DE GRUYTER

OPEN Journal of ELECTRICAL ENGINEERING, VOL 68 (2017), NO2, 87-98

Semi-automated process of adaptation of platform
dependent parts of embedded operating systems

Martin Vojtko, Tibor Krajcovic*

Each year manufacturers develop new processors. As a reaction to this continuous development, the developers of software
have to adapt their software to those new processors. As a minimal requirement, the code of an operating system has to be
changed to enable the execution of other user applications. This change is a complicated process during which incompatible
parts of an operating system have to be redesigned and missing parts have to be implemented. Complications arise when
there is a need to adapt an operating system to completely different processor architecture. In this paper we present a novel
adaptation process that has preconditions to reduce the impact of these complications. This process uses a file for the formal
description of a processor, which is also described in this paper. The formal description could act as a standard for processor
manufacturers and could allow the generation of a platform dependent code of an operating system. This paper presents
concepts, definitions and ideas of the adaptation process and shows possible solutions for an automatic generation of code

parts of an operating system.

Keywords:
code generation, platform dependent code

1 Introduction

Adaptability, the ability to easily adapt an existing
system to a changing environment is, and will be, a great
concern in the segment of embedded operating systems.
This ability is an important competitive factor as it short-
ens the adaptation time and in this way, shortens the time
to launch on the market.

Each year many processors become obsolete and many
new processors are introduced to a market as their succes-
sors. This continuous change regarding new processor ar-
chitectures raises the need for a methodology that allows
a fast and efficient adaptation of the operating systems
and embedded applications. In the near future, embed-
ded systems will have multi-core or many-core architec-
tures [1,2]. Those architectures will introduce new types
of operating systems that will be self-adaptive [3]. The
operating systems will operate in a heterogeneous envi-
ronment and they will use databases of existing processor
ports, device modules and processing cores. When a new
processor is plugged to a system, the modules and plat-
form ports of the operating system will be loaded to the
processor memory from the database during the system
initialization or even online during a system run-time. To
create such a database, the developer needs to implement
missing device modules and processing core modules for
an operating system.

The selection of a fitting architecture of an operating
system has large impact on its adaptation. An operat-
ing system with a well-chosen architecture is easier to
adapt. Most modern embedded operating systems have
kernel architecture. This means that the kernel manages

formal description of embedded operating systems, formal description of processors, automatic source

the devices and memories of a processor, the scheduling
of processes, and the communication between them [4, 5].
Other services of an operating system, such as file man-
agement or device drivers, are separated from the ker-
nel. The mentioned parts of the kernel must be modified
during the migration to the new processor architecture,
while services which are out of the kernel stay mostly un-
changed. The level of difficulty of the change depends on
the internal structure of the operating system kernel. A
monolithic kernel represents an example of the type of
architecture where even a small change in the code of the
kernel can result into lasting problems [4]. On the other
hand, a modular and layered kernel organization helps
to reduce the complexity of the adaptation because the
parts of kernel are loosely coupled [6]. The most affected
part of a layered operating system is the platform depen-
dent layer that acts as the glue logic between a processor
and the parts of an operating system [7]. In this layer, the
code that encapsulates the processor architecture has to
be modified first, even though it is the least important in
the eyes of the developer of an operating system.

In this paper, we present a novel adaptation process
that consists of steps that allow a partial automation of
the adaptation of an embedded operating system. This
process is build for simple embedded operating systems
consisting of a task scheduler, a memory manager and
an input/output manager. We present the process that
allows an automatic generation of the platform dependent
parts of the operating system.

In the first place, it will be the definition of the Proces-
sor Formal Description (PFD). This definition has such a

*Institute of Computer Engineering and Applied Informatics, Faculty of Informatics and Information Technologies, Slovak University
of Technology in Bratislava, Slovakia, martin.vojtko@stuba.sk, tibor.krajcovic@stuba.sk

DOI: 10.1515/jee-2017-0013, Print (till 2015) ISSN 1335-3632, On-line ISSN 1339-309X (© 2017FEI STU

88 M. Vojtko, T. Krajcovi¢: SEMI-AUTOMATED PROCESS OF ADAPTATION OF PLATFORM DEPENDENT PARTS OF ...

Processor
Datasheet

N N\

Processing core
Datasheets

Processing core
Workflow

Analysis of N Prolc)essor. Devices
Processor Devices e escription
Design of Device - Gf:nerz;;or; of
Modules evices Platform-
dependent Code

Formal Descriptions
of Device Modules

Implementation of
Device Modules

A 4

Device Modules
Source code

Platform-dependent
Source Code

Fig. 1. Process of OS adaptation

format which can be automatically processed by a com-
puter into operating system or any firmware source code.

In the second place, we present an example of simple
generator of operating system code. The generator shows
how the PFD can be processed into low-level code. A
discussion about existing problems of the generated code
is also included.

In the last place, the generated platform dependent
code layer is used to design modules of the operating
system that manage the existing devices of a processor. A
simple example of a part of an operating system module
shows how the generated code can be used during the
design of parts of the operating system.

2 Process of OS adaptation

The adaptation process is designed to help the devel-
oper of an embedded operating system to produce a plat-
form dependent code of an operating system for a chosen
processor. It also helps to develop modules of an operating
system that manage existing processor devices and pro-
cessing cores. The process, described in Fig. 1, is suitable
for embedded operating systems that have a layered ar-
chitecture, consisting of at least one platform dependent
and one platform independent layer (MOS [6], FreeRTOS
[10] or others [11-14]). As the input for this process the
developer needs the following documents:

e Processor datasheet — provides information about
processor devices and processing cores;

e Processing cores datasheet — provides information
about the processing core of the processor;

e Processor description file — represents a computer-
readable form of the processor datasheet.

