
Journal of ELECTRICAL ENGINEERING, VOL 68 (2017), NO2, 109–116

Numerical treatment of the spatio-temporal
electromagnetic beam-wave packet

L’ubomı́r Šumichrast, Jaroslav Franek
∗

Propagation of a two-dimensional spatio-temporal electromagnetic beam wave is analysed. In parabolic (paraxial) ap-
proximation the exact analytical results for a spatio-temporal Gaussian impulse can be obtained. For solution of the full
wave equation the numerical simulation has to be used. The various facets of this simulation are discussed here.
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1 Introduction

The problem of the total internal reflection on the
planar boundary of two dielectric media, as well as of
the frustrated total internal reflection in presence of
two planar dielectric boundaries, is usually solved for a
monochromatic plane wave. To analyse it for monochro-
matic beam wave, or for the spatio-temporal transient
wave-packet, a numerical approach is inevitable. Here
some aspects of a numerical treatment of wave propa-
gation are investigated.

We shall consider the propagation of a pulsed two-
dimensional spatio-temporal TE-polarised beam wave,
with the vector of the electric intensity E (x, z, t) defined
as

E (x, z, t) = uyEy (x, z, t) = uyE0f (x, z, t) , (1)

where f (x, z, t) is the function describing distribution of
the wave amplitude in time and space. If the propagation
along the z axis is considered, the initial condition - the
amplitude distribution f0 (x, t) - must be given in eg the
plane z = 0, ie

f (x, z, t)|z=0 = f0 (x, t) . (2)

As a first case, let us analyse the monochromatic beam
wave with f (x, z, t) = Re {ϕ (x, z) exp (jω0t)} , ie

E (x, z, t) = Re
{
Ê (x, z) exp (jω0t)

}
, (3)

where Ê (x, z) = uyE0ϕ (x, z) . The complex, in x direc-
tion spatially-bounded impulse-like, monochromatic am-
plitude distribution of the wave is given by ϕ (x, z) and
ω0 is the angular frequency of the harmonic oscillations.
The initial condition for the complex wave amplitude
reads ϕ (x, z)|z=0 = ϕ0 (x) .

As a second case, the harmonically modulated wave
packet will be treated, where

f(x, z, t) = Re {ψ(x, z, t) exp(jω0t)} , (4)

where ψ (x, z, t) is the spatial and temporal impulse-like
complex ”slowly varying amplitude-envelope in time” of
the wave. The initial condition for the complex wave am-
plitude reads ψ (x, z, t)|z=0 = ψ0 (x, t) .

2 The wave and the Helmholtz equations
governing the propagation effects

The propagation of waves is generally governed by the
wave equation in form

∂2f (x, z, t)

∂x2
+
∂2f (x, z, t)

∂z2
− 1

c2
∂2f (x, z, t)

∂t2
= 0, (5)

for the wave amplitude distribution f (x, z, t) in (1),
where c = 1/

√
µε is the phase velocity of wave propa-

gation in the given lossless medium with permittivity ε
and permeability µ .

The complex amplitude ϕ (x, z) of a monochromatic
wave in (3) fulfils the Helmholtz equation

∂2ϕ (x, z)

∂x2
+
∂2ϕ (x, z)

∂z2
+ β2

0ϕ (x, z) = 0, (6)

where β0 = ω0/c is the phase constant of the harmonic
plane wave.

After having introduced the ”slowly varying envelope
in propagation direction” ϕ (x, z) by the substitution
ϕ (x, z) = ϕ (x, z) exp (−jβ0z) , ie by stripping-off the fast
oscillations due to term exp (−jβ0z) from ϕ (x, z) , one
arrives instead of (6) to the wave equation for ϕ (x, z) in
the form

∂2ϕ (x, z)

∂x2
− 2jβ0

∂ϕ (x, z)

∂z
+
∂2ϕ (x, z)

∂z2
= 0. (7)

For the ”slowly varying envelope in time” ψ (x, z, t) in
(4) the time dependent Helmholtz equation reads

