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Additive fault tolerant control of nonlinear
singularly perturbed systems against actuator fault
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This paper presents the design of an additive fault tolerant control for nonlinear time-invariant singularly perturbed
systems against actuator faults based on Lyapunov redesign principle. The overall system is reduced into subsystems with
fast and slow dynamic behavior using singular perturbation method. The time scale reduction is carried out when the singular
perturbation parameter is set to zero, thus avoiding the numerical stiffness due to the interaction of two different dynamics.
The fault tolerant controller is computed in two steps. First, a nominal composite controller is designed using the reduced
subsystems. Secondly, an additive part is combined with the basic controller to overcome the fault effect. The derived e-
independent controller guarantees asymptotic stability despite the presence of actuator faults. The Lyapunov stability theory
is used to prove the stability provided the singular perturbation parameter is sufficiently small. The theoretical results are

simulated using a numerical application.
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1 Introduction

Singularly perturbed systems belong to a class of sys-
tems having a mathematical model which contains a set
of differential equations depending on a small positive pa-
rameter, called parameter of singular perturbation, mul-
tiplying the derivative terms of a part of the equations.
They are often occur in the physical systems in engineer-
ing field, like power systems, dynamic networks, robots,
energy and particles transfer mechanism and so on. Such
processes involve interconnected slow and fast dynamics
which lead commonly to numerical stiffness in the control
design methods. To overcome such problems, the method-
ology of singular perturbation, based on reduction tech-
niques, is frequently used in the literature. The principle
is to decompose the overall system into two subsystems
with slow and fast dynamics, so that the actual controller,
which depends on the parameter of the singular perturba-
tion, is approached by a composite form of the controllers
stabilizing the decomposed subsystems [1-4].

Like other systems, the multi time scale systems can
be affected by faults that may prevail the controllers,
the actuators, or other system components. In this case,
an appropriate control strategy, called fault tolerant or
reconfigurable control, is required to guarantee nominal
performances despite the faults occurrence. Such control
schemes are able to recover system and component per-
formances in case of fault happening and to surmount
the constraints caused by the typical control scheme.

nonlinear time-invariant singularly perturbed systems, singular perturbation method, additive fault

The aim of this control scheme is to preserve security of
machines and system operators [5-9]. For nonlinear sys-
tems, meaningful results are presented in the literature.
Two different methods are presented. In passive fault tol-
erant controller design methods, the controller parame-
ters remain unchangeable throughout the faulty and the
fault free case. In this situation, techniques like Hamilton-
Jacobi inequality approach and robust pole region assign-
ment method are used [10,11]. The active methods like
sliding mode-based control methods and adaptive back-
stepping compensation control, by contrast, need an on-
line fault detection scheme to achieve fault diagnosis step,
and then a procedure to ensure the compensation of de-
tected faults [12,13]. Diverse techniques are proposed in
the literature to design fault tolerant controllers for non-
linear systems. Liang and Xu in [14] proposed a vari-
able structure stabilizing control law to tolerate the pres-
ence of actuator fault in a nonlinear system. The derived
control scheme doesn’t require the solution of Hamilton-
Jacobi inequality. Benosman and Lum in [15] developed a
Lyapunov-based passive feedback controller to guarantee
stability of nonlinear affine system with actuator faults.
Ma and Yang in [16] designed a fault diagnosis procedure
and an active reconfigurable control strategy for nonlinear
uncertain dynamic system against time-varying actuator
fault. An improved high gain observer is realized to supply
more on-line information to generate the reconfigurable
controller.
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On the other hand, several approaches to control multi
time scale systems have been proposed. Especially, in lin-
ear case, Li et al in [17] derived a linear quadratic control
scheme for singularly perturbed systems. The designed
controller is reliable to actuator failures; it is based on
fast and slow sub-controllers so that it becomes inde-
pendent of the singular perturbation parameter. In [18],
Tellili et al proposed a reconfigurable adaptive method
to compensate for any defects that may affect the sensors
and the actuators in presence of external perturbation.
In both cases, sensor and actuator fault, a controller for
the original system was designed and then simplified us-
ing singular perturbation method. In nonlinear case, re-
configurable control was investigated by some authors in
case of systems undergoing actuator saturation [19-21]. In
particular, the methods used to control nonlinear time-
invariant singularly perturbed systems did not consider
actuator additive faults.