The processor formal description (PFD) contains in-
formation about every device and core that is in the pro-
cessor. This description helps to easily identify commu-
nication interfaces between devices and processing cores
and the operating system. Those communication inter-
faces are the central part of the operating system plat-
form dependent code. More information about the PFD
can be found in Section 3.

According to Fig. 1, the adaptation process can be
divided into two separate workflows. The workflow on
the left side of Fig. 1 is focusing on processor devices.
The workflow on the right side is focusing on processing
cores that will not be presented in this paper.

The device workflow consists of the device analysis
phase, the device module design phase, the platform de-
pendent code generation phase and the device module
implementation phase. The output of the workflow is the
platform dependent code and the code of OS modules.

In the device analysis phase the functionality of each
device is analyzed in the processor. The Device is any
hardware component of processor that helps to receive or
sent data (serial interface, analog to digital converter, . . .
) or can do auxiliary work (timer/counter, floating-point
unit, ...).

In this phase, the developer of an operating system
processes information about devices from a processor

Journal of ELECTRICAL ENGINEERING 68 (2017), NO2

datasheet. The developer searches for information such
as device initialization, possible working modes, device
timing diagrams, device behavior, and sources of inter-
rupts. The output of this phase is the formal description
of all processor devices. In the future, the manufacturer
of the processor can perform this phase so that the de-
veloper will need to focus only on the operating system
adaptation. In other words, the developer will have no
extra work on creation of the PFD.

In the device module design phase, the developer pro-
duces the description of the device module. The device
module is software that encapsulates processor device. In
this phase, the description of the device communication
interface is used from the PFD. The developer maps the
interface to the module description and designs the con-
nection between the module and the processor device.
The result of this phase is the module description file,
which allows full or partial code generation depending
on the complexity of the device and the created module
description.

A parallel phase to the module design phase is the
device platform dependent code generation. In this phase,
a platform dependent code is generated for the device
communication interface. The resulting code based on
the device formal description creates an interface layer
between the processor device and the operating system
module.

The last phase of the device workflow is the phase dur-
ing which the description of the module is implemented
and/or generated to a chosen programming language. In
this phase, the device module is implemented and linked
with the platform dependent code.

Similarly, as the device workflow, the core workflow
consists of an analysis phase, a module design phase, a
platform dependent code generation phase and a mod-
ule implementation phase. In this work, we focus on the
device workflow only.

3 Processor formal description

A formal description is needed to allow the automatic
generation of the platform dependent code. The descrip-
tion proposed in this chapter describes a processor from
the top to the bottom starting from processor devices and
processing cores. First draft of the PFD was presented
in [15], in this paper we present full definition.

DEFINITION 1 PROCESSOR. A processor p is a triple
{A, B,ap}, where A = {ay,a2,...,a, | n € NT} is
a finite set of processing cores of a processor, B =
{b1,b2,...,bp, | m € N} is a finite set of devices of a
processor, and ap is address space of a processor defined
as set of accessible addresses.

Set B(p) is a finite set of devices B of a processor p.

89

DEFINITION 2 DEVICE. A device b; € B(p), i =
1,2,...,|B(p)|} is a triple {R,I,S}, where R = {rq,ra,
...,Tn | m € N} is a finite set of registers of a device,
I = {i1,i2,...,i, | n € N} is a finite set of interrupt
signals of a device, and S = s1,82,...,8, | n € N} is a
finite set of manageable signals of a device.

Set R(b) is a finite set of registers R of a deviceb.

Set I(b) is a finite set of interrupts I of a device b.

Set S(b) is a finite set of manageable signals s of a
device b.

Similarly, as the devices, a processing core can be de-
fined as a tuple of registers, signals, modes and intruc-
tions. A manageable signal is a signal that can be read
or written by an instruction from the instruction set of a
processor.

DEFINITION 3 REGISTER. A register of a device r; €
R(®), i = 1,2,...,|R()| is a quadruple {ad,t,w,F},
where F' = {fi,fo,....fn | n € NT} is a finite set
of register parts ad is an address of a register, t is a
type of register which can assume a value from the set
{‘control’,’data’, ‘state’}, and w is the width of a register
in bits.

Register of any processor device can be divided into
smaller parts. Each part represents one configurable or
measurable variable of the device. (eg serial interface
mode register contains configuration bit for enabling par-
ity check). One configuration represents one register part
that can reach values from limited range (Fig. 2). Some of
the values can have specific meanings. For those values, it
is possible to give them descriptive names. We call those
values as named values.

DEFINITION 4 REGISTER PART. A register part f; €
F(r), i = 1,2,...,|F(r)| is a quadruple {m,g,O, D},
where m is a mask of a register part that represents an
occupied place in a register, g is a type of register part
operation that declares whether a part is read-able, write-
able or both, O = {01, 02,...,0, | n € N} is a finite set of
named values of a register part and the number of those
values satisfies (1), and D = {ds,ds,...,d, | n € N} is a
finite set of structural dependencies of a register part.

Set O(f) is a finite set of named values O of a register
part f.