∂2ψ

∂x2
+
∂2ψ

∂z2
− 1

c2
∂2ψ

∂t2
− 2jβ0

c

∂ψ

∂t
+ β2

0ψ = 0. (8)
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If one defines ”slowly varying envelope in time and

space” ψ (x, z, t) similarly as for (7) by ψ (x, z, t) =

ψ (x, z, t) exp (−jβ0z) , then the time dependent Helm-
holtz equation (8) takes the form

∂2ψ

∂x2
+
∂2ψ

∂z2
− 1

c2
∂2ψ

∂t2
− 2jβ0

(
∂ψ

∂z
+

1

c

∂ψ

∂t

)
= 0. (9)

3 Solution for the monochromatic beam wave

After introducing for ϕ (x, z) the spatial Fourier trans-
form pair ϕ (x, z) ↔ Φ (q, z) by

Φ (q, z) = 1
2π

∞∫

−∞

ϕ (x, z) exp (jqx) dx, (10)

ϕ (x, z) =

∞∫

−∞

Φ (q, z) exp (−jqx) dq, (11)

one arrives instead of (6) at the Helmholtz equation in
spectral domain

∂2Φ (q, z)

∂z2
+
(
β2
0 − q2

)
Φ (q, z) = 0. (12)

The solution for the wave propagating in the positive
direction of the z -axis reads [1]

Φ(q, z) = Φ0 (q) exp

(
−jz

√
β2
0 − q2

)
, (13)

where Φ0 (q) is the Fourier transform of the initial value
ϕ0(x) ↔ Φ0 (q), thus leading to the formula [1]

ϕ (x, z) =

∞∫

−∞

Φ0 (q) exp

(
−jz

√
β2
0 − q2

)
exp (−jqx) dq,

(14)
where ϕ (x, z) is expressed as an integral of the spatial
spectrum of plane waves.

Formula (14) describes the expansion of the beam wave
into the spectrum of plane waves. To the spectral density
of the electric-intensity-vector ê (q, x, z) in form of plane-
wave components

ê (q, x, z) = uyE0Φ0 (q) exp {−j (qx+ kz)} , (15)

where k =
√
β2
0 − q2 , pertains the spectral density of the

magnetic-intensity-vector ĥ (q, x, z) in form of plane-wave
components equal to

ĥ (q, x, z) = (E0/β0Z0) [quz − kux]×
×Φ0 (q) exp {−j (qx+ kz)} ,

(16)

where Z0 =
√
µ/ε is the wave impedance of the lossless

medium. Each component of the plane wave spectral den-
sity described by (15) and (16) propagates in the direction
given by the unit vector

n = sin θux + cos θuz,

where tan θ = q/k .

Generally, the spectrum of plane-wave-amplitudes
Φ0 (q) for the given initial-value wave-amplitude-profile
ϕ0 (x) may contain also the components with spatial fre-
quencies q higher than β0 . In that case only the waves
propagating in x - direction and evanescent in z -direction
occur, defined as

ê (q, x, z) = uyE0Φ0 (q) exp (−κz) exp (−jqx) , (17)

ĥ (q, x, z) = (E0/β0Z0) [quz − jκux]×
×Φ0 (q) exp (−κz) exp (−jqx) , (18)

where κ =
√
q2 − β2

0 for q > β0 .

4 Solution for the spatio-temporal
electromagnetic wave packet

After introducing for ψ (x, z, t) the two-dimensional
spatio-temporal Fourier transform pair ψ (x, z, t) ⇔
Ψ(q, z,Ω) by

Ψ (q, z,Ω) =

1
(2π)2

∞∫

−∞

∞∫

−∞

ψ (x, z, t) exp {j (qx− Ωt)} dxdt, (19)

ψ (x, z, t) =

∞∫

−∞

Ψ(q, z,Ω) exp {j (Ωt− qx)} dqdΩ, (20)

one arrives instead of (8) at the Helmholtz equation in
spatio-temporal spectral domain

∂2Ψ(x, z,Ω)

