP+ FN
Br= 1oo+ , (26)
TP
TN
=100——— 2
P =107 7R (28)

where TP are the true positives, namely, the number
of the events that belongs to the positive class and are
correctly classified while T'N is the number of event of the
negative class which are correctly classified. The variables
FP and FN are the positive and negative erroneously
classified.

3 Results and discussion

In this section, we examine denoising, localization and
classification methods on recorded signals of Llaima vol-
cano. As we mentioned, MOT, LLA and LAV sensors
record mechanical waves produced by the activity of
Llaima volcano. These signals have a high level of white
and colorful noise. As shown in Fig. 2, the aim of this
paper is the localization and classification of recorded sig-
nals. Simulations are done using MATLAB software on a
PC Core 15, 2.53 GHz CPU and 6 GB RAM.

Events occurring in the depth of earth have different
frequency range such. LP is in the range of [1-5| Hz, VT
is in [2-15]Hz and TR is in [1-5]Hz. In addition to this,
additive noise in sensors have a broad frequency range.
Events have been recorded with frequency sampling F's =
100 Hz and then highest frequency for noise is 50 Hz.
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Frequency spectrum for LP, VT and TR events has been
shown in Fig. 7.

As shown in block diagram Fig. 2, the first step is
pre-processing on recorded signals. In first step, we use
a Butterworth filter with cut-off frequency 25 Hz. This
filter help to remove noise in out of frequency range of
events. In following, denoising proposed method in this
paper will be examined on recorded signals. SS, WF, MSS
and MWF will be evaluated in adverse conditions. Fig-
ure 8, shows obtained results of different denoising meth-
ods for LP event in MOT sensor. As shown in Fig. 8,
Butterworth method can eliminate noise between 25 to
50 Hz. Also, SS method can remove noise partially but
WF can eliminate noise as a considerable value that has
better performance rather than SS method. In the follow-
ing, we implement MSS and MWF denoising methods on
recorded signals. We consider a = 1.5 and 8 = 2.5 for
MSS and v = 1.5 and § = 0.86 for MWF method. As

OT sensor

shown, MWF has better performance than MSS and, it
can eliminate a high percentage of noise.

Figure 9, shows the results for denoising methods on
VT event. In this case, WF has better results compare
to SS method and it could remove noise with high per-
formance. Also, MWF can eliminate an elevated level of
noise rather than MSS.

Also, Fig. 10 shows results similar to Figs. 8 and 9.
This figure plotted for TR event. In this figure, all de-
noising methods have been implemented on TR event of
sensor MOT. Also in this condition, MWF method have
better results compare to other denoising methods. Thus,
we use MWF for denoising of recorded signals to prepare
enhanced signals for localization and classification.

Table 2, shows the details of output SNR for denoising
methods on LP, VT and TR events and for MOT, LAV
and LLA sensors. As mentioned, all sensors record signals
in X, Y AND Z directions but we just use signal in
x direction for simplicity. As shown in Table 2, MWF
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denoising method have better results for MOT, LAV and
LLA sensors and, for LP, VT and TR events. Based on
SNR values, MWF method eliminates a high level of noise
with appropriate performance.

Here, we show the results based on GCC-ML function
as a localization method for various events. As we men-
tioned, GCC-ML method localizes the sensor’s locations
based on TDOA. In this scenario, we use, MOT, LAV
and LLA sensors information. Then, one direction is es-
timated for each pair of sensors.

Figure 11, shows results for a sample LP event. Fig-
ure 11(a—c) shows intersection of three estimated direc-
tions for sensors in directions X, Y and Z respectively.
Finally, figure 11(d) shows estimated points of output X,
Y and Z direction in the same time to estimate the final
point (or we can consider just the final area) for event’s
location.

In fact, one direction based on GCC-ML function esti-
mated for each pair of sensors and for recorded signal in
Z direction for sensors. As shown in Fig. 11(a), a triangu-
lar area is formed based on three estimated direction by
three sensor pairs that middle point in this area can be
considered as event’s location for sensors in X directions.
Figures 11(b) and 11(c) show similar results for Y and Z
directions respectively. Then, one point is estimated for
event’s location based on GCC-ML function for each sen-
sor in X, Y and Z directions. Figure 11(d) determines
the final triangular based on results of Figs. 11(a-c) that
this area or the middle point of this area can be considered
as an estimated point for LP. Figure 12 shows the results
of localization for a sample of VT event. Figure 12(a-
c¢) shows the intersection of estimated directions based
on GCC-ML function for recorded signals in X, ¥ and
7 directions for VT event respectively. Also, Fig. 12(d)
shows the result obtained by sensors in X, Y and Z di-
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Table 2. SNR (dB) results of denoising methods for LP, VT and TR events and for MOT, LAV and L