Set D(f) is a finite set of structural dependencies D
of a register part f.

w(r)ym(f)y

0 < |O(f)] < 2T (1)

DEFINITION 5. Let w(r) be a register width, then a mask
m(f) of a register part is a binary vector that has width
w(r) and the sum of the coordinates in this vector satis-
fies (2). If coordinate m(f)r = 1 of binary vector m(f),
then for register r it is true that the bit of register with
coordinate number k is occupied by a register part.

r)
m(f)x < |m(f)] = w(r). (2)

1

£

1<

~
Il

90 M. Vojtko, T. Krajcovi¢: SEMI-AUTOMATED PROCESS OF ADAPTATION OF PLATFORM DEPENDENT PARTS OF ...

THEOREM 1. Let us have register parts f;, f; € F(r);
i, =1,2...,|F(r)|,i # j and a finite set of activation
and deactivation dependencies Dap(f;) = 0ADap(f;) =
(0, then the masks of register parts m(f;) and m(f;) are
orthogonal and their scalar product satisfies

r)

£

m(fi)km(fi)r = 0. 3)

1

E
Il

Proof. Set Dap(f) is explained in Definition 15 for
now assume that this set is empty. Let us say that (3) is
not satisfied, then at least two register parts f;, f; exist
in a register that occupies the same bits in a register (they
are not orthogonal). If this situation occurs the change in
one part will lead to a change in the colliding part, so the
register has poor design. [J

THEOREM 2. Let us have the register part f; € F(r),
1,2,...,|F(r)] and a finite set of activation and
deactivation dependencies Dap(f;) =0, then

7: =

\ w(r)
[F)] <Y F)l Y m(fi)e < w(r). (4)
i=1 k=1
Proof . Upper bound: From (3) we can deduce that
for each k=1,2,...,w(r) we obtain
[£(r)
0< Y m(fie<1. (5)
i=1
If we apply the sum of every coordinate to (5) we have
w(r) w(r) |[F(r)] w(r)
0> Y mfie<d 1
k=1 k=1 i=1 k=1
and this equals to
[£(r)w(r)
0< m(fi)e < w(r) (6)
i=1 k=1

From the equation (6) it is true that from the upper
bound the equation (4) is true. For the bottom bound,
from the definition of a register it is true that |F(r)| > 0.

Lower Bound: If we apply the sum for each register
part on (2) we have

[(r)]

i=1
and this equals to
[F(r)]w(r)
[F(r)] < m(f)e < w(r)|F(r)]. (7)
i=1 k=1

From (7) it is true that from the lower bound the equation
(4) is true. For the upper bound it is true that w(r) <
|F'(r)|. By combining of boundaries from (6) and (7) it is
proven that equation (4) is correct. OJ

DEFINITION 6 NAMED VALUE. A named value of a part
0; € O(f), i=1,2,...,]0(f)| is a double {n,v}, where
n is a name of a named value and v is a value of a named
value of a register part represented by a binary vector,
which satisfies

ol = [m(f)l Ao+ m(f) =m(f). (8)

Conditions Reserved Control bits

!_‘_\!J_\I l |

3130292827 8 7 6 5 4 3 2 1 0
|N|Z|C|V I|F|T| Mode

Fig. 2. Status register of arm7tdmi containing seven 1b register

parts and one 5b register part. Part I is bit that enables interrupts

on the processor. It has two named values: 0 = disable and 1 =
enable.

DEFINITION 7. A signal of a device s; € S(b), i =
1,2,...,]5(b)| is a quadruple {ss,w,O,C}, where ss is
the direction of a signal, w is the width of a signal,
O = {01,02,...,0, | n € N} is a finite set of named
values of a signal and the number of those elements |O|
satisfies (1), C' = {c1,¢2,...,¢n | m € N} is a finite set of
processing core inputs to which a signal is connected. If
ss is an input then C' = 0.

DEFINITION 8. An interrupt signal is € I(b), i =
1,2,...,|I(b)| is a double {¢, Z}, where ¢ is the input
signal of a processing core or a device that the interrupt
signal is connected to, and Z = {z1,22,...,2, | n € N*}
is a finite set of interrupt sources of an interrupt signal.
Set Z(is) is a finite set of interrupt sources Z of an in-
terrupt signal is.

DEFINITION 9. An interrupt source z; € Z(is), i =
1,2,...,|Z(is)| is a double {f,0}, where f is a register
part to which an interrupt source is coupled, and o is a
named value of the register part which defines whether
an interrupt source is active.

DEFINITION 10 STRUCTURAL DEPENDENCE. A struc-
tural depen-dence d; € D(f), i = 1,2,...,|D(f)| is a
double {E, o0}, where E is the expression of dependence,
and o is the operation of dependence.

A structural dependence exists between register parts
of a device or a processing core if a change of one register
part leads to a change of another. The element that causes
the change will be called originator and the element which
is affected by the change will be called dependant. The
dependant can be a register part only, while the originator
can be a register, a signal or a register part. There is
always one dependant and one or more originators in a
dependence.

Journal of ELECTRICAL ENGINEERING 68 (2017), NO2

DEFINITION 11 EXPRESSION. An expression of a depen-
dence E(d) is an abstract tree {Pz,Op, H}, where Pz =
{pz1,pz2,...,p2n | n € NT} is a finite set of leafs (con-
ditions of dependence) of a tree,Op = {op1, opa2, ..., 0p, |
n € N} is a finite set of internal vertices (logical opera-
tors) of a tree, and H = hy,ha, ..., hy, | n € N} is a finite
set of oriented edges of a tree (Fig. 3).

Set Pz(FE) is a finite set of conditions Pz of depen-
dence expression E.

Set Op(FE) is a finite set of operators Op of depen-
dence expression E.

THEOREM 3. An expression of dependence E(d) can be
decomposed into conjunctive clauses E1V EoV---V E, =
E(d), where n is number of conjunctive clauses. For ev-
ery conjunctive clause E;, i = 1,2,...,n a new struc-
tural dependence d; is created with the same operation
of dependence o(d;) = o(d). A set of newly formed struc-
tural dependences is equivalent to the original structural
dependence {dy,ds,...,d,} = {d}.