∂z2
+
{
(β0 +Ω/c)

2 − q2
}
Ψ(x, z,Ω) = 0. (21)

The solution for the wave propagating in the positive
direction of the z -axis now reads

Ψ(q, z,Ω) = Ψ0 (q,Ω) exp

{
−jz

√
(β0 +Ω/c)

2 − q2
}
,

(22)
where Ψ0 (q,Ω) is the Fourier transform of the initial
value ψ0(x, t) ⇔ Ψ0 (q,Ω), thus leading to the formula

ψ (x, z, t) =

∞∫

−∞

∞∫

−∞

Ψ0 (q,Ω) exp

(
−jz

√
[β0 +Ω/c]

2 − q2
)
×

× exp {j (Ωt− qx)}dqdΩ,
(23)
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where ψ (x, z, t) is expressed as an twofold-integral of the
spatio-temporal spectral density Ψ(q, z,Ω).

Similarly as for (14), the formula (23) describes the
expansion of the beam wave into the spectrum of plane
waves. The complex-amplitude electric-intensity-vector
spectral density ê (q, x, z, t) has again the form of a plane
wave

ê (q, x, z, t) = uyE0Ψ0 (q,Ω) exp {−j (qx+ kz)}×
× exp {j (ω0 +Ω) t} , (24)

with pertaining magnetic-intensity-vector equal to

ĥ (q, x, z, t) = [E0/(β0 +Ω/c)Z0] [quz − kux]×
Ψ0 (q,Ω) exp {−j (qx+ kz)} exp {j (ω0 +Ω) t} , (25)

where k (Ω) =

√
(β0 +Ω/c)2 − q2 , propagating in the

direction given by the unit vector (now depending also
on Ω) n (Ω) = sin θux + cos θuz , where tan θ (Ω) = q/k.

5 Parabolic (paraxial) approximation

If the spatial spectrum Φ0 (q) in (14) consists only
of spectral components with spatial frequencies fulfilling
the condition q << β0 , then the ”low spatial frequency”
approximation can be used

√
β2
0 − q2 ≈ β0 − q2

/
2β0, (26)

and instead of (14) one arrives at the inverse Fourier
transform formula in the form

ϕ (x, z) = exp (−jβ0z)×

×
∞∫

−∞

Φ0 (q) exp
(
jq2z

/
2β0

)
exp (−jqx) dq. (27)

Observe that the integral in (27) is the ”slowly vary-
ing envelope in propagation direction” ϕ (x, z) as defined
above, ϕ (x, z) = ϕ (x, z) exp (−jβ0z). The integral in
(27) is in fact the solution of the following equation in
the spatial-frequency domain

∂Φ(q, z)

∂z
− jq2

2β0
Φ (q, z) = 0 (28)

for ϕ (x, z) ↔ Φ(q, z) with the initial condition

Φ (q, z)
∣∣
z=0

= Φ0 (q). The transformation of (28) into

the spatial domain yields the parabolic partial differential
equation

∂2ϕ (x, z)

∂x2
− 2jβ0

∂ϕ (x, z)

∂z
= 0 (29)

for ϕ (x, z) . It approximates (7), where the last term can
be neglected since |∂ϕ/∂z| << β0 due to the ”slowly
varying envelope” principle.

Hence the nature of paraxial approximation can be
explained in spatial frequency domain by ”low-spatial
frequency” approximation (26), or in spatial domain by
parabolic approximation (29) of the exact equation (7).

Parabolic approximation can be used also for spatio-
temporal wave packet. If the spatio-temporal spectral
density Ψ (q, z,Ω) contains only spectral components
with frequencies fulfilling the condition Ω << ω0 and
with the spatial frequencies fulfilling the condition q <<
ω0/c , then the ”low temporal and spatial frequency” ap-
proximation

√
(β0 +Ω/c)

2 − q2 ≈ β0 +
Ω

c
+

Ω2

2c2β0
− q2

2β0
(30)

can be similarly used, yielding instead of (23) the result
in the retarded form

ψ (x, z, t− z/c) = ψ (x, z, τ ) = exp (−jβ0z)×

×
∞∫

−∞

∞∫

−∞

Ψ0 (q,Ω)× exp

{
jz

2β0

[
q2 − (Ω/c)2

]}

× exp {j [Ω (t− z/c)− qx]} dqdΩ,
(31)

where τ = t− z/c .

