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VQ-based model for binary error process

Tibor Cséka, Jaroslav Polec, Filip Cséka, Kvetoslava Kotuliakova *

A variety of complex techniques, such as forward error correction (FEC), automatic repeat request (ARQ), hybrid ARQ
or cross-layer optimization, require in their design and optimization phase a realistic model of binary error process present in

a specific digital channel. Past and more recent modeling approaches focus on capturing one or more stochastic characteristics

with precision sufficient for the desired model application, thereby applying concepts and methods severely limiting the model
applicability (egin the form of modeled process prerequisite expectations). The proposed novel concept utilizing a Vector

Quantization (VQ)-based approach to binary process modeling offers a viable alternative capable of superior modeling of
most commonly observed small- and large-scale stochastic characteristics of a binary error process on the digital channel.

Precision of the proposed model was verified using multiple statistical distances against the data captured in a wireless sensor
network logical channel trace. Furthermore, the Pearson’s goodness of fit test of all model variants’ output was performed

to conclusively demonstrate usability of the model for realistic captured binary error process. Finally, the presented results
prove the proposed model applicability and its ability to far surpass the capabilities of the reference Elliot’s model.
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1 Introduction

Error characteristics of the binary channels, particu-
larly the wireless channel, have been a focus of model-
ing ever since the error burst occurrence was proven to
exhibit dependent behavior. Variety of different mathe-
matical concepts and their combinations into more com-
plex models have since been used to more or less precisely
model different characteristics of the binary error process.
The most widely accepted classification of error models is
proposed by Kanal and Sastry in their review of channel
error models [1] using a classification system based on
the model’s inner modeling principle: either generative
(utilizing a generating “underlying mechanism”) or de-
scriptive (fit specific stochastic properties of the observed
trace using empirical functions). More recent classifica-
tions have typically used the classification based on mod-
eling employed mathematical concept to classify them
as: pure (using only one mathematical method or a sin-
gle principle) and extended (various model configurations
primarily using cascading or modulating). The richness
and variability of different types of stochastic behavior
of the wireless channel leave open space for new models
capable of surpassing the limitations of the current state-
of-the-art.

2 Related work

Markov models were originally used to define the so
called generative model group and have since become
centric to multiple different model branches.The origi-
nal proposals were based on the discrete time Markov

chain, with the pioneering Gilbert’s model [2]. Elliot sug-
gested a modification [3] of Gilbert’s error model by in-
troducing the probability of generating an error also in
the models good state. The following revolution came
with Fritchman’s model and particularly its simplifica-
tion, the Simplified Fritchman’s model, widely applied in
high-frequency channel error modeling. More recent al-
ternatives of Markov based models include the bipartite
model [4], hierarchical Markov model [5] and extended
models, such as cascaded Markov model [6] which em-
ploys parallel Gilbert’s and Elliot’s generators. Hidden
Markov Models generate output trace using the same
generative and mathematical principle, but the internal
structure of the model is unknown and most approaches
estimate its parameters using algorithms such as Baum-
Welch or Turin-Sondhi [7]. A more recent addition to this
group of models is the Double Embedded Processes based
Hidden Markov Model [8]. Semi-Markov models were also
promoted after [9] showed that packet loss can only be
modeled using a time-inhomogeneous Markov chain.

Feasibility of Pareto distribution for error process
modeling was successfully explored in a study by Ilyas
and Radha [10] in their extensive research of errors on
IEEE 802.15.4 LR-WPAN. Nogueira et al [11] offered a
new perspective on empirical approach utilizing Markov
concepts, a subgroup of Markov Arrival Processes (MAP)
called Markov Modulated Poisson Process (MMPP) pro-
ducing a hyper-exponentially distributed random vari-
able. The problem of parameterizing MMPP models was
addressed egin [11-14].

Less commonly used types of models include the chaos-
based models (eg [15-17] and a more complex approach
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by Kopke et al in [18]), the discrete process-based gener-
ative model (DPBGM) based on the principle of Rice’s
sum of sinusoids (extensively described in [19] and [20],
both papers are validating the model proposed in [21]
on a real EGPRS channel trace), Stochastic context free
grammars (SCFG), fractal models, multi-fractal wavelet
model [22] and improvements of existing models by new
concepts, such as genetic algorithms (eg [23]).

3 Binary error process trace

An error process on a digital communication link can
be considered a binary discrete-time stochastic process. If
I is a countable set of integers t € I, a; the digital input
sequence, b; the corresponding output sequence and n;
the noise sequence also referred to as trace, then

bt:at—i-nt. (1)

A correctly received bit is in a trace represented by
”0” and an incorrectly received bit is represented by ”1”.
Error modeling then becomes equivalent to statistically
correct modeling of the trace characteristics.