=1(aVb)ANcVd)=0

a=1

Satisfied condition Not satisfied condition
of dependence of dependence

Fig. 3. An example of an expression of an dependence in a tree
form and in a logical expression form

Proof. It is true that if at least one conjunctive
clause in the expression F(d) is satisfied then the whole
expression is satisfied. Newly formed structural depen-
dences have identical dependence operations so they do
not violate each other when more of them are satisfied at
the same time. [

The possibility to decompose expression of dependence
into simpler clauses containing only disjunctions allows
specifying sets of dependants that are changed when the
expression is satisfied. It also allows simpler analysis of
the processor model when platform dependent code is
generated.

DEFINITION 12. An oriented edge h; € H, i =1,2,...,
|H]| is a double {pv,pk}, where pv € OpU Pz is a vertex
where the edge starts, and pk € Op is a vertex where the
edge ends. pv # pk.

DEFINITION 13 CONDITION. A condition of a depen-
dence pz; € Pz(E), i = 1,2,...,|Pz(F)| is a triple
{t,p,v}, where t is the type of the dependence, p is the

91

originator of the dependence, and v is a value of the orig-

inator that will satisfy a condition. There exist 4 types of

conditions (Fig. 4):

e Read, a condition pz is satisfied when a read operation
is done on an originator p(pz). An originator can only
be a register and the value v(pz) is undefined;

e Write, condition of dependence pz is satisfied when a
write operation of any desired value is done to a p(pz).
An originator can only be a register;

o WriteTo, a condition of dependence pz is satisfied
when a write operation of a defined value is done on
a p(pz). An originator can be a register or a register
part and the value v(pz) should be defined;

e WrittenTo, condition of dependence pz is satisfied
when a p(pz) is set to the defined value v.

=]
c
=%
Q
[=}
=%

&

=
1918139y

&

=
198130y

out .

valueI

z
=
1ed 1015130y
REINREN|
lo
=3
b]
=
j1ed 1935130y
REINFENE
A
I

(c) (d)

Fig. 4. Curcuit exapmles of the dependence conditions (a) Read,
(b) Write, (c) WriteTo, (d) WrittenTo

The conditions of the types Read, Write and WriteTo
(Fig. 4(a-c)) are satisfied in the time when the signal
enabling the operation above the register is active. On the
other hand, the conditions of type WrittenTo (Fig. 4(d))
are satisfied when the needed value is stored in a register
or a register part regardless if the signal that enables the
register is active.

DEFINITION 14 OPERATION. An operation of depen-

dence o is a double {¢,v}, where t is a type of an opera-

tion, and v is a value which will be written to the depen-

dant part when the expression of dependence is satisfied.

There exist 5 types of operations:

e Set, an operation of dependence writes a constant
value to a dependant;

e Reset, an operation of dependence writes zero value to
a dependant;

e Write, an operation of dependence writes any desired
value to a dependant;

92 M. Vojtko, T. Krajcovi¢: SEMI-AUTOMATED PROCESS OF ADAPTATION OF PLATFORM DEPENDENT PARTS OF ...

e Activate, an operation of dependence activates the de-
pendant;

e Deactivate, an operation of dependence deactivates the
dependant.

DEFINITION 15. Set Dap C D(f) is a set of all de-
pendencies of register part f whose type of operation of
dependence t(0) is Activate or Deactivate.

Dependants with common expressions of dependence
E(d) and common operation type ¢(o(d)) can be grouped
into a domain of dependence. This domain represents set
of dependants on which an operation is triggered when
the condition of the dependence is satisfied.

DEFINITION 16 DOMAIN. A domain of dependence dz is
atriple {Fz, Ez,t}, where Fz = {fz1, fz2,...,fzn | n €
N} is a finite set of dependants and for all f € F'z there
exists at least one d € D(f): E(d) = Ez where Ez is an
expression of the domain, and t = t(o(d)) is an operation
type for all f € Fz.

Set Fz(dz) is a finite set of dependants Fz of depen-
dence domain dz.

Set Ez(dz) is an expression Ez of domain dz.

DEFINITION 17. Let F(r) be a finite set of register parts
and let Dz = {dz1,dza,...,dz, | n € N} be a finite set
of activation domains. Then Dza(r) = {dz; € Dza(r) |
F(r) N Fz(dz;) # 0} is a finite set of activation domains
that affects the registerr.

DEFINITION 18. Let F(r) be a finite set of register parts
and let Dzp = {dz1,dzs,...,dz, | n € N} be a finite
set of deactivation domains. Then Dzp(r) = {dz €
Dzp(r) | F(r)NFz(dz;) = 0} is a finite set of deactivation
domains that affects the register r.

DEFINITION 19. Let us have F(r) and let Dzap =
Dzs U Dzp be a finite set of all activation and de-
activation domains. Then F,(r) = F(r) — (F(r) N
(UDZAD(T) Fz(dz))) is a finite set of all register parts
that do not belong to any activation or deactivation de-
pendence.

DEFINITION 20. Let us have F(r) and let Dz be a
finite set of all activation domains. Then Fn(r)(T) =
F(r)n (UDZA(T) Fz(dz) | E(dz) = 1) is a finite set of
register parts that belongs to a set of activation domains
that are active (their dependence expression is satisfied)
in a defined time 7.

THEOREM 4. Let Fa(r)(T) = Fn(r)(T) U Fv(r) be a
finite set of such register parts that do not belong to
any activation or deactivation dependence or such reg-
ister parts that belong to activation domains that are
active. For any two desired f;, f; € Fa(r)(T); i,j =
1,2,...,|Fa(r)(T)|, i # j, equation (3) is satisfied.

Proof . The activation and deactivation dependen-
ces affect Theorem 1, because there can exist register
parts that can overlap other parts. In a specified point in

time T some register parts are activated and others are
deactivated and in this time, point the activated register
parts do not overlap. So, the proof is the same as for
Theorem 1. O

THEOREM 5. Let us have Fa(r)(T), then (4) can be
transformed to

(r)(T)]

LT

m(fi)r < w(r). (9)

Il MA

Proof . If we use a specific time point T, the same
proof can be applied as for Theorem 2. OJ

The concept of domains allows us to group all depen-
dants into a set of common dependences. In the next defi-
nition, we present concept of grouping domains that have
common originator.