The first term in (31) together with exp (jω0t) term in
(4) yields exp {jω0 (t− z/c)} ie the retarded harmonic-
oscillations of the carrier wave propagating along z -axis
with the velocity c .

Observe that the integral in (31) is the ”slowly-

varying-envelope in time and space” ψ (x, z, t)as defined

above, ψ (x, z, t) = ψ (x, z, t) exp (−jβ0z) .
The integral in (31) is in fact the solution of the fol-

lowing equation in the spatio-temporal frequency-domain

∂Ψ(q, z,Ω)

∂z
− j

{
q2

2β0
− Ω2

2β0c2
− Ω

c

}
Ψ(q, z,Ω) = 0,

(32)

for ψ (x, z, t) ⇔ Ψ(q, z,Ω) with the initial condition
ψ0(x, t) ⇔ Ψ0 (q,Ω). This corresponds to the parabolic
equation

∂2ψ

∂x2
− 2jβ0

∂ψ

∂z
− 1

c2
∂2ψ

∂t2
− 2jβ0

c

∂ψ

∂t
= 0 (33)

for ψ (x, z, t) in the spatio-temporal domain that approx-

imates the equation (9), where the term ∂2ψ
/
∂z2 has

been neglected with the same argument as in (29).

For the retarded time τ = t − z/c and ψ (x, z, τ ) =

ψ (x, z, t− z/c) the resulting parabolic equation instead
of (33) reads

∂2ψ (x, z, τ)

∂x2
− 2jβ0

∂ψ (x, z, τ)

∂z
− 1

c2
∂2ψ (x, z, τ )

∂τ2
= 0.

(34)
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6 Propagation of the Gaussian beam
and of the Gaussian wave-packet

in parabolic approximation

For the initial Gaussian-like wave-amplitude profile

ϕ0(x) = exp
(
−x2

/
2W 2

x0

)
(35)

with the spatial spectrum [1, 2]

Φ0 (q) =Wx0 exp
(
−q2W 2

x0

/
2
)/√

2π (36)

one obtains for the propagating monochromatic Gaussian
beam wave from (27) the expression

ϕ (x, z) =
1√

1− jα0z
exp

{
−β0

2

α0x
2

(1− jα0z)

}
, (37)

where α0 = 1
/
β0W

2
x0 = λ0

/
2πW 2

x0 . The last formula can
be written also as

ϕ (x, z) =
1√

1− jα0z
exp

{
− x2

2W 2
x

}
exp

{
jβ0

x2

2Rx

}
,

(38)

where Wx = Wx0

√
1 + (α0z)

2 is the effective width of

the beam wave and Rx = −z
[
1 + 1

/
(α0z)

2
]
is the ra-

dius of the wave-front curvature (curvature of equi-phase
surfaces) on the z -axis, both in the plane z = const . Both
are functions of the propagation path z , ie Wx =Wx (z),
Rx = Rx (z). In the plane z = 0 - the position of the
beam waist - the effective radius Wx = Wx0 reaches its
minimum and the wavefront is planar, ie the radius of
equiphase surfaces Rx converges to infinity. For z > 0
the beam wave diverges, Rx < 0, while for z < 0 the
wave is focused, Rx > 0.

In the near-zone of the beam waist, α0z << 1, z <<

W 2
x0

/
λ0 , the wavefront is nearly planar ( |Rx| >> |z|)

- in fact the wave is effectively a plane wave with the
Gaussian amplitude profile. In the far-zone of the beam
waist, α0z >> 1, z >> W 2

x0

/
λ0 , the wave in the paraxial

region |x| << |z| is effectively a spherical wave (Rx ≈
−z ) with the Gaussian amplitude profile and with the
wave front curvature equal to the distance z from the
beam waist.