Consecutive sequence of 717 is called an error burst.
An error gap may be defined as a sequence of consecutive
70" between two 71”7 and represents the distance of two
neighboring error bursts in bits. Empirically the shortest
error gap or error burst has length 1 [1]. The error over-
flow assumption stating that the last ”1” of the previous
packet and the first 71”7 in the following error packet
are not part of the same burst error, is considered in this
paper as well.

The trace used in this paper was captured in a WSN
laboratory environment on a non-line-of-sight (NLOS)
channel in indoor environment described in [24]. Verifi-
cation of empirical and Elliot’s model application on the
same binary trace as the one used in this paper is pre-
sented in [25].

4 Proposed class of VQ-based models

The proposed model can be logically divided into 2
logical and functional parts with distinct roles within the
model: randomness introduction and modeling transfor-
mation.

Randomness is inserted into the model by an arbi-
trary stochastic concept transforming an input from a
Random Number Generator (RNG). The role of random-
ness introduction in the proposed model is performed by
Markov chain, whose states each represent a group of vec-
tors from the codebook. Transitions are established by
observing the binary vectors in the trace and transitions
of their corresponding abstracted states. Randomness in-
troduction part of the model is thereby also responsible
for capture and modeling of the large-scale stochastic be-
havior present in the observed trace. A variety of differ-
ent stochastic concepts could be used instead of Markov
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chains, however, as demonstrated by the results of the
models’ output, Markov chains are sufficient for model-
ing the experimental WSN trace.

Small-scale stochastic behavior is modeled by the dis-
tribution of individual vectors within each state. There-
fore, as such, not only the transitions of states represent-
ing classes within codebook must be observed, but also
the individual stochastic behavior of vectors from each
class within their respective classes.

The following chapters in this paper demonstrate the
construction of two different types of codebooks, both
of which share the same principle of modeling the small-
scale error process by using the inverse generating method
to find the most suitable vector to generate.

4.1 Vector quantizer model based on Hadamard code-
book (HVQ)

The proposed HVQ model uses a well know VQ con-
cept and introduces a novel approach to codebook con-
struction for binary vector generation.

The codebook’s vectors are constructed from an arbi-
trary basis that allows multiresolution by using vectors
of different dimensions. For practical purposes, the code-
book could be constructed from optimal vectors obtained
from large number of measurements. Due to utilization of
binary vectors for codebook construction, the lossy VQ
compression method becomes lossless regarding the in-
formation content, provided that the binary vector set in
the codebook forms a basis. Because the modeled binary
trace can be entirely described by a codebook contain-
ing a finite number of vectors with different length, this
model retains all information about the observed binary
process.

A novel idea introduced for modeling arbitrary binary
traces using a HV(Q model is the codebook construction
exploiting the properties of binary sets and maximizing
both parameterization and generation computation re-
source efficiency. Assuming that the burst and gap pro-
cesses do not necessarily have to be independent leads
to formulation of a claim, that there are binary runs of
higher than minimal order having increased probability of
occurrence in the observed binary trace than other runs.
It is preferable to construct such codebook that contains
not only as small basis set of a chosen binary space, as
possible, but also include the vectors representing the fre-
quently occurring identified specific runs.

Such a set that contains basis vectors from a particu-
lar binary space and additional vectors from the same or
other binary spaces exhibits overcompleteness. The signif-
icant advantage of implementing the proposed codebook
lies in 2 important aspects: ability to represent all binary
vectors of specific lengths with the basis vectors contained
in the codebook and ability to represent specific longer
binary sequences using the additional codebook vectors.
Different approaches to basis set construction can there-
fore be chosen:

e Custom basis vector set
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e Standard basis vector set

HVQ uses vectors from Hadamard matrices of different
orders, therefore falls into the second category.

Definition of a suitable codebook does not guarantee
an efficient model. However, a combination of random
process selecting vectors from the codebook in the gener-
ation process is enabled by the abstract DTMC, whose
states represent different groups of vectors within the
codebook. Particularly interesting is the case, in which
the vectors are organized into groups based on their
length or focus. Binary vector assignment in the parame-
terization phase is equivalent with transition to the first
state of the multiresolution chain.

Within each state (group of vectors), vectors are as-
signed different generating probabilities based on their
occurrence in trace, effectively producing an intrastate
generating process. Stochastic process described by such
a DTMC therefore represents a VQ modulated Markov
process.

1) Example basis construction

The proof-of-concept demonstrated in this paper was
realized using a codebook constructed from the standard

169

Hadarmard matrix. The Hadamard matrix boasts many
different beneficial properties, of which the most inter-
esting ones for purposes of error burst and gap modeling
is the well balanced ratio of binary values in the matrix
and ability to capture both short and long runs of binary
values. The Hadamard matrix of order 1 (note that the
matrix numbering is different from Hadamard’s original

numbering) is
(1 1 2)
=11 1)

The core of HVQ model’s codebook is made of vectors
contained in H; and —H;, because together they form
a basis and thus guarantee that every binary vector of
length 2 is uniquely assigned to one of the codebook
vectors.