DEFINITION 21 ORIGINATOR. An originator of depen-
dence pw is a double {pz, Dz}, where pz is the originator
of dependence, and Dz = {dz1,dzs,...,dz, | n € NT} is
a finite set of domains where oz € Pz(E(dz)) for all
dz € Dz.

The defined PFD can be used to describe any desired
processor; however, we have no proof. To proof of our
statement, we would need to apply PFD on any existing
processor. We described 5 existing processors from differ-
ent manufacturers and for those processors the PFD was
applicable. The way how the PFD was defined allows its
extension in the future.

Figure 5 shows a graphical representation of the re-
sulting PFD. The representation shows the relationships
between the defined parts of the formal description. A
model of the PFD is represented by the file in JSON for-
mat described in [15]. Each item in the formal description
has its identification that helps in the naming of the gen-
erated functions and code. The expressions of structural
dependences are written as a logical expression in a full
disjunctive normal form (FDNF). This form allows the
decomposition of structural dependences into conjunctive
clauses.

4 Generation of platform dependent code

A generator of code processes information obtained
from the PFD. In this paper, we describe how the genera-
tor can in theory process the PFD and how the generated
platform-dependent code can look. We discuss negative
effects of structural dependences on the generated code
and we propose solutions that can suppress them.

At the first we should stress that the implementation
of the generator is in hands of the developers of the OS.
Each OS has its own specifics and that is why it is not
possible to implement one generator for any operating
system without changing its upper platform-independent
application layers.

Journal of ELECTRICAL ENGINEERING 68 (2017), NO2

Processing Core

Interrupt Device

Signal N\ _____\-v--AP)--4--__

Interrupt
Source Device
i Signal
Device
Register @ . \
Register Part (O]) 32 _“~--" _ @
Part Option Depends On

Contains

Fig. 5. Graphical representation of the PFD

Table 1. Definitions of a platform dependent code. idD - id of a
device, idR - id of a register, idP - id of a register part, idH - id of
a named value, idS - id of a signal.

Item Definition Code

#define <idD> ADDRESS <adr>

Device address

Register offset #define <idD> <idR> OFFSET
address <offset>
. #define <idD> <idR> ADDRESS
Register address - -
<offset + adr>
Register part fidefine
gisterp <idD> <idR> <idP> MASK
mask - - -
<mask>
#define
N | f
am«_ed vaue o <idD> <idR> <idP> <idH>
a register part
<value>
Named value of #define <idD > <idS> <idN>
a signal ~ <value>

Table 2. Definitions of functions. idD - id of a device, idR - id of
a register, idP - id of a register part

Target Output Name Parameter
register dataset read <idD> <idR> () -
write <idD> <idR> () dataset
. dataset get <idD> <idR> <idP> () dataset
register . . . dataset
part dataset set <idD> <idR> <idP> () data

The process of code generation can be divided into
three phases. In the first phase, that is called defini-
tion phase, definitions are generated for every item of
the PFD. Those definitions link every item with an iden-
tifier which helps to understand the communication in-
terface of a device. In the second phase, that is called
function phase, the interface functions that manage write
and read operations above registers and register parts are
generated. The generated functions use definitions to ad-

93

dress the needed register or a register part of a device
without any loops or conditions. In the last phase, the ex-
isting structural dependences are processed. A code com-
mentary is generated for every dependant and for every
originator [16].

The simplicity of the PFD allows us to implement a
generator which produces the code in the programming
language preferred by the developer of an operating sys-
tem and in the structure and nomenclature which is com-
patible with any operating system structure. For the pre-
sented generator, we chose programming language C. An-
other advantage of the generator is that it reduces the
possibility of bugs in the code that could be created by
the developer of the operating system.

The platform dependent code is simple but errors like
wrong addressing of the register or a register part are
common.

4.1 Definitions

A definition is a part of code that specifies the name
and value of a constant that is taken from the PFD.
Table 1 shows a list of items from the PFD for which
the definitions are generated. The generated definitions
are used in function bodies.

4.2 Functions

The functions of the platform dependent code are used
to perform a write or a read operation above the register
of the device, or to perform a set or a get operation above
the register part.

Table 3. Examples of function bodies. idD - id of a device, idR -
id of a register, idP - id of a register part

Function Function body
read int *part = <idD> <idR> ADDRESS;
return *part;
write int *part = <idD> <idR> ADDRESS;
*part = data;
set data |= (dataset &
<idD> <idR> <idP> NMASK);
return data;
get dataset &= <idD> <idR> <idP> MASK;

return dataset;

The name of the functions (declarations) consists of
the identification of the device, the register and the reg-
ister part. Table 2 shows prototypes of function decla-
rations. The bodies of the functions will be built from
definitions generated in the previous step. Table 3 shows
examples of function bodies.

Those simple functions encapsulate every register of
every device so the developer of an operating system does
not need to know the addresses of registers and the place-
ment of the register parts in a register. The encapsulation
simplifies the design of the upper layers of an operating
system. The function bodies shown in Table 3 can be rep-
resented as functions where a function call is needed but
the source code size is smaller, or as a macro, or as an in-
line function that decreases the overhead of the operating
system but increases its memory footprint.