In a special case of a spatio-temporal wave-packet, ie of
a Gaussian distribution of the amplitude-envelope in time
and space

ψ0(x, t) = exp
(
−x2

/
2W 2

x0

)
exp

(
−t2

/
2W 2

t0

)
(39)

with the spatio temporal spectrum

Ψ0 (q,Ω) =

Wx0Wt0 exp
(
−q2W 2

x0

/
2
)
exp

(
−Ω2W 2

t0

/
2
)/

2π, (40)

formula (31) yields a product of two single, one spatial
and one temporal inverse Fourier integrals

ψ(x, z, t− z/c) =
Wx0Wt0

2π
×

×
∞∫

−∞

exp (
−q2W 2

x0

2
) exp

{
jzq2

2β0

}
exp{−jqx}dq×

×
∞∫

−∞

exp(
−Ω2W 2

t0

2
) exp

{
− jzΩ2

2c2β0

}

× exp {jΩ(t− z/c)}dω,

(41)

with the result

ψ (x, z, t− z/c) =
1√

1− jα0z
exp

{
−β0

2

α0x
2

(1− jα0z)

}
×

× 1√
1 + jχ0z

exp

{
−c2β0

2

χ0(t− z/c)
2

(1 + jχ0z)

}
, (42)

where χ0 = 1
/
cω0W

2
t0 = 1/β0 (cWt0)

2
.

The first part of (42) is in fact the amplitude distri-
bution of the monochromatic beam wave identical with
(37). The second part denotes a retarded temporal Gaus-
sian pulse that can be written in analogy with (38) in the
form

1√
1 + jχ0z

exp

{
− (t− z/c)

2

2W 2
t

}
exp

{
jc2β0

(t− z/c)
2

2Rt

}
,

(43)

where the effective width of the pulse in time domain

is Wt = Wt0

√
1 + (χ0z)

2
, and Rt = z

[
1 + 1

/
(χ0z)

2
]

characterises the non-linear phase modulation (chirping)
of the pulse. Both are functions of the propagation path
z , ie Wt =Wt (z), Rt = Rt (z).

The chirping of the carrier frequency means that the
instantaneous carrier frequency instead of ω0 equals

ω (t, z) = ω0 [1 + (ct− z)/Rt] . (44)

The final formula for the electric intensity takes either
the form

E (r, t) = Re {uyE0ϕ (x, z) exp [j (ω0t− β0z)]} (45)

for Gaussian beam, or

E (r, t) = Re
{
uyE0ψ (x, z, t− z/c) exp [jω0 (t− z/c)]

}
.

(46)
for the Gaussian wave-packet.

If one considers (38) and (43) it is easily seen, that
the profile of the wave intensity is a symmetrical Gaus-
sian function for the transversal variable x and also for
the time variable t . However, the longitudinal intensity
profile as a function of the variable z is not symmetrical,
ie is given as

∣∣ψ (x, z, t− z/c)
∣∣2
x=0

=
1√

(1 + α2
0z

2) (1 + χ2
0z

2)
×

× exp

{
− (t− z/c)2

W 2
t0 (1 + χ2

0z
2)

}
, (47)

as seen in Fig. 1(a),(b),(c) and Fig. 2.
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Fig. 1. Contour lines of intensity profiles accordingly (42) for α0 = 1, χ0 = 1, Wt0 = 1, Wx0 = 1 and for (a): t1 = 0, (b): t2 = 0.5
and (c): t3 = 1
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Fig. 2. Profiles of (47), ie a cut through Fig.1 contours at x = 0,
for α0 = 1, χ0 = 1, Wt0 = 1 for (a): t1 = 0 (red), (b): t2 = 0.5

(green) and (c): t3 = 1 (blue)

7 Some aspects of the numerical implementation

7.1 Sampling of the spectral densities and interpolation

of the wave amplitude

In the numerical modelling only certain limited num-
ber, either even 2N , or odd 2N + 1, of discretised val-
ues of harmonics Φ0n = Φ0 (qn) of the initial condition
ϕ0(x) ↔ Φ0 (q) , or Φn (z) = Φ (qn, z) of the solution
ϕ(x, z) ↔ Φ (q, z) , can be used, where qn = nq0 and
q0 is the basic spatial frequency, with n ∈ {−N + 1, N}
for the even and n ∈ {−N,N} for the odd number of
discretised values.

