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Simultaneous exact model matching
with stability by output feedback

Konstadinos H. Kiritsis
∗

In this paper, is studied the problem of simultaneous exact model matching by dynamic output feedback for square
and invertible linear time invariant systems. In particular, explicit necessary and sufficient conditions are established which
guarantee the solvability of the problem with stability and a procedure is given for the computation of dynamic controller
which solves the problem.
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1 Introduction

In this paper, we shall consider discrete-time, square
and invertible, completely reachable and observable,
linear time-invariant systems. The simultaneous exact
model matching with stability consists in finding a single
proper and stable output feedback controller that sta-
bilizes a given finite set of square and invertible linear
time-invariant systems and makes the closed-loop trans-
fer function matrices equal to a given transfer function
matrices. From the above it follows that the simulta-
neous exact model matching problem by dynamic output
feedback contains the so-called simultaneous stabilization
problem by dynamic output feedback.

The problem of simultaneous stabilization can be
stated as follows: Does there exists a single controller
which stabilizes a finite set of different linear time-
invariant systems? This is a very simple question in lin-
ear control theory but simple questions cannot always be
simply answered [1]. The problem of simultaneous sta-
bilization has a long history and is probably one of the
most prominent open questions in linear control theory.
A very short review of history of this longstanding open
problem is given below.

The problem of simultaneous stabilization has been
posed for the first time in [2]. The name, simultaneous
stabilization has been introduced for the first time by au-
thors of [3]. Necessary and sufficient conditions for the si-
multaneous stabilization of two systems by dynamic out-
put feedback, have been established in [3] and [4]. In [5]
is proved that the simultaneous stabilization of three sys-
tems is equivalent to partial pole placement by stable and
minimum phase controller. An extension of the results
of [5] to more than three plants has been given in [6].
In [7], has been proved that if a finite set of minimum
phase systems, have the same number of transmission ze-
ros, and the same high frequency sign, then there exists

a single controller that stabilizes all given systems. In [8],
has been showed that if a finite set of strictly proper and
minimum phase, systems, have the same relative degree
and the same high frequency sign, then the given systems
can be simultaneously stabilized by stable and strictly
proper controller.

In [9], has been derived a sufficient condition for the si-
multaneous stabilization of a finite number of single vari-
able linear systems. In [10] and [11] iterative procedures
are given for the computation of a strictly proper and
stable controller that simultaneously stabilizes a finite
set of strictly proper and minimum phase single variable
and multivariable systems which have the same high fre-
quency sign. In [6] has been proved that the problem of
simultaneous stabilization of two systems by a stable con-
troller is “rationally undecidable”. This means that is re-
quired an infinite number of elementary operations, such
as addition, substraction, multiplication, division, logi-
cal AND, and logical OR, to determine existence of the
solution. From the above it follows that the solution of
the simultaneous stabilization of three or more systems,
that is equivalent to the strong simultaneous stabiliza-
tion of two or more systems is also in general “rationally
undecidable”. Simultaneous stabilization is a hard [12],
challenging and very important problem in linear con-
trol theory that has been extensively studied by many
researchers but is still an open problem.

On the other hand, the exact model matching prob-
lem is a very broadly studied control problem. This is
due to its great theoretical and practical importance. The
exact model matching techniques have been applied to
the design of many control problems [13]. Such problems
are the decoupling problem, the model following problem,
the model tracking problem, the servomechanisms prob-
lem, the partial model matching and the model reference
adaptive control. A formulation and the solution of exact
model matching problem by proportional state feedback
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problem have been given for the first time in [14]. It is
pointed out that the model matching algorithm of [14] can
be applied effectively to invertible systems only [15]. Later
in [15] a complete solution to the exact model matching
problem is given. Their method reduces the solution of the
model matching problem to one of solving a set of linear
algebraic equations. In [16] using the structure algorithm
have been established necessary and sufficient conditions
for the solution of exact model matching problem by state
feedback and dynamic compensation.

In [17], necessary and sufficient conditions are estab-
lished under which the action of a cascade compensator
on a given system can be realized by a proportional state
feedback. Using the results of [17], exact model matching
has been studied in [18–20].