94 M. Vojtko, T. Krajcovi¢: SEMI-AUTOMATED PROCESS OF ADAPTATION OF PLATFORM DEPENDENT PARTS OF ...

Table 4. Possible combinations of conditions in an expression of dependence. Usr are conditions where an action of the program is
needed. Sys are conditions where action of a system is needed. x possible, R if originators are in same register, 7 questionable, - not
possible

Usr

Sys

Read ‘ Write ‘ WriteTo IWrittenTo Read | Write | WriteTo |[WrittenTo

Read
Write :

WriteTo | R
WrittenTo
Read

Write ?
WriteTo
WrittenTo

Sys

Table 5. Possible combinations of conditions with operation of dependence. Usr are conditions where the action of the program is needed.
Sys are conditions where the action of a system is needed. x possible, R if originators are in same register, P if originator is a register
part, K if combined with another condition, - not possible. d during, b before, a after

Usr Sys
Read | Write | WriteTo ‘ WrittenTo | Rd., Wr. WrTo. i WrittenTo

‘Write d = RP
‘Write b, 'R

rite b,a | K

Set x . K

Reset

Activate - x
Deactivate

4.3 Structural dependence

The existence of structural dependence between the
register parts in a device, interposes problems in the adap-
tation process. The change of a value of one register part
can lead to a change of other register parts in a device.
The developer has to know about these changes and that
is why the generator has to generate blocks of code that
inform about existing dependence or provide a secure in-
terface that handles dependence.

A simpler solution is that the generator generates com-
mentaries for each dependence. Those commentaries in-
form the developer of the operating system about depen-
dences so he can produce code that avoids problems. This
solution is used in the current working example of the
generator.

A harder but more effective solution is that the gener-
ator tries to cover the dependence in a function that hides
it from the developer so he can focus on the development
of more important parts of an operating system. This so-
lution is complicated by more aspects that are further
discussed in the next paragraphs.

Before we can discuss the problems that complicate
the encapsulation of structural dependences we briefly
describe the relations between dependence conditions in
a dependence expression, dependence conditions and de-
pendence operations. We identified that a structural de-
pendence is activated when the dependence expression is
satisfied. We identified that there exist 4 types of con-
ditions. In advance, there exist conditions that can be
satisfied by a system event (Sys conditions, no function

call affecting the originator is needed) or there exist con-
ditions that are satisfied when a specific function is called
by the user (Usr conditions).

Constraints in conjunctive clauses of expression re-
strict combinations of condition types, as is shown in Ta-
ble 4 Read and Write conditions, or Read and WriteTo
conditions cannot be combined because there can be ex-
ecuted only one operation at a time. Conditions of the
WriteTo type can be combined in an expression only if
the originators of those conditions belong to one regis-
ter. The conditions that are managed by the system can
be combined without restriction because they can be sat-
isfied by events that were created by the environment.
It is questionable if the System and User conditions can
be combined, because the system event has to occur in a
time when the user condition is satisfied and this is highly
improbable.

The type of the dependence operation constrains the
condition type as is shown in Table 5. The Write opera-
tion can be done before, after or during the time when the
expression of the dependence is satisfied. During Write
operation is an operation that writes user data to a regis-
ter part at the same time when the dependence expression
is satisfied. On the other hand, Before Write operation
writes user data before expression is satisfied and After
Write operation writes user data after expression is sat-
isfied.

Constraints in dependence expressions reduce the
amount of possible combinations of condition types in
a one structural dependence. This can help in finding a

Journal of ELECTRICAL ENGINEERING 68 (2017), NO2

95

Table 6. Proportion of origintator types, domain types and dependants of the processor AT91SAM7S256

Domains Dependants
Originators 1183 1444 1803
Simple 1-domain 1017
Simple 1017 1163
1-item 932 932
Usr 918 918
of that Sys 2 7
of that | of that 1-register 82 222
Usr 82 222
of that of that Sys 0 0
Other 9
Simple n-domain | 94
Simple 302 503
of that Other 0 0
Complex | 72
Other 125 137
Sum of items for which a code generation is possible: 1000 1140

solution for dependence encapsulation by the platform
dependent code. The next paragraphs discuss the prob-
lem of this encapsulation.

Let us say that there exists a structural dependence
that changes the value of the dependant when the orig-
inator of the dependence is set to a specific value. For
example, let us say that the dependant is placed to a read-
only register. There could be a generated function that
sets the originator to a specific value with the purpose of
changing the value of the dependant. The newly formed
function partially substitutes the missing write function
of the dependant. The developer of an operating system
can use this function instead of using the write function
of the originator that writes the specific value that can be
read in a commentary. The generated function simplifies
the process of adaptation.

The indicated example can be applied only if the orig-
inator is not coupled to more dependence domains. A
critical collision of domain expressions can exist and can
result into changes of dependants that we did not want
to change.

DEFINITION 22. A domain dz is a user domain when for
all conditions of dependence pz € Pz (Cz(dz)) applies
that the type of the condition t(dz) €

{ WriteUsr, ReadUsr, WriteToUsr, WrittenToUsr} .

DEFINITION 23. A domain dz is a system domain when
for all conditions of dependence pz € Pz (Cz(dz)) applies
that the type of the condition t(dz) €

{ WriteSys, ReadSys, WriteToSys, WrittenToSys} .

DEFINITION 24. A domain dz is a simple domain
when the cardinality of all conditions of the dependence
‘Pz(Cz(dz))‘ =1.

DEFINITION 25. A domain dz is an n-item domain
when the cardinality of the all dependants |Fz(dz)| =n.

DEFINITION 26. A domain dz is a l-register domain
when there exist only one register r where for all fz €
Fz(dz): fz € F(r).

DEFINITION 27. An originator pv is a simple originator
when for all dz € Dz(pv) it applies that dz is a simple
domain and p(Pz(Cz(dz)))= pv.

DEFINITION 28. An originator pv is a n-domain origi-
nator when the cardinality of its domains |Dz(pv)| = n.