The periodic band-limited function ϕ̃0 (x)obtained by
using the Fourier series for even or odd number of Φ0n

values, ie

ϕ̃0 (x) =

N−1∑

n=−N+1

Φ0n exp (−jnq0x) + Φ0N cos (Nq0x) ,

(48)
or

ϕ̃0 (x) =
N∑

n=−N

Φ0n exp (−jnq0x) (49)

is used, instead of the inverse Fourier transform in
form of (11). It approximates ϕ0 (x) on the interval
(−xmax, xmax), where xmax = π/q0 .

The sampled values ϕ̃0k = ϕ̃0 (xk) in the points xk =
k∆x , where ∆x = xmax/N , k ∈ {−N + 1, · · · , N} are
obtained for the even number 2N using (48)

ϕ̃0k =

N∑

n=−N+1

Φ0n exp {−jπkn/N} . (50)

Similarly, the sampled values ϕ̃0k = ϕ̃0 (xk) for the

odd number 2N+1 of sampling points xk =
(
k − 1

2

)
∆x ,

k ∈ {−N, · · · , N} , where ∆x = xmax

/(
N + 1

2

)
are ob-

tained, using (49)

ϕ̃0k =

N∑

n=−N

Φ0n exp
{
−j2π

(
k − 1

2

)
n
/
(2N + 1)

}
. (51)

Both (50) and (51) exactly correspond to the definition
of the inverse discrete Fourier transform. Therefore also

Φ0n =
1

2N

N−1∑

k=−N

ϕ̃0k exp {jπkn/N} , (52)

for the even, and

Φ0n =
1

2N + 1

N∑

k=−N

ϕ̃0k exp
{
j2π

(
k − 1

2

)
n
/
(2N + 1)

}
,

(53)
for the odd number of samples.

Substituting (52) into (48) and (53) into (49) inter-
changing the order of summation and summing the geo-
metrical series with respect to n yields [2] either

ϕ̃0(x) =
1

2N

N−1∑

k=−N+1

(−1)kϕ̃0k×

× sin (Nq0x) cot

{
1
2 (q0x− πk

N
)

} (54)

for the even number of the sampling points, or

ϕ̃0(x) =
1

2N + 1

N∑

k=−N

ϕ̃0k sin
{
(N + 1

2 )q0x

− π(k − 1
2 )
}/

sin

{
1
2q0x− π(2k − 1)

4N + 2

}
(55)

for the odd one respectively.
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Fig. 3. Kernel function (56) for: 2N = 8, 16, 24

0 xmax

0.8

0.4

0.0

9

17

25

Fig. 4. Kernel function (57) for: 2N +1 = 9, 17, 25

Both formulae (54) and (55) in fact mean an inter-
polation of the bandlimited function ϕ̃0 (x) between its
sampled values ϕ̃0k in the sampling points equal either
xk = k∆x , or xk =

(
k − 1

2

)
∆x . The kernel functions of

interpolation either for the even number of samples 2N

(−1)ksin (Nq0x) cos

(
1

2
q0x

)/
2N sin

(
1

2
q0x

)
, (56)

or for the odd number of samples 2N + 1

sin

{(
N +

1

2

)
q0x

}/
(2N + 1) sin

{
1

2
q0x

}
, (57)

are illustrated in Fig. 3 and Fig. 4. The figures indicate
that the oscillatory character of interpolation functions is
smaller for even number of interpolating points than for
odd.