The Hadamard matrix of order n is defined as

_ Hn—l Hn—l
Hn N (Hnl _Hn1> ' (3)
Adding suitable vectors from Hadamard matrices of

higher order extends the codebook’s multiresolution ca-
pability.

2) Parameterization procedure

Parameterization procedure (Fig. 2) starts in the ini-
tialization block representing the creation or copying of
the Hadamard matrices into the codebook.

Three different HVQ codebooks were used to prove the
concept; they are composed of the following vectors

BE = {H3;H27H1; _Hl};
BG = {_H?n _H27 _H17H1}7
D = {—-Hs, H3,—Hy, Hy, —Hy, H: } .

Each of the vectors in the Hadamard matrix is repre-
sented by a state in the abstract Markov chain that intro-
duces randomness into the model. The transitions among
the states are strictly limited to transitions from the state
with higher priority to the nearest state with lower prior-
ity, unless a precise match of the analyzed binary vector is
identified, at which point the system returns to the state
with the highest priority. Priority is assigned by the order
of vector groups, with the leftmost element of each code-
book having the highest priority and rightmost elements
having the lowest priority. This principle is depicted for
the vector codebook BE in Fig. 1.

The binary set is sequentially and iteratively compared
on the binary vector basis to the vectors from each of the
groups contained in the codebook. A match is followed
with increasing the probability of the state correspond-
ing to the group containing the vector and increasing indi-
vidual probability of identified vector’s generation within
the group (state). If there is no match for the vectors of
the current group, a lower priority group is selected and
the sample from the trace compared to the new group
vectors.
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Fig. 3. HVQ generation procedure

Because the basis set is overcomplete, there is a match
for every binary vector combination that can occur, if
not in the higher order vectors, then in the lower order
Hadamard matrices.

3) Generation procedure

In the initialization phase the entire Hadamard basis
set is constructed and filled into the codebook (Fig. 3).
Secondly, a random initial state of the abstracted modu-
lated Markov chain is chosen.

The generation procedure introduces randomness via
the Markov chain modulated by the VQ codebook and
generation probabilities assigned to each individual vector
within each group (state of the Markov chain) in the
codebook.

The generation process is controlled by the Markovian
transition matrix. Each iteration the RNG produces a
value used by the current state (representing a group of
codebook vectors) to establish its transition to the next
state. If and only if this next transition is to the highest
priority state, the group is used to generate a binary vec-
tor. It does so by using a new RNG value to produce a
vector based on the intra-group (intra-state) vector prob-
abilities established in the parameterization process. Re-
gardless of whether the generation in the current iteration
occurred or not, the state transition defined by the first
RNG occurs at the end of the iteration.

The process is repeated until the desired number of
bits are generated.
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4.2 Proposed classification-based VQ model (CBVQM)

Classification-based binary VQ model represents a
novel approach to modeling binary error process captured
in form of an arbitrary binary trace (obtained using (1)
from the binary transmitter output and receiver input)
of any binary channel type. The channel, however, has
to be stationary, due to the stationary nature of the pro-
posed model itself. Adaptive extensions are possible, but
are not focus of this paper.

Error burst and gap processes are considered in the
general case, te they both can be dependent and indepen-
dent, meaning that generation of binary bursts and gaps
is not separated, bursts and gaps are being generated to-
gether in the same iteration and instance as parts of a
greater unit referred from now on as generated vector.

Classification is used to construct the codebook used
in the generation process in such a way, that binary code-
book vectors belong to at least one of the classes. In order
to achieve maximal precision, the total number of differ-
ent dominant stochastic sub-processes forming the error
bursts and gaps should be less than or equal to the to-
tal number of desired classes. In order to retain overall
stochastic behavior and individual burst and gap distri-
butions present in the trace, higher model precision is
achieved by capturing the histogram characteristic (rela-
tive number of runs) of the observed burst and gap pro-
cesses, instead of the burst and gap run sequences. Cap-
tured histograms of binary vectors from the trace with
fixed size are transformed into feature vectors (FV) nec-
essary for the classification process.

Utilizing a classification approach allows great vari-
ability in applying different classification techniques (re-
sults present in this paper were obtained using kmeans)
and sorting techniques (eg K nearest neighbors (KNN)).

As with every classification problem, one of the key
issues of this model is establishing the optimal number
of classes. Due to the nature of combined binary burst
and gap processes, this is most reasonably performed by
running classification process with different settings and
choosing the results with the best fit for the particular
channel.