The classification of domains and originators allows
a deeper analysis of the existing connections between the
dependants and the originators. The best scenario for the
developer is achieved when all structural dependences are
hidden behind the functions so that the platform depen-
dent code is easy to understand. The reality shows that
this is not possible for all structural dependences. Table
6 summarizes the analysis of all structural dependencies
in the PFD of the processor AT91SAM7S256.

It is shown that for this processor much of the orig-
inators are simple 1-domain originators (nearly 86 %).
For those originators, there exists an equal number of
domains because one originator belongs to only one do-
main. The larger part of those domains consists of 1-item
domains (they contain only one dependence) so there is
no possibility of collision. The second group of domains
is a group of 1-register domains which affect dependants
that are in the same register. For 1-item and 1-register
groups it is possible to generate a function without col-
lision. There is no need for function generation of Sys
domains because the dependence expression is satisfied
automatically by the related event that occurs in a de-
vice.

96

M. Vojtko, T. Krajcovic: SEMI-AUTOMATED PROCESS OF ADAPTATION OF PLATFORM DEPENDENT PARTS OF ...

¥ MR (mode reg.)

Set
SYNC=ASYNC
(sync model)

Set
UMD=NORMAL
(UsartModel)

—>| —>|

Set USCLKS
(clk source)

Set OVER
(oversampling)

BRGR (baud rate generator reg.)

Set CD (clock divider)
(BR=USCLKS/CD/FIDI

Set CD (clock divider)
(BR=USCLKS/8*(1+OVER)/CD

Set FP
(fractional part)

Set CD (clock divider)
(BR=USCLKS/CD

A 4

(' Initend)

Fig. 6. Init function of universal receiver/transmitter

The second group of originators is a group of simple n-
domain originators. Those originators originate in more
domains but in all those domains there is only one origi-
nator in a dependence expression. The change of the orig-
inator can satisfy expressions of more domains with dif-
ferent operations. Those domains can violate each other.
The function that hides dependencies should solve those
violations that complicate the generated code (the code
loses scalability and effectiveness).

The last group consists of originators that exist in
complex domains. For dependencies that are part of those
domains, the relations between the originators are too
complicated for an effective generation of a code. The
code of the platform dependent layer can change into a
hardly manageable and ineffective bulk. This is against
the idea of the platform dependent code: it should be as
simple as possible to act as the glue logic [9].

Between the parts of the device, situations can exist
where the change of one part can start a chain of events.
The change of one originator changes the dependant that
is the originator of the next dependence and so on. Those
situations complicate the generation of the code even
more.

As a result, we decided that for now the generator will
produce only simple commentaries that can be processed
by specific tools that help to design the operating system
modules.

5 Formal description of OS modules

The device module of the operating system manages
the mapped device of the processor. It uses platform de-
pendent code prepared by the generator. A formal de-
scription can be used in the design of modules in order to
simplify the adaptation. In this chapter, we describe the
design of operating modules that uses workflow diagrams.

The module of operating system can be divided into 3
parts which are modeled independently:

e Module initialization,
e Interrupt handling,
e Data processing.

The processor device is often a complex structure
which can operate in more modes and under many influ-
ences. The initialization declares how a device will be used
or how the device operation will be altered during the sys-
tem execution. This part of the module is represented by
a workflow diagram that represents the initialization of
the device. This workflow can be easily transformed into
the initializing function of the device module.

Most processor devices can produce an interrupt sig-
nal which informs the processor about a specific situation
that occurred in a device. The description of the inter-
rupt describes how each interrupt source of a device will
be processed. The interrupt handler is most often repre-
sented by a simple set of conditions that search for the
source of the interrupt in a device and call predefined
routines that will be executed (eg the calling of a data
processing routine).

Journal of ELECTRICAL ENGINEERING 68 (2017), NO2

void init(int USCLES, int OVER, int CD,

{

97

int FP)

, USERT MR UMD NORMAL) ;

set USART MR SYNC(dataset, USART MR UMD ASYNC);

int dataset = :

dataset = set USART MR UMD(

dataset =

dataset = set USART MR USCLKS(dataset, USCLKS);
dataset =

write USART MR (dataset);

dataset
dataset =

write USRRT BRGR(dataset);
}

set USART BRGR CD(
set USART BRGR FP(dataset, FP);

set USART MR OVER(dataset, OVER);

. CD);

Fig. 7. Example of init function code

Device data processing routines perform write or read
operations to or from the device. The work with data is
managed with control commands that provide the com-
munication interface of the device and the status infor-
mation that informs about the state of data processing.

A module of operating system can be described by
a workflow diagram, as is shown in Fig. 6. The exam-
ple shows a diagram that represents the initialization
function for a universal receiver/transmitter interface. In
the diagram, the mode and baud rate registers are set
to needed values. Each block of the diagram represents
a call of a defined set of functions of the register part.
Those functions were generated by the generator of the
platform-dependent code. The register part can be ini-
tialized into a constant (see UMD block in Fig. 6) or it
can be set by the user during the function call. The enve-
lope of diagram blocks (see MR in Fig. 6 represents the
register. The envelope is transformed into a register write
or read function. Fig. 7 shows an example of code that
can be created from the previously presented diagram.
As can be seen, some register parts are set by the input
parameter of the function (USCLKS, OVER, ...) while
others are set into a constant value.

In the previous chapter, we mentioned that the gen-
erator creates commentaries for structural dependences.
Those commentaries can be used by the tool that is used
for workflow diagram creation. The tool can generate
warnings when the user writes a code that can result into
changes that could be unwanted.

6 Conclusions

The presented process of adaptation applies automatic
generation techniques to create platform dependent parts
of any operating system. The core of this process is the
processor formal description that allows the generation of
the code. The description stores information about pro-
cessor devices and cores in a form that can be processed
by the computer. The drawback of this description is that
the developer should prepare this description with his

own effort. We believe that some sort of processor de-
scription should be used by the processor manufacturers
to provide better service for their products (a standard
should be stated).