Furthermore, in [21] necessary and sufficient condi-
tions have been established for the existence of solution of
exact model matching with stability by dynamic output
feedback. In [22] has been obtained a parametric solu-
tion of stable exact model matching problem using an
algebraic approach. In [23–26] have been established nec-
essary and sufficient conditions for the existence of sta-
ble solutions of exact model matching problem. For more
complete references the reader is referred to the excellent
survey paper [27].

In this paper, the problem of simultaneous exact model
matching by dynamic output feedback for square and in-
vertible, linear time — invariant systems, is studied and
completely solved. In particular, explicit necessary and
sufficient conditions are established which guarantee the
solvability of simultaneous exact model matching problem
with stability and a procedure is given for the computa-
tion of dynamic controller that solves the problem. Our
method is based on coprime factorizations of proper ra-
tional matrices over the ring of proper and stable rational
functions and is computationally simple.

2 Problem statement

Consider a finite set of M (M ≥ 2), discrete-time,
square and invertible, completely reachable and observ-
able, linear time-invariant systems described by the fol-
lowing state-space equations

xi(k + 1) = Aixi + Biu(k) , (1)

y(k) = Cixi(k) +Diu(k) (2)

for i = 1, 2, . . . ,M , where xi(k) are the state vectors of
dimensions n× 1, u(k) is the vector of inputs of dimen-
sions m× 1 and y(k) is the vector of outputs of dimen-
sions m× 1 and Ai , Bi , Ci and Di are real matrices of
dimensions n × n ,×m , m × n and m ×m respectively.
The transfer functions matrices of systems described by
state-space equations (1) and (2) are given by

Ti(z) = Ci(Iz − Ai)
−1

Bi +Di (3)

for i = 1, 2, . . . ,M . We also consider the control low

u(z) = −F(z)y(z) + v(z) (4)

where F(z) is proper rational matrix of size m×m and
v(z) is the reference input vector of size m × 1. By
applying the dynamic control low (4) to the systems (1)
the transfer functions matrices of closed-loop systems are

Tci(z) = Ti(z)[I+ F(z)Ti(z)]
−1 (5)

for i = 1, 2, . . . ,M . Let Mi(z) for i = 1, 2, . . . ,M , be
proper and stable rational functions of dimensions m×m .

The simultaneous exact model matching with stability
by dynamic output feedback for square and invertible
linear time-invariant systems can be stated as follows.
Does there exists a dynamic output feedback (4) with
proper and stable F(z) such that the closed-loop systems
with transfer functions given by (5), are proper and stable
and

Ti(z)[I+ F(z)Ti(z)]
−1 = Mi(z) (6)

∀i = 12, . . . ,M ? If so, give necessary and sufficient con-
ditions for existence and a procedure to find it.

3 Basic concepts and preliminary results

Let us first introduce some notions that are used fre-
quently throughout the paper. Let R be the field of real
numbers. Also let Rps(z), be the ring of proper and sta-
ble rational functions in z . Two proper and stable ratio-
nal matrices A(z) and B(z) having the same numbers of
columns are said to be relatively right prime over Rps(z)
if and only if there are matrices X(z) and Y(z) over
Rps(z) such that

X(z)A(z) + Y(z)B(z) = I (7)

where I is the identity matrix of dimensions r × r , r is
the number of columns of A(z) and B(z).

Definition 1. The matrices D(z) and N(z) over Rps(z)
of dimensions m×m and p×m respectively with nonsin-
gular D(z) form a right coprime factorization over Rps(z)
of the proper rational matrix T(z) of dimensions p×m

if and only if

(a) The matrices D(z) and N(z) are relatively right prime
over Rps(z)

(b) T(z) = N(z)D−1(z) (8)

Consider a discrete-time, completely reachable and ob-
servable linear time-invariant system described by the fol-
lowing state-space equations

x(k + 1) = Ax(k) + Bu(k) , (9)

y(k) = Cx(k) +Du(k) , (10)
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Let F be a real matrix such that (A+ BF) is stable (all
eigenvalues in |z| < 1) and let K = C + DF . Then the
matrices [28]

D(z) = F[Iz − A− BF]−1
B+ I , (11)

N(z) = K[Iz − A− BF]−1
B+D (12)

form a right coprime factorization over Rps of system (9).

The proper and stable rational matrix U(z) of di-
mensions m×m whose inverse exists and is also proper
and stable is called biproper and bistable. The following
Lemma is needed to prove the main theorem of this pa-
per [29].

