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COMMUNICATIONS

Run length limited error control codes
construction based on one control matrix property

Peter Farkaš,
∗

Frank Schindler
∗∗

In this manuscript a simple method is presented for constructing run length limited error control codes from linear binary
block codes. The run length limited properties are obtained via addition of a carefully chosen fixed binary vector - a modifier
to all codewords without introducing any additional redundancy. Modifier selection is based on a specific property, which
can be found in some of the linear binary block codes control matrices. Similar known methods are based on properties of
generator matrices. However some codes are specified via control matrices, for example low density parity check codes. The

method proposed in this letter could be applied to some of them directly. This is illustrated in this manuscript using example
in which a run length limited low density parity check code is obtained from Gallager code.
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1 Introduction

A run-length limited error control code (RLL-ECC)

has constrained run-lengths of identical symbols and can

be used for error control. The research of RLL-ECC can

be traced back to the late eighties of the 20-th century [1–

2]. In [3] a new modified construction was presented yield-

ing improved RLL properties for DC free error-correcting

codes. In [4] trellis RLL-ECCs were constructed. In [5] a

RLL-ECC for one error correction was proposed. In [6] a

systematic approach was given for obtaining RLL-ECCs

from binary error-correcting codes. The storage system

industry motivated research into relatively complex RLL-

ECCs based on turbo codes and low density parity check

(LDPC) codes [7–11]. Recently, new RLL Codes were pro-

posed for visible light communication (VLC) systems to-

gether with soft decoding methods [12–14]. In [15] algo-

rithms were presented for code design using finite state

machines which simultaneously provide a coding gain

while also mitigating flicker in VLC. In [16–23] RLL-

ECCs were constructed using the arrangement illustrated

in Fig. 1, from linear binary block codes (LBBC) using

modifiers obtained based on generator matrix properties.

This method has a disadvantage, that it cannot be used

directly for codes that are specified via control matrices,

for example LDPC codes. In contrast to this method, the

approach proposed in this letter could be applied to some

of them directly because the modifiers are selected using

a specific property, which can be found in some LBBC

control matrices.

2 Basic properties of Linear

Binary Block Codes Matrices

If C is an k -dimensional LBBC in which each code-
word c has length n , it could be defined using a [k × n]
generator matrix over a finite field GF (2). The control
matrix for C is defined in [24] as

C =
{

c; cH⊤ = 0
}

. (1)

Each row of H describes one control equation, which each
codeword must fulfil. For example the following H matrix

H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



 , (2)

which describes a [7, 4, 3] Hamming code, defines for each
codeword c = (c6, c5, c4, c3, c2, c1, c0) following 3 control
equations

c3 + c2 + c1 + c0 = 0 , (3)

c6 + c5 + c1 + c0 = 0 , (4)

c6 + c4 + c2 + c0 = 0 . (5)

N o t e . Each LBBC contains one all zero codeword
and therefore an infinite run of zeros could occur in an
infinite sequence of codewords.

3 Description of the proposed

construction method

In practice it is often necessary to avoid long runs
of identical symbols in encoded sequences. The practical
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reason to do it could be for example that synchronisation
is not well supported by such long runs. One method how
it could be done is to use a modifier m in cascade with
the LBBC encoder and add it to each codeword. On the
receiving end this operation could be reversed by adding
the same vector to each codeword before it is input to the
decoder as illustrated in Fig. 1.
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Fig. 1. Illustration of the basic principle for obtaining RLL-ECC
using an LBBC encoder and decoder in cascade with additions of

modifiers

In [16–23] the modifier formation was done using prop-
erties of G matrices described and proven in [7]. Unfortu-
nately, the LBBC (eg LDPC codes) are often defined via
their matrix and we cannot use this approach directly.
Therefore in the following we will describe a different
property which can be found sometimes in an H matrix
and which then allows us to specify the modifier based
on it.

Property. If the control equation of a linear binary
block code C contains a set E with an even number of
symbols, then inverting an odd number of symbols from
E in all the codewords of C creates a new code C′ in
which no codeword has symbols which are all equal to
zero or all equal to one in E . (C′ is a coset code of C).

P r o o f . Suppose that the codeword c from C is
transformed by inverting some symbols from E (which we
will denote cE ) to a codeword c′ from C′ in such a way
that all symbols corresponding to E in c′

E
are the same.

Let w be the even weight and nE be the even length of
cE respectively. To obtain c′

E
from cE either the w 1’s

or the (nE − w) 0’s must be inverted. But since both w

and nE are even, this transformation would require an
even number of inversions.

The application of the property could be illustrated us-
ing [7, 4, 3] Hamming code. For example (3) contains four
symbols c3, c2, c1, c0 . Therefore we can select any modifier
with seven bits which contains an odd number of ones in
the four rightmost coordinates eg m = (0, 0, 0, 0, 0, 1, 0).

Often it is possible to find in a control matrix more
than one control equation with an even number of sum-
mands for some codes. In case the sets of summands in
different equations are disjunctive, it is possible to apply
an odd number of negations in each codeword coordinates
subset corresponding to each such equation. Let us illus-
trate it using the control matrix (6) of the LDPC code,
which was constructed by Gallager [25]. One can see that

the first five rows specify five control equations with dis-
junctive sets of symbols, each containing four symbols.
Therefore it is possible to negate an odd number of code-
word coordinates in each corresponding subset using a
modifier

H =





















































1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1





















































. (6)

For example, we can use the following modifier

m = ( 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 ) . (7)

Using LDPC code defined by (6) and modifier (7) in the

arrangement illustrated in Fig. 1, we can get an RLL-

LDPC code with a maximal run length equal to six. It is

because in each quadruple of coordinates following each

other in encoded sequence not all symbols are equal. Con-

sequently, in the worst case there are at most six consec-

utive equal symbols inside each codeword and also in the

sequence consisting of concatenation of such codewords.

5 Conclusion

In this short communication we proposed a method

for constructing RLL-ECC based on one property, which

could be found in some ECC control matrices. We illus-

trated it using a Hamming code and an LDPC code. The

advantages of the method are as follows. It is very sim-

ple, any additional redundancy is introduced by it into

the encoded sequence and decoding the underlying code

does not have to be changed. The disadvantage is that in

some cases the necessary property is not present in the

particular control matrix and in such cases it cannot be

applied.
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