7.2 Boundary conditions

In the boundary points of the computational window
the boundary conditions must be formulated. The so-
called ”electric wall” is represented by zero boundary
values ϕ̃0 (x) = 0 in points x = 0 and x = xmax ,
and the so-called ”magnetic wall” by zero derivatives
∂ϕ̃0 (x)/∂x = 0 in the same boundary points. In such
cases the function ϕ̃0 (x) becomes either an even, or an
odd function on the interval of the period (−xmax, xmax) ,

and (49) (for the odd number of samples 2N +1) can be
expressed either in the form

ϕ̃0 (x) = Φ00 +
N∑

n=1

2Φ0n cos (nq0x) (58)

for the ”electric wall”, since Φ0(−n) = Φ0n , or in the form

ϕ̃0 (x) =

N∑

n=1

2jΦ0n sin (nq0x) (59)

for the ”magnetic wall”, since Φ0(−n) = −Φ0n .

Since usually a symmetric initial amplitude distribu-
tion within the computational window (0, xmax) is used,
ie ϕ̃0(xmax/2 + x) = ϕ̃0(xmax/2 − x), then in (58) only
the terms with even n occur, and in (59) only the terms
with odd n . The case of the even number of samples 2N
is analogous using (48) instead of (49), but for the sake
of brevity not shown here.

Similar situation occurs also for ψ0(x, t) ⇔ Ψ0 (q,Ω),
since for the numerical modelling only a finite number of
spatial and temporal harmonics can be used, ie the set of
discrete values Ψ0(n,m) = Ψ0 (nq0,mΩ0), n ∈ {−N,N} ,
m ∈ {−M,M} , instead of continuous Ψ0 (q,Ω). In anal-
ogy to (49) the double periodic band-limited function

ψ̃0(x, t)

ψ̃0 (x, t) =

M∑

m=−M

N∑

n=−N

Ψ0(n,m) exp [j (mΩ0t− nq0x)]

(60)
approximates ψ0(x, t) in the computational window
(0, xmax)× (0, tmax) , where xmax = π/q0 , tmax = π/Ω0 .

Taking the values on the boundaries of computational
window as electric walls or magnetic walls one arrives
again to double sums

ψ̃0 (x, t) = Ψ00+
M∑

m=1

{
N∑

n=1

2Ψn,m cos (nq0x)

}
cos (mΩ0t),

(61)

ψ̃0 (x, t) =

M∑

m=1

{
N∑

n=1

2jΨn,m sin (nq0x)

}
sin (mΩ0t).

(62)

7.3 Amplitude of the propagating wave

The resulting ϕ̃ (x, z) is then for eg odd number of
samples 2N + 1 obtained either as

ϕ̃0 (x, z) = Φ00 exp (−jβ0z)+

+
N∑

n=1

2Φn exp

(
−jz

√
β2
0 − n2q20

)
cos (nq0x), (63)
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Fig. 5. Propagation of the smooth-impulse monochromatic beam-wave along the propagation path of 40λ with the window width of
20λ : (a) – the electric walls, and (b) – the magnetic walls

for the ”electric wall”, or as

ϕ̃0 (x, z) =

N∑

n=1

2jΦ0n exp

(
−jz

√
β2
0 − n2q20

)
sin (nq0x)

(64)
for the ”magnetic wall”.

For the spatio-temporal pulse the discrete version of
(23) using (61) for the electric wall yields

ψ̃0 (x, z, t) = Ψ00 exp (−jβ0z) +
M∑

m=1

{
N∑

n=1

2Ψn,m×

× exp

(
−jz

√
[β0 +mΩ0/c]

2 − n2q20

)
cos (nq0x)

}
×

× cos (mΩ0t) . (65)

Similar result can be obtained using (62) for the magnetic
wall.

Observe that the function exp (−jz · · ·) in the double
sum of (65) is even for n , ie it has the same value for ±n ,
but it is not even for m . This leads to an unsymmetry in
the wave-amplitude-profile with respect to the variable z
as already pointed out in (47) concerning the parabolic
approximation.