Lemma 1. Let D(z) and N(z) be a right coprime fac-
torization over Rps of system (9). Then there exists a
proper and stable controller (4) that stabilizes system (9)
if and only if the matrix [D(z) + F(z)N(z)] is biproper
and bistable.

4 Main results

The main result of the paper is given below and gives
explicit necessary and sufficient conditions for solvability
of simultaneous exact model matching with stability, by
dynamic output feedback for square and invertible linear
time-invariant systems.

Theorem 1. Let Di(z) , Ni(z) for i = 1, 2, . . . ,M be a
right coprime factorizations over Rps(z) of square and in-
vertible, completely reachable and observable systems (1).
Also let Mi(z) for i = 1, 2, . . . ,M be proper and stable
rational functions of dimensions m×m . Then the simul-
taneous exact model matching with stability, by dynamic
output feedback has a solution if and only if

(a) The matrices [M−1
i

(z)Ni(z)] are biproper and bistable
∀i = 1, 2, . . . ,M .

(b) The matrices [M−1
i

(z)−T
−1
i

(z)] are proper and stable
∀i = 1, 2, . . . ,M .

(c) [M−1
1 (z)− T

−1
1 (z)] = [M−1

i
(z)− T

−1
i

(z)] ,
∀i = 1, 2, . . . ,M .

P r o o f . To establish necessity, suppose that the
problem of simultaneous exact model matching with sta-
bility has a solution by dynamic output feedback (4) with
F(z) to be proper and stable. Then from (6) we have that

Ti(z)[I+ F(z)Ti(z)]
−1 = Mi(z) , ∀i = 1, 2, . . . ,M . (13)

Let Di(z), Ni(z) for i = 1, 2, . . . ,M be a right coprime
factorization over Rps(z) of square and invertible, com-
pletely reachable and observable systems (1) with transfer
functions Ti(z) given by (3).

Then from relationship (8) we have that for i =
1, 2, . . . ,M

Ti(z) = Ni(z)D
−1
i

(z) . (14)

Equation (13) using relationship (14) is rewritten as

Ni(z)[Di(z) + F(z)Ni(z)]
−1 = Mi(z) . (15)

Since by assumption the systems (14) are invertible, we
have that the transfer function matrices Ti(z) and the
matrices Ni(z) are also invertible ∀i = 1, 2, . . . ,M . and
therefore from (15) we have

[Di(z) + F(z)Ni(z)]
−1 = N

−1
i

(z)Mi(z) (16)

or equivalently

Di(z) + F(z)Ni(z) = M
−1
i

(z)Ni(z) . (17)

Since the closed-loop systems (5) are stable and the
matrix F(z) is by assumption proper and stable, from
Lemma 1 we have that the matrices [Di(z) + F(z)Ni(z)]
are biproper and bistable ∀i = 1, 2, . . . ,M . This implies

that the matrices M
−1
i

(z)Ni(z) must be also biproper
and bistable ∀i = 1, 2, . . . ,M . This is condition (a) of
Theorem 1. Equation (13) can be rewritten as follows

[I+ F(z)Ti(z)]
−1 = T

−1
i

(z)Mi(z) (18)

or equivalently

F(z)Ti(z) = M
−1
i

(z)Ti(z)− I (19)

or equivalently

F(z) = M
−1
i

(z)− T
−1
i

(z) . (20)

Since the matrix F(z) is by assumption proper and sta-

ble the matrices T
−1
i

(z) − M
−1
i

(z) must be also proper
and stable ∀i = 1, 2, . . . ,M . This is condition (b) of the
Theorem. From equations (20) we have that

F(z) = M
−1
i

(z)− T
−1
i

(z) ∀i = 1, 2, . . . ,M (21)

and
F(z) = M

−1
1 (z)− T

−1
1 (z) . (22)

The relationships (21) and (22) have the same left sides
and therefore

M
−1
1 (z)− T

−1
1 (z) = M

−1
i

(z)− T
−1
i

(z) ∀i = 2, . . . ,M .