The choice of distance metric that can be used to group
various types of distance rules of different fixed-size vec-
tors in the trace is a factor affecting the precision of the
resulting model as well. Assuming that part of the process
invariance is removed by employing histogram represen-
tation instead of occurrence order in FV construction,
Euclidean metric is considered a sufficient distance mea-
sure for classification purposes and is therefore also used
in this paper.

Randomness is added to the CBVQM model by ab-
stracting the identified classes as states of a discrete-time
Markov chain (DTMC), thus limiting the class transi-
tioning process to geometrical distribution. This can, of
course, be improved by using a different stochastic con-
cept for state transitions, but experiments have demon-
strated, that application of Markov chain random process
is sufficient for binary error channel modeling purposes.
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Fig. 4. Generation from the CBVQM model

4) Parameterization procedure

The CBVQM model parameterization process (Fig. 5)
starts with input variable initialization. The binary trace
with length n is partitioned into |n/l| temporary bi-
nary vectors of length [, each representing a part of the
trace with all characteristic features of the binary error
process contained. Information about the binary process’
stochastic characteristics that cannot be contained within
the binary sequences with length [ and can only be ob-
served on binary sequences longer than the length of the
temporary binary vector, will not be captured by the pro-
posed model’s parameterization process and therefore can
only occur as random behavior in the generated data.

Temporary binary vectors can be used as FV in the
classification process; however, the order in which the
bursts and gaps appear is time-variant. Therefore, the
same burst and gap binary sequence shifted by one bit
would produce a completely different FV. This is an un-
desirable effect, because such FV obviously does not re-
tain any information about stochastic distributions of er-

A?d Ijeatgée \fector All trace bits
o classification processed?
matrix

Select the next
bit sequence

A
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ror burst and gaps within the temporary binary vectors;
rather it stores information about their order. In order to
retain as much information about the stochastic behavior
contained within each of the temporary binary vectors, as
possible, the FV are not constructed from the direct se-
quence of bursts and gaps, but instead from its histogram
representations, one for the bursts and one for the gaps.
At this point a compression factor could be introduced,
eg histograms would be shorter than the length of the
temporary binary vectors, thereby assigning any occur-
rence of value larger than the last bin’s size to the last
bin.

FV is thus obtained as transformation of the tempo-
rary binary vector into a histogram of bursts and his-
togram of gaps, which are in the FV ordered as: (burst
histogram, gap histogram). The classification matrix nec-
essary as an input for the chosen classification technique
is constructed by placing each FV into a different row of
the classification matrix.

The chosen classification method with the specified
metric is then used to sort FVs into the selected num-
ber of classes using the specified metric. Each class is
uniquely defined by its centroid value representation iden-
tified during the classification procedure, where the cen-
troid, similarly as the feature vector, represents the du-
plet (centroid burst histogram, centroid gap histogram).
It should be noted, that centroid histograms do not have
to directly resemble the histograms in the FVs and can
create unique histograms representing distributions dif-
ferent from each FV.

The temporary binary sequences are after a successful
classification process replaced by the class to which each
individual FV is the closest (distance-wise respective to
the selected classification metric). Each class represents a
state of the DTMC in the generation procedure, therefore
the transition probabilities of the observed trace need to
be established. Considering that the length of the binary

Parametrize
DTMC
process

Classify

Parameters

Create error burst
histogram

Create error gap
histogram

Y

Construct
Feature Vector

Fig. 5. Parameterization of the CBVQM model
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trace is sufficiently long to capture the inter-class behav-
ior, individual state transitions can be established directly
from the class sequence obtained by temporary binary se-
quence substitution with class identifier. The result of the
DTMC state transition parameterization is the transition
probability matrix of the abstracted Markov process.

5) Generation procedure

The initialization within the generation process (Fig. 4)
starts with the creation of an entire set of vectors from
the binary set of order /. By assigning each of the vectors
from the complete binary alphabet (all binary vectors of
length 1) into one of the classes defined by the centroid
using the same metric, the model is capable of producing
every binary sequence of the specified length. A classifier
such as KNN can be used for this purpose.

The data set could however, due to the inclusion of all
vectors from the complete alphabet for the specific vector
length, exhibit high imprecision caused by not compen-
sating to reflect the actual probability of generation for
each of the vectors within a single class.

One of the relevant factors that could be used to gener-
ate the probability of generation for an individual vector
is its distance to the centroid. Because all binary vectors
of length [ are represented in the binary alphabet, it is
possible that a number of vectors is not within a reason-
able distance to any of the centroid, yet the classification
process will assign it to a particular group because of its
closest proximity to it, in order to increase the generating
probability of those vectors that are closer to the centroid
and decrease the generating probability for vectors that
are further away (distance penalization). Thus, the gen-
erating probability of the i-th vector in the j-th class
depends on the second power of the inverse distance d;
of the vector from the centroid

1

pzzﬁ (4)

The distance proposed by this metric proved sufficient
for binary error burst and gap modeling, but is subject
to further discussion and exchange for a different metric
that could prove to produce even more precise results.