The principal contribution of this work is to develop
a control strategy for nonlinear time-invariant singularly
perturbed systems affected by actuator additive faults,
without going through the linearization of the nonlinear
system. The control scheme is a combination of a com-
posite control and an additive part used to accommodate
the presence of a fault. The singular perturbation method
will be exploited to avoid the numerical stiffness induced
by the interconnection of the fast and slow dynamics.
Thereby, the reliable controller will be independent of the
singular perturbation parameter.

The succeeding paper sections are arranged as follows.
In Section 2, the system structure and the problem for-
mulation will be depicted. The main results are formu-
lated in Section 3. An application in form of a simulation
is illustrated in Section 4. Finally, a conclusion ends the

paper.

2 System characterization
and problem formulation

The following nonlinear two-time scales time-invariant
singularly perturbed system will be considered [22, 23]

#(t) = fi(z,y) + g1 (2, y)u(t)

ci(t) = Fale,y) + 9ol y)ult) M

where x € B, C ®"! and y € B, C R"? represent the
state vectors, u € ™ corresponds to the control vector.
For i =1, 2, f; and g; are locally Lipschitz in a field en-
closing the origin and f; satisfies f;(0,0) = 0. The scalar
€ is a singular perturbation parameter taking values be-
tween 0 and 1; it characterizes the time scale separation
between the slow and the fast dynamics. (z,y) = (0,0)
is assumed to be an isolated equilibrium state.

The singular perturbation theory will be used to ap-
proximate the slow and fast dynamics by setting € = 0 in
the g-equation and solving for y in terms of x [1,24, 25].
It follows for the second equation in system (1)

0= fa(z,y) + g2(2, y)u(t) . (2)
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The singularly perturbed system is supposed to be
standard, which means, the equation (2) has only a so-
lution y = h(z,us), where ug is the slow part of the
control u. Substituting this solution into the first equa-
tion of system (1), the following reduced slow subsystem
is obtained

i(t) = fi(z, h(z,us))+g1 (2, h(2, us))us(t) . (3)

It is assumed that only the origin of the closed-loop slow
subsystem (3) is an asymptotically stable equilibrium, so
there exists a feedback slow control law us(t) = ps(x),
where p; is locally Lipschitz vector function, that renders
the slow dynamics asymptotically stable; we consider also
a positive definite Lyapunov function Vi(z) guaranteeing
for all x € B,

OV (x)
ox [fl(xvh(‘rvus))—i_

g1 (w,h(x,us))us} < —al?(z) (4)

Where a > 0 and Ls(z) is a positive definite function.
The reduced fast subsystem is generated by

dy

T = f2(@,9) + g2(z,y) (us + uy) (5)

in which the fast time scale is defined as 7 = t/e and
x is assumed to be a constant parameter equal to its
initial value. There exists a feedback fast control law
ur(t) = pr(z,y) which asymptotically stabilizes the fast
dynamics, such that the equilibrium y = h(z,us) of
the closed loop fast subsystem is supposed asymptoti-
cally stable uniformly in =z € R"!. The fast controller
satisfies py(xz, h(z,ps(x))= 0, where py is locally Lips-
chitz vector function. The composite control of the global
system is expressed as a sum of the fast and slow sub-
controllers [1,25, 26]

w= (@) +ug(z,y). (6)

The composite feed-back control is designed so that
the origin is an asymptotically stable equilibrium of the
singularly perturbed closed-loop system (1). For the fast
subsystem (5), Vy(z,y) is defined as a positive definite
Lyapunov function such that for all (z,y) € B, X By

(z—‘;f [fz(:z:,y) + g2(z,y) (ps +pf)] <

= bL3(y = h(z,ps)) (T)

where b >~ 0 and Ly is a positive definite function.