(23)
This is condition (c) of the Theorem. The sufficiency of
conditions (a), (b) and (c) of Theorem 1 can be proved
as follows. Let

F(z) = M
−1
1 (z)− T

−1
1 (z) . (24)

Condition (b) of Theorem 1 guarantees that the matrix
F(z) given by (24) is proper and stable. Using (14) we
have

D1(z) + F(z)N1(z) = D1(z) + [M−1
1 (z)− T

−1
1 (z)]N1(z)

= M
−1
1 (z)N1(z) , (25)
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T1(z)[I+ F(z)T1(z)]
−1 =

T1(z)
[

I+ [M−1
1 (z)− T

−1
1 (z)]T1(z)

]

−1
= M1(z) . (26)

Furthermore, from condition (c) of Theorem 1 and rela-
tionship (14) we have

Di(z) + F(z)Ni(z) = Di(z) + [M−1
1 (z)− T

−1
1 (z)]Ni(z) =

Di(z) + [M−1
i

(z)− T
−1
i

(z)]Ni(z) = M
−1
i

(z)N−1
i

(z) , (27)

Ti(z)[I+ F(z)Ti(z)]
−1=Ti(z)

[

I+

[M−1
1 (z)− T

−1
1 (z)]Ti(z)

]

−1
= Ti(z)

[

I+

[M−1
i

(z)− T
−1
i

(z)]Ti(z)
]

−1
(28)

∀i = 2, . . . ,M . Since by condition (a) the matrices

M
−1
i

(z)Ni(z)] are biproper and bistable, ∀i = 1, 2, . . . ,M
from (25) and (27) and Lemma 1 we have that the dy-
namic controller (4) with proper and stable matrix F(z)
given by (24), simultaneously stabilizes all closed-loop
systems (5) and from (26) and (28) we have that the dy-
namic controller (4) with proper and stable matrix F(z)
given by (24), satisfies all model matching equations (6).
This completes the proof.

R e m a r k . As stated in introduction of this paper,
the simultaneous exact model matching problem by dy-
namic output feedback contains the so-called simultane-
ous stabilization problem by dynamic output feedback. It
is pointed out that the simultaneous stabilization prob-
lem by dynamic output feedback in its full generality is
extremely hard problem [6] and [12] This means that it
is extremely difficult to obtain an efficient algorithm for
the solution of the problem in its full generality. From the
above it follows that the simultaneous stabilization prob-
lem by dynamic output feedback can be studied using
linear matrix inequality (LMI) approach, only for special
classes of linear time-invariant systems.

5 Computation of the controller

In this section is described step by step the procedure
for the computation of the proper and stable controller
(4) that solves the simultaneous exact model matching
problem with stability.

Given: M (M ≥ 2) linear square and invertible systems,
described in state-space by the equations (1) and (2)
and proper and stable rational matrices Mi(z) for i =
1, 2, . . . ,M .

Find: A proper and stable matrix F(z) such that (6) hold.

Step 1: Compute the transfer functions matrices of the
given systems (1)

Ti(z) = Ci(z)(Iz − Ai)
−1

Bi +Di for i = 1, 2, . . . ,M .

(29)
Step 2: Using (11) and (12) compute proper and stable
rational matrices Di(z), Ni(z) for i = 1, 2, . . . ,M that

form a right coprime factorizations over Rps(z) of proper
rational matrices Ti(z) given by (29), ie

Ti(z) = Ni(z)D
−1
i

(z) . (30)

Step 3: Check conditions (a), (b) and (c) of the Theo-
rem 1. If all conditions of the Theorem are satisfied go to
step 4. If conditions of the Theorem are not satisfied, go
to step 5.

Step 4: Set

F(z) = [T−1
1 (z)−M

−1
1 (z)] . (31)

Step 5: Our problem has no solution.

6 Conclusions

In this paper, the problem of simultaneous exact model
matching by dynamic output feedback for square and
invertible linear time-invariant systems have been stud-
ied and completely solved. The problem is studied and
solved using coprime factorizations of open-loop trans-
fer function matrices, over the ring of proper and stable
rational functions. The main results obtained for linear
discrete-time systems hold also for linear continuous-time
systems. As we far as we know there are no published
results regarding the solvability of simultaneous exact
model matching with stability by dynamic output feed-
back.

The motivation for the study of simultaneous exact
model matching problem with stability by dynamic out-
put feedback comes from feedback control of nonlinear
systems. In particular, the nonlinear system is repre-
sented by linear systems at different operating points [30]
and the simultaneous control design consists in finding a
single linear feedback controller which guarantees the de-
sired performance for all closed-loop systems. The above
clearly demonstrate the contribution of this paper with
respect to existing results.
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