All probabilities p; for each state are used to produce a
vector generating histogram that can be transformed into
the CDF of the intra-state vector generating process.

A distinct complication arises, particularly, if the total
number of classes is higher than the number of compo-
nents of an error burst and gap process. In such a case,
multiple centroids close to each other are identified in the
trace, but the process of assigning the vectors from a com-
plete set based only on the nearest neighbor would assign
the binary vector to the nearest class. That would, how-
ever, undermine the distance concept of generating prob-
ability calculation. Two readily available solutions could
rectify this problem: reduction of total number of classes
or assignment of the same vector to multiple classes.
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Multiple vector class assignment is a faster solution
that retains the proposed number of classes, where any
distance shorter than the nearest neighbor for all vector
assignments must be considered, resulting in the possi-
ble presence of a single vector in multiple classes with
different generating probabilities.

Lastly, an arbitrary state from the abstracted Markov
chain representing the stochastic transitioning process is
selected as the starting state, concluding the initialization
phase of the generation process.

Once the initialization stage is finished and the gen-
erating set has been initialized and configured to reflect
the binary data trace parameters, the generation process
is relatively simple and can be summed up in two distinct
steps. Firstly, a state transition based on the output of the
RNG is produced. Then, after each state transition, the
destination state’s intrastate generating CDF (based on
individual vector probabilities of occurrence p;) is used
to produce a binary vector from that state using the in-
verse method, repeating the process for as many bits as
need to be generated.

5 Statistical distances for result analysis

Divergences were considered for analysis of the mod-
eled results regarding their ability to capture non-com-
plete histograms with limited ability to partition the bin
space.

Following chosen statistical distances serve as refer-
ence values for establishing the quality and precision of
the proposed models.

5.1 Hellinger distance (HD)

Hellinger distance is a special case of the g-divergence
for §—1/2 and is defined for discrete measurements as

D(P.Q) = %\/Z VE-VEh )

5.2 Divergence x?

A special case of x*-divergence, where a = 2 is defined

as
2

PP =Y wima) (6)

qi

5.3 Jeffrey divergence (JD)

Jeffrey divergence is an improvement of Kullback-
Leibler divergence which improved on its deficiency in
evaluating histograms with various bin occupancies. JD
does not take into account any bins that have zero occu-
pancy in any of the compared histograms. This divergence
is relatively underused despite its beneficiary properties
and it was purposefully chosen for verifying the model
applicability due to the unevenly generated data in his-
togram bins that cannot guarantee that the same bins
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will be occupied in both the reference and the modeled
histograms. Thus, JD avoids the problem of division with
0 present in KL-divergence. Jeffrey divergence is

_ , &, pi
D;(P,Q) = Z (pz log log . + g;loglog ml_) (7)

where m; = (p; + ¢;)/2.

5.4 Mean-squared error (MSE)

The MSE corresponds to the second moment of the
error representing the variance of the compared model.
Given histograms p and ¢, where p represents the refer-
ence observation, the MSE of the model ¢ is

1 1
MSE(P,Q) = -~ > SE; = - > i—a)? ()
where n is the total number of unique bins and SF is the
squared error of the i-th bin observation.

5.5 Pearson x? goodness of fit test

The null hypothesis of the Pearson x? goodness of fit
test is assumption that the observation originates from
a theoretical probability distribution produced by a sta-
tionary ergodic source. The testing statistic is calculated
as [26)

L 0\ 2
Vi ¢

where f; is the observed empirical frequency of values
of the i-th class, P; the theoretical probability of values
in the i-th class of the total set divided into n classes
and N is the size of the observed data set. Validity of
the null hypothesis asymptotically approximates the x?
distribution with n —p — 1 degrees of freedom (p is the
number of estimated parameters).

The x2 test is mathematically correct, however simi-
larly as other statistical tests, the null hypothesis is re-
jected for large data sets, such as the one produced by the
wireless channel model. This effect can however be miti-
gated by the coefficient of discrepancy C' [26], applicable
only under the assumption that the y? statistic rises lin-
early with the number of elements NV in the set, and the
theoretical relative probabilities are stationary, then the
discrepancy coefficient

(10)

=1ia®

According to [26], the acceptable values for the good-
ness of fit test are C' < 0.05 for large data sets (such as
the one produced by the proposed generators).
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6 Results

The parameters for each model are not included (as
they can be quite extensive), but can be obtained by the
parameterization process described in Section 4.1.