A composite Lyapunov function candidate for the sin-
gularly perturbed system (1) is defined by a weighted sum
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of the Lyapunov functions for the reduced fast and slow
subsystems, so that

W(z,y) = (1 = d)Vs +dVy (8)

where 0 < d < 1 is a free parameter to be chosen.
The composite Lyapunov function w(z,y) will be de-
rived along the trajectories of (1):

Wy Vi) da
ot =(1-4d) Jx Ot
oVy(z,y) 0x  OVy(x,y) Oy
+d( or ot y E) )

Using equation (1), we get

% =(-d mgf) [f1(2,y) + g1(x, y)u]
g%;’y)[fg(%y) + go(z,y)u]
T dW[ﬁ(w,y) + g1(z,y)u]. (10)

After some algebraic manipulations, (10) can be ex-
pressed as

OW(z,y) _ doVy(z,y)
ot e Oy

[f2(z,y) + g2, y)u]

Vs (x)
ox [f1($,h($,us))

+ 0 (:17, h(x, us))us] +T(x,y,u,us) (11)

+(1—-d)

where

W) ) + g1 )

- f (x, h(z, us)) —g1 (x, h(z, us))us]

TALD) 11 9) + g1 ).

~

T(z,y,u,us) = (1 —d)

The first and the second term of the equation (11) repre-
sent the derivatives of Vy and V; along the trajectories
of the fast and slow subsystems respectively. From equa-
tions (4) and (7), we can see that these two terms are
negative definite in « and y. The last term T'(x,y, u, us)
represents the impact of the interconnection among the
fast and slow dynamics. This term can be neglected if
singular perturbation parameter & remains small [27].

Using inequalities (4) and (7), equation (11) can be
rearranged further to get

IE9) < Niay)

ot - (12)

where N(z,y) = aL?(z) + gbLfc (y — h(z,ps)) is positive
definite. Consequently, the composite control (6) ensures
that the closed-loop system (1) admits an asymptotically
stable equilibrium at the origin for a given interval of the

parameter £ and w(zx,y) is a Lyapunov function of this
system [1,24,28].

3 Principal results

In the following, the essential results will be presented.
Suppose that the reduced fast and slow subsystems are
stabilizable in the domain B, x B, and the state (x,y)
is accessible for feedback, we seek for a control scheme
in order to stabilize asymptotically the point (z = 0,
y = 0) of the closed-loop overall two time scales singularly
perturbed system despite actuator fault occurrence.

The system (1), where the actuator is affected with
additive fault, can be expressed as

z(t) = fi(z,y) + g1(x,y) (u + D(t,x, y)),

13
ey(t) "

I
o
“H
<
N—

where D(t,z,y) represents an actuator fault which
verifies ||D(t, z,y)|| < B(t,z,y) and B(t,z,y) is a non-
negative continuous function. The controller takes the
form

U = Upom + Uadd (14)

where u = upom represents the nominal controller that
stabilizes the overall system in case of a faultless actua-
tor, it corresponds to the composite controller (6). uaad
denotes the additive part to be designed in order to re-
move the fault effect in the actuator. The proposed fault
tolerant controller to stabilize the faulty system (13) is

(15)

U = Upom + Uadd
where

(1= ) 25L2)g, 4 g2elzy,

(1= d) 25 g + a2l gy |

Uadd = — B

()T denotes the transpose of () and [|(-)| the Euclidian
norm of ().

The next theorem is presented to accomplish the con-
trol of the nonlinear singularly perturbed system (13)
even when some actuators operate abnormally.