Input SNR LP vT TR

-3.5dB MOT LAV LLA MOT LAV LLA MOT LAV LLA
BT -0.52 -0.12 025 -1.53 -1.07 -0.86 -0.24 0.08 0.36
SS 2.09 2.63 2.52 1.68 1.33 2.04 2.98 3.17 3.41
WF 5.49 4.92 5.17 4.65 4.29 4.83 5.12 5.58 5.96
MSS 7.81 7.25 6.94 7.19 7.81 7.62 7.32 6.87 7.14
MWF 9.46 10.03  9.74 9.38 9.22 9.69 9.71 10.18  9.93

rections for VT event that the middle point of triangular
area can be considered as event’s location.

Figure 13 shows the obtained results of GCC-ML func-
tion for a sample of TR event. The intersection for three
directions of three sensors pair in X direction is shown
in Fig. 13(a). The middle point of this triangular is con-
sidered as an estimated point for signals in X direction

of sensors. Figures 13(b,c) show these results for sensors
in direction Y and Z respectively. Finally, Fig. 13(d) de-
termines the intersection for estimated points based on
sensors in X, Y and Z directions.

The main problem is lack in real value of all events
for comparison. Then just we can show the results for
proposed method in this paper for localization of VT, LP
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and VT events. For that reason, we used 20 events for In the classification step, different DNN architectures
testing the localization algorithm. The results are shown where tested to find the one which gives higher Kappa
in Fig. 14. index. DNNs with one, two and three hidden layers were
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tested. The number of neurons on the input layer is 2000
while in the hidden layer the number of neurons was var-
ied from 50 to 200 in step of 50. The data used corre-
sponds to 268 events, 200 were used for training and 76
for validation, which is considerably less amount of train-
ing data compared with the size of the training set used
in previous papers [8,10,42]. Each event was coded into
a binary representation, namely, the DNNs has 3 out-
puts, each one representing a different event (LP=[1 0
0], TR=[0 1 0] and VT=[0 0 1)]. The DNN chosen by
the above procedure was DNN with 2 hidden layers with
2000 units in the input layer, 100 and 100 neurons on
the first and second hidden layers correspondingly and 3
units in the output layer. Deeper architectures are diffi-
cult to train when the data set is small. The contingency
table of the classifier for validation data is shown in Table
3.For this contingency table the Kappa index is obtained
is k= 0.911.

4 Conclusions

The aim of this paper is localization based on recorded
events in Llaima volcano in Chile and, classification based
on these events. But these signals have a high level of
noise because, they have a very low amplitude and they
cross different layers of earth. Also, they have seismic
records, contained in high frequencies due to ambient
noise present (wind, snow, rain, avalanches, etc). The first
step in this paper is pre-processing on recorded signals
by MOT, LAV and LLA sensors in Llaima volcano. Spec-
tral Subtraction and Wiener Filter were explained as two
common denoising methods and then we proposed Mod-
ified Spectral Subtraction and Modified Wiener Filter as
two modified version of that methods. Those methods
were compared on real recorded data for LP, VT and TR
events. MWF eliminates an elevated level of noise rather
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than other methods with high performance and it is used
to prepare events with low level of noise for localization
and classification part. In second step, we use GCC with
combination by ML weighted function was selected as
a appropriate method for event localization in this pa-
per. This localization method (that is based on TDOA
from signals to sensors) is used for localization of various
events and, for sensors in X, Y and Z directions. Then,
we determine an area based on localization methods for
events. In the last part of paper, the aim is classifica-
tion on recorded signals of LP, VT and TR events. Deep
Neural Network is proposed as an appropriate method
for classification. This method can classify events with
almost perfect agreement with the expert. The proposed
method can be applied in a real-time scenario, once the
DNN is trained, it performs the classification of the events
in matter of seconds.

The Kappa coefficient shows a high agreement between
the expert decision and the classifier decision. The bi-
nary performance approach is shown in Table 4, Exacti-
tude, Error, Sensitivity and Specificity indices explained
in Section 2.4.1.

Table 3. Contingency table for LP, TR and VT events

Clasifier LP TR VT Total
LP 40 0 2 42
TR 0 14 0 14
VT 2 0 18 20

Total 42 14 20 76

Table 4. Binary performance of the classifier

Index LP TR vT

Ex(%) 97.36 100 97.36
Er(%) 526 0 526
Se(%) 9523 100 90

Sp(%) 9444 100  96.55

The binary approach for the performance of the clas-
sifier on each event shows that the proposed architecture
is able to clustering the event with a highly accurate per-
formance, showing results over 90 % for all the proposed
indices.
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