Although the real analysis is performed on discrete
data, for a better visual representation all stochastic pro-
cesses were interpolated with the cubic spline function.
Histograms are depicted with relative probability values
instead of the absolute number of elements in the bin to
better visualize the process’ PDF.

6.1 HVQ

HVQ, unlike the empirical models and Elliot’s model,
successfully passes all goodness of fit tests in case of HVQ-
BG and HVQ-D with HVQ-D being the most successful
one according to the majority of the distance metrics.
Considering its superior quality and error process captur-
ing ability, the HVQ-D and HVQ-BG can both be consid-
ered a suitable and verified replacement for the reference
Elliot’s model.

1) Cluster error analysis

The cluster error analysis of data produced by three
different variants of the HVQ can be seen in Fig. 6.
The three variants produce significantly different results.
Rather surprising is the low precision of the basic version
with emphasis on the error burst resolution. The only con-
clusion that can explain why such a difference in cluster
probability fitting precision between a version prioritiz-
ing higher resolution of errors (HVQ-BE) and versions
prioritizing higher resolution of gaps (HVQ-BG, HVQ-D)
occurred is because the gaps appear to be more impor-
tant for creating the overall cluster probability. The total
bit error rate is not very high in the observed channel,
only 11.124 %, hence the incomparably bad performance
could be explained by the fact the error bursts form only
slightly more than the tenth of all binary symbols present
in the trace. Therefore, by increasing the burst resolution
at the expense of the binary error gap resolution, the
overall cluster error probability characteristic suffers.

Quantification of the visual representation from the
selected metrics (Tab. 1) proves the conclusions obtained
from the visual observation of the cluster error prob-
ability. Classification based binary model version with
the highest emphasis on multiresolution capture of er-
ror bursts produces the worst results. Although the Fig.
6. cannot be used to conclusively establish, which of the
other two versions is superior, the calculated distances are
in all cases in favor of the HVQ-D version, which employs
multiple higher order matrices for multiresolution of both
errors and gaps. The results produced in the cluster error
probability analysis are even superior to those produced
by the reference Elliot’s model, hence regarding the bi-
nary cluster error probability, the HVQ versions BG and
D are a suitable substitution for the reference model in
the domain of cluster error generation, producing a better
fit.
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ence trace

Table 1. Distance metric evaluation of probability p(n).

JD (Dy)
HVQ-BE  0.02726
HVQ-BG  0.00044
HVQ-D  0.00004

HD(Dy) MSE
0.18014  0.04886
0.02247  0.00051
0.00708  0.00008

2) Error burst analysis

The results of binary error burst process within the
generated data also confirms high quality of the proposed
HVQ. Apart from the low gap resolution version HVQ-
BE, the other versions demonstrate excellent precision in

capturing the nature of the burst error, as demonstrated
in both the PDF and CDF of the error burst process
(Fig. 7). Surprisingly enough, not even the higher reso-
lution of the HVQ-BE model in error burst analysis was
sufficient in producing a reliable characteristic.

Table 2. Distance metric evaluation of error burst and gap fit

Error burst Error gap
JD (Dy;) HD (D) MSE C(x?) JD (Dy;) HD (Du) MSE C(x?)
HVQ-BE 0.09965 0.34254 0.40329  1.29292 0.02529 0.17391 0.01088  0.01408
HVQ-BG  0.00093 0.03277 0.00174  0.00874 0.02616 0.17542 0.00788  0.00073
HVQ-D 0.00168 0.04441 0.00341  0.00335 0.02182 0.15993 0.00791  0.00031
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Fig. 10. Error gap histogram(up) and CDF (down) for all models
and the real channel data

] Reference trace CDF

o8l o L L A A
: : - o®
: : Cod
: : °®
06 ......... IR SR “ R S
: C e
0.4 HVQBE — : :
4| HVO-BG < Y I TR SRR
HVQ-D $ : : :
T e : : :
02 .......... ‘ P _ ......... . ......... ..........
® .
0 0.2 0.4 0.6 0.8 1

Modeled CDF

Fig. 12. P-P plot of the error gap models compared to the reference
trace

Table 1 contains the results of distance analyses on the
burst error generated data. As expected after observing
the cluster error probability and the error burst distribu-
tion, the HVQ-BE model did not pass the x? goodness of
fit test and could not even hypothetically be considered
sufficient to model the burst error process. However, the
other versions both pass the goodness of fit test, hence can
be considered a hypothetically sufficient quality models of
the observed binary burst error process.