7.4 Design of the initial impulse

The periodic smooth-impulse function has been con-
structed as follows. On the interval (0, xmax) we construct
an symmetric function ϕ̃0(xmax/2−x) = ϕ̃0(xmax/2+x)
such that in the boundary points all derivatives of the
function are zero. On the interval (−xmax, xmax) this
function can be taken either even (magnetic wall), or odd
(electric wall), ie either ϕ̃0(−x) = ϕ̃0(x), or ϕ̃0(−x) =
−ϕ̃0(x).

For the magnetic wall one obtains

ϕ̃0(x) =
N∑

n=0

an cos (n∆qx)

/
N∑

n=0

an , (66)

where odd an are zero and even an are solutions of the
set of equations

N∑

n=2

(−1)nn2kan = 1,

k = 1, 2, · · · , N − 1, a0 = −
N∑

n=1

an.

(67)

Herewith the even periodic function ϕ̃0(x) is normalised
to maximum value one, ϕ̃0(0) = 1, and equal to zero
in the computational window boundary points, ϕ̃0(0) =
ϕ̃0(xmax) = 0 with the zero derivatives in the same points
up to the order N .

For the electric wall one constructs an odd function on
the interval (−xmax, xmax) , defining the smooth-impulse
curve within the computational window, ie on the half-
period interval (0, xmax) as

ϕ̃0(x) =

N∑

n=0

bn sin(n∆qx)

/
N∑

n=0

bn , (68)

where even bn are zero and bn are solutions of the set of
equations

N∑

n=2

(−1)nn2k−1bn = 1,

k = 1, 2, · · ·N − 1, b0 = 0.

(69)

Herewith the odd periodic function ϕ̃0(x) with the zero
derivatives in the boundary points up to the order N , is
again normalised to maximum value one, ϕ̃0(0) = 1, and
equal to zero in the boundary points, ϕ̃0(0) = ϕ̃0(xmax) =
0.

In Table 1 and Table 2 the amplitudes of harmonic
components are shown for the various maximum number
N . As can be seen from Table 3 they are nearly identical
with the harmonic components taken from the Gaussian-
shape spectral density. On the other hand the width of the
smooth-impulse function with respect to window width
cannot be arbitrarily changed as it is the case for the
Gaussian impulse.
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Table 1. Harmonic components for the electric wall smooth-impulse function

n 1 3 5 7 9 11 13

N

7 0.547 -0.328 0.0598 -0.0156
l9 0.492 -0.328 0.1410 -0.0352 0.00391
11 0.451 -0.322 0.1610 -0.0537 0.01070 -0.000977
13 0.419 -0.314 0.1750 -0.0698 0.01900 -0.003170 0.000244

Table 2. Harmonic components for the magnetic wall smooth-impulse function

n 0 2 4 6 8 10 12

N

8 0.273 0.219 0.0625 0.00781
l0 0.246 0.234 0.0879 0.01950 0.00195
12 0.226 0.242 0.1070 0.03220 0.00586 0.000488
14 0.209 0.244 0.1220 0.04440 0.01110 0.001710 0.000122

Table 3. Harmonic components for the magnetic wall as defined by Gaussian-shape spectral density

n 0 2 4 6 8 10 12

N

14 0.207 0.362 0.242 0.123 0.0478 0.00321 0.000556

7.5 Boundary reflection effects

Since in the course of propagation the impulse broad-
ens the significant reflection effects on the boundaries oc-
cur. Another interpretation of these effects is that, since
in fact one deals with the periodic function, the tails of
the broadened impulse penetrate into the computational
window from the neighbouring periodic windows. There-
fore these effects are completely different for the electric
and magnetic walls respectively.

As it is easily seen from Fig. 5, the electric walls have
much more deteriorating effect on the beam-wave enve-
lope profile than the magnetic walls.

8 Conclusions

Some aspects and critical features of the two-dimen-
sional-wave-packet propagation had been thoroughly dis-
cussed. The results will be used in subsequent papers con-
cerning the passing the wave-packet through dielectric
boundaries, transient Goose-Hänchen shift and transient
frustrated total internal reflection.
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