We also identified that structural dependences exist
between the devices of the processor. Those dependences
are the biggest source of errors during the adaptation or
implementation of platform dependent code. The genera-
tor of code that processes data from the Processor Formal
Description was presented in this work. The latest version
of the generator generates simple commentaries for the
discovered dependences. In this work, we discussed the
possibilities that can cover the dependencies by simple
routines that hide dependences so that the developer can
work on more important parts of the operating system.

The generated code can be used not only for the oper-
ating systems but it can also help in embedded software
development of any kind. The adaptation process can be
used to adapt existing firmware built for one processor to
another processor with smaller effort.

Acknowledgements

This article was created with the support of the Min-
istry of Education, Science, Research and Sport of the
Slovak Republic within the Research and Development
Operational Program for the project “University Science
Park of STU Bratislava”, ITMS 26240220084, co-funded
by the European Regional Development Fund.

REFERENCES

[1] P. Ranganathan, ”From Microprocessors to Nanostores: Re-
thinking Data Centric Systems”, Computer, vol. 44, no. 1,
pp. 39-48, January 2011.

[2] V. Avula,” Adapting operating systems to embedded manycores:
Scheduling and inter-process communication”, Master thesis,
Uppsala universitet, 2014.

[3] M. Seltzer and C. Small, ”Self-monitoring and self-adapting op-
erating systems”, Proceedings of Operating Systems, 1997 The
Sixth Workshop on Hot Topics, pp. 124-129, May 1997.

[4] A.S. Tanenbaum and A. S. Woodhull,Operating Systems Design
and Implementation (3rd Edition) Prentice Hall, 2006.

98

(5] J. J. Labrosse, J. Ganssle and E. A. Oshana, ”Embedded Soft-
ware: Know It All (Newnes Know It All)”, Newnes, 2007.

M. Vojtko and T. Krajcovic, ” Prototype of Modular Operating
System for embedded application”, Applied Electronics (AE),
2013 International Conference, pp. 1-4, September 2013.

P. Chou, R. Ortega and G. Borriello, ”Synthesis of the hard-
ware/software interface microcontroller-based systems”, Com-
puter-Aided Design, ICCAD-92, Digest of Technical Papers,
IEEE/ACM International Conference, pp. 488495, November
1992.

P. Chou, R. Ortega and G. Borriello, ”Interface co-synthesis
techniques for embedded systems”, Computer-Aided Design,
1995, ICCAD-95, Digest of Technical Papers, IEEE/ACM Inter-
national Conference on, ISSN 1092-3152, pp. 280287, November
1995.

G. Borriello, P. Chou and R. Ortega,Embedded system co-design
- towards portability and rapid integration Integration Hard-
ware/Software Co-Design, M. G. Sami and G. De Micheli, Eds.,
Kluwer Academic Publishers, pp. 21, 1995.

Real Time Engineers Ltd, The FreeRTOS Project 2015,

http: //www.freertos.org/.

TinyOS, 2011, http://www. inyos.net.

S. Bogan, ”"Formal Specification of a Simple Operating Sys-
tem”, PhD dissertation, der Naturwissenschaftlich-Technischen
Fakultten der Universitt des Saarlandes, August 2008.

J. Drrenbcher, ”Vamos microkernel: Formal models and verifica-
tion, 2006”, Talk given at the International Work-shop on Sys-
tems Software Verification, August 2006, [Online], Available at
http: //www.cse.unsw.edu.au/formalmethods/events/svws-06/
VAMOS Microkernel.pdf.

S. Beyer, C. Jacobi, D. Krning, D. Leinenbach and W. J. Paul,
?Putting it all together formal verification of the vamp”, In-

ternational Journal on Software Tools for Technology Transfer
(STTT), 2006.

6

7

B

[9

[10]

py
=

[12]

[13]

[14]

M. Vojtko, T. Krajcovic: SEMI-AUTOMATED PROCESS OF ADAPTATION OF PLATFORM DEPENDENT PARTS OF ...

[15] M. Vojtko and T. Krajcovic, ” Adaptability of an Embedded Op-
erating System: A Formal Description of a Processor”, 10th In-
ternational Joint Conferences on Computer, Information, Sys-
tems Sciences, and Engineering, pp. 1-4, December 2014.

M. Vojtko and T. Krajcovi¢, ”Adaptability of an Embedded
Operating System: A Generator of a Platform Dependent Code”,
International Conference on Cybernetics and Informatics 2016,
1.2.2016.

[16]

Received 10 May 2016

Martin Vojtko (Ing, PhD) was born in Bratislava, Slo-
vakia, in 1987. He received MSc degree at Slovak University
of Technology in Bratislava in 2012. In 2016 he received PhD
degree at the Institute of Computer Systems and Networks of
Slovak University of Technology in Bratislava. His research is
oriented on design of operating systems for embedded applica-
tions and for automated generation of code for those systems.

Tibor Krajcovié¢ (Assoc Prof, Ing, PhD) was born in Ni-
tra, Slovakia, in 1960. He received his MSc degree at the Slo-
vak University of Technology (STU) in Bratislava in 1984 and
his PhD degree from the same university in 1989. Since 2001,
he has been an associate professor at the Faculty of Electri-
cal Engineering and Information Technology of the STU in
Bratislava. Now, he is a staff member of the Computer En-
gineering and Applied Informatics Institute at the Faculty
of Informatics and Information Technologies of the STU in
Bratislava. His research interests include microcomputers, em-
bedded systems and Internet of Things. He is an author the
one patent and more than 60 published scientific and research
papers from these areas. He is also the member of the Slo-
vak Commission for UNESCO, National Committee for the
Information for All Programme.