These conclusions are also confirmed by the SE; char-
acteristic (Fig. 8), which confirms high variance of the
observed and modeled process in case of the HVQ-BE
version, but extremely low variance through the entire
observed interval for the other versions of the HVQ
corresponds with previous PDF and CDF observations
about high precision. Well representation of the reference
stochastic process using the HVQ-BG and HVQ-D ver-
sions and absolute failure of fitting the process by the
HVQ-BE model can be visually confirmed by the P-P
plot in Fig. 9.
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Fig. 11. Error gap SE curves for all models
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Fig. 13. Cluster error probability curves p(n) for selected CBVQM

3) Error gap analysis

Error gap model data of the observed binary error gap
process shows higher difference between the two favored
gap multiresolution versions of the HVQ, but surprisingly,
even the first model with higher resolution on error bursts
produced interesting results. Observations of the Fig. 10
leads to a conclusion, that visual inspection can only
hardly determine a superior technique, therefore a closer
look at the results of the distance analyses is necessary.

As can be seen from the distance metrics, the well-
balanced nature of the modeled error gap process pro-
hibiting visual establishment of superior modeling ap-
proach manifested itself in the form of well-balanced dis-
tance metrics that could not conclusively establish a win-
ner. Although all the HVQ models could be considered for
real error gap modeling after fulfilling the null hypothe-
sis and passing a goodness of fit test, the real winners are
again the HVQ-BE (MSE) and HVQ-D (JD, HD and x?)
models with more distance metrics in favor of the latter.

The well-balanced error gap values produced by all
models produce a very small SE overall, and the HVQ-
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Table 3. Distance metric evaluation of probability p(n)

JD(Dy)
CBVQM(5,8)  0.00022
CBVQM(5,10)  0.00008
CBVQM(5,15)  0.0002

HD(Dy)  MSE
0.01584  0.00148
0.00988  0.00047
0.01528  0.0011

Table 4. Distance metric evaluation of error burst and gap fit

Error burst Error gap
JD(D;) HD(Dgn) MSE C(x® JD(D;) HD(Dw) MSE C(x*)
CBVQM(5,8) 0.00903 0.10331 0.01281  0.01259 0.00826 0.09822 0.00383  0.00024
CBVQM(5,10)  0.02559 0.19682 0.00525  0.09887 0.02467 0.16964 0.01274  0.00043
CBVQM(5,15)  0.00507 0.14562 0.01813  0.01308 0.08792 0.33198 0.02020  0.01251
1 Probability Squared Error
: Channel trace 0.012
001 ..............................................
0008 B T
0006 N U T R S
0.004 ~CBVQM(5,8) ...
> CBVQM(5,10) - : :
- CBVQM(5,15) : : :

Error burst length

Fig. 14. Error burst histogram (up) and CDF (down) for all models
and the real channel data

BE most probably boasts a better MSE distance solely
because of the better fit for gap length 2. The SE contin-
ually fades until the gap length 11, after which point it is
almost unobservable. Furthermore, the overall variance of
the error as depicted on the vertical axis is in reality very
small, in the order of 1072, an extremely high precision
for a model.

A well-balanced fir of the optimal line and proposed
model in P-P plot (Fig. 12) for the favorited two models
makes it difficult to establish a clear winner just by visual
inspection. However, all models offer a relatively good fit,
with HVQ-BG and HVQ-D demonstrably more precise
results.

6.2 CBVQM

1) Cluster error analysis

Cluster error probability (probability of an error-free
cluster of a particular size) analysis for a 5 class variant
of the CBVQM (Fig. 13) demonstrates a very good fit
for every vector length present. The results suggest the

1 2 3 4 5 6 7 8
Error burst length

Fig. 15. Error burst se curves for selected CBVQM

presence of such a factor as optimal combination of both
the number of classes and the vector length determine
model precision.

Quantification of the 5 class CBVQM variant mod-
els (Tab. 3) shows that the best model fit to the cluster
data from the trace observation is achieved by the vari-
ant using vector length 10. However, it has to be added,
that all models produce an excellent fit, not just the CB-
VQM(5,10), but the combination of parameters appears
to be the most suitable choice for this particular modeling
problem.

2) Error burst analysis

Clearly superior version of the model can once again
not be established by simple visual inspection of the ob-
served and generated error burst PDF and CDF (Fig. 14).

All proposed models seem equally capable of produc-
ing a sufficiently precise data set, therefore the distance
analysis is performed to obtain clear results (Tab. 4).
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Fig. 18. Error gap SE curves for selected CBVQM

The data clearly shows that the 5 class version of the
CBVQM with generating vector length 10 bits does not
produce the desired results. It is possible and observa-
tion from different runs confirm, that the classification
process created a centroid from the binary trace that al-
lows inclusion of vectors capable of degrading the output
characteristic to a degree that makes it impossible for the
model to pass the goodness of fit test.

This leads to a conclusion that a revision should be
taken at some point to improve and optimize the code-
book vector selection process to avoid including poten-
tially harmful vectors. One of the possible variants is the
unrealized parameterization proposition presented in the
model description section.

Squared errors for the CBVQM variants can be seen in
Fig. 15. The error is most dominant in the shorter burst
lengths and slowly diminishes as it passes to the bigger
lengths.

The P-P plots of the analyzed CBVQM variants

(Fig. 16) also demonstrate a very good fit of all mod-
els to the ideal diagonal line.
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Fig. 17. Error gap histogram (up) and CDF (down) for all models
and the real channel data
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Fig. 19. P-P plot of the error burst models compared to the refer-
ence trace

3) Error gap analysis

Error gap analysis of the results produced by the CB-
VQM for 5 classes produces results of gap process distri-
bution that can be seen in Fig. 17. From the first glance
it can be seen that each of the modeled sequences fits the
desired observed PDF well, with the exception of several
local maxima that alter the overall statistics.

These produced maxima further prove that the chosen
parameterization method is not yet perfect, because it can
include in the codebook such vectors that would not be
observed in the real binary trace.

Interestingly, even despite the obvious local minima
and maxima, the overall statistic of the data is not af-
fected to a degree that would cause a fail of the goodness
of fit test (Tab. 4). Furthermore, it can be seen that the
CBVQM achieves very good results, even when compared
to the previous models and, more importantly, unlike the
empirical models and the reference Elliot’s model [25],
both the burst error and error gap statistics pass the
goodness of fit test, therefore the model as a whole can
be confidently used.
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The SE; of the observed process (Fig. 18) behaves as
expected after identifying the local maxima already ob-
served in the PDF (Fig. 7). Apart from low gap lengths,
the highest squared errors occur at gap lengths approxi-
mately corresponding to the vector sizes used in the re-
spective models. This fact reinforces the conclusion that
substandard vectors must still be passing the stringent
distance criteria introduced in the parameterization pro-
cess and get to the codebook.

The P-P plot (Fig. 19) demonstrates high precision of
the CBVQM(5,8) model further confirming the assump-
tion that the shorter vector lengths yield more precise re-
sults for this particular application of the proposed novel
classification based VQ model.

7 Conclusion

This paper introduced a novel model concept for arbi-
trary digital channel error process. Such models are typ-
ically used for a variety of tasks, a great example could
be replacing the application of binary symmetric chan-
nel in [27] to produce an even better specialization for a
chip implementation. Mobile network link design is an-
other particularly interesting application currently being
explored.

The proposed model concept is based on vector quan-
tization with codebook, constructed using two different
techniques. First one represents utilization of standard
vectors contained in different orders of Hadamard ma-
trices used for their beneficial purposes, and the second
technique introduces a different concept allowing for ar-
bitrary VQ modulating Markov chain structure. Further-
more, the presented novel concept’s applicability to mod-
eling a real trace was verified using the goodness of fit
tests and compared using the statistical distances.

The randomness is into the VQ-based models intro-
duced by a DTMC, where states are entities representing
groups of vectors within the codebook.

Results presented in Tabs. 2 and 4 clearly demonstrate
applicability of the models to modeling the wireless digi-
tal channel error trace.

HVQ model is, given its various modifications, a supe-
rior model of the two propositions. Thanks to the already
mentioned beneficial properties of the vectors contained
in Hadamard matrices, the channel error trace modeling
capability of the HVQ achieves better overall results than
the second proposed alternative, the CBVQM. Utilization
of a different standard vector set for the codebook con-
struction can lead to even more superior results.

As such, the CBVQM offers an innovative approach
to optimal codebook construction, but factors such as the
optimal number of classes and vector length remain a key
issue. Because this problem cannot be solved analytically,
different models were constructed using different vector
length (8, 10 and 15) and 5 classes. Further analysis of
optimal class number and vector length is out of the scope
of this paper. However, as the results in the previous
section confirm that shorter vectors should be preferred
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in real applications to increase model precision. This is
caused primarily by inclusion of low quality vectors from
the entire alphabet of vectors with the specified length in
the initialization phase of the generation process. A more
elaborate approach using a different distance punishing
rule or vector selection could be applied to improve the
precision of the model and quality of its output.

Results with different numbers of classes were also per-
formed, but they do not contradict the findings obtained
from the results and observations presented in this paper.

As for the results, two of the presented CBVQM were
successful at passing the goodness of fit tests for both
their error burst and gap process. Even more, they ex-
hibit extremely good fit of the cluster error probability.
They are a viable and efficient replacement or alterna-
tive to the unsuitable empirical models and insufficiently
precise Elliot’s model [25]. The universal nature of code-
book construction also predetermines application of this
model to any realistic binary modeling problem to which
it can naturally and efficiently adapt, removing much of
the limitations binding other model concepts.

Conclusively, both model types, the HVQ and CBVQM
are more than a viable alternative to the current state-
of-the-art models, such as the Elliot’s model.
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