THEOREM 1. The faulty nonlinear singularly perturbed
system given by (13) is considered. Suppose that the
reduced fast and slow subsystems are stabilizable and
the actuator fault is bounded. Then there exists a sin-
gular perturbation parameter €* > 0 such that for all
e € (0,e*], the origin (x,y) = (0,0) of the faulty nonlin-
ear singularly perturbed system is locally asymptotically
stable under the fault tolerant control law (15) even when
the actuators undergo abnormal operation.

Proof . According to equations (13) and (14), it fol-
lows for the closed-loop faulty nonlinear singularly per-
turbed system

2(t) = fi(z,y) +g1(x, ) (Unom+uadd+D(ta €L, y))v

. (16)
Ey(t) :fg(l', y) +92(.’IJ, y) (unom + Uadd + D(t, Z, y)) .
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An e-dependent Lyapunov function candidate will be de-
signed,

Wie,z,y) = (1 —d)Vs +edVy. (17)

The derivative of W (e, z,y) will be established along the
trajectories of system (16), this leads to

oW (e, z, V¢ (x,
(gtfﬂ Y _ g fa(; v) [f2 + 92(Unom + Uadd + D)]
oV,
+(1—d) ag(c“’) [f1 + 91(tom + taaa + D)]
oVy(z,
+ dE#[fl +91(tnom + tada + D)]. - (18)

The isolation of the terms depending on the nominal
control yields the following system

oW (e, z,y) _ dan (z,9)

(f2 + QQUnom)

ot Jy
0= 2 (4, 4 ) 4 e Ty 4 gy 1)
+(1— d)avas—fc)gl (Uada + D) + d%;’y)gz(uadd + D)
+ da%gl(umd +D). (19)
X
Set R} = 2%Wg R] = Xuewlg, pI = Ny

and taking into account inequality (12), the equation
takes the form

IVELY) < NG y) + (1~ d)R] (taaa + D)

+ dRy (Uaqq + D) + deRy (uaaq + D) (20)

which can be rearranged in the following inequality

oW (e, z,y)
ot
+ deR] Ytada + ((1 — d)R] +dR; +deR;)D.

< —N(z,y)+ (1 = d)R| +dR,
(21)

The term N(z,y) is defined as in (12). Using the
singular perturbation procedure by setting the singular
perturbation parameter € to zero and considering the
upper bound of the fault leads to the following expression

oW (0,z,y)

< —N
5 < —N(z,y) +

(1 —d)R{ +dR] )uaaa
+| (1= d)R] +dR;)||B (22)

The term N(z,y) is due to the nominal composite
control of the fault-free overall system, this term is posi-
tive definite in = and y by (12). Whereas the second and
third terms designate, respectively, the effect of the ad-
ditive control waqq and the fault D(t,z,y) on W(x,y).
Consequently, u,qq will be chosen to remove the influ-
ence of the actuator fault D(t,z,y) on W(z,y) so that
the right term of inequality (22) remains negative defi-
nite.
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In view of the control law (15) and taking into ac-
count the assumptions about the fault, it is obvious that
W(z,y) < 0. Thus, it can be concluded that the ori-
gin (z,y) = (0,0) of the faulty overall system is a lo-
cally asymptotically stable equilibrium point for the sys-
tem (16) under the fault tolerant control law (15) for any

singular perturbation parameter ¢ € (0,e*].

Remark . The discontinuity of the control law (15)
may engender chattering effect. This problem is com-
monly overcome by approximating the discontinuous
function by a saturation function.

4 Example of application

To depict the efficiency of the studied reconfigurable
control scheme, the following nonlinear singularly per-
turbed system is considered

T=y—x,
23
ey=—-z—eY+1+4u. (23)

The reduced slow subsystem is established by letting € =
0 in (23). It takes the form

t=log,(—z+1+4us) —=x (24)
and the slow part of the state y is expressed as
ys = log (—x + 1+ ug). (25)

It is easy to deduce that the control of the slow subsys-
tem us = x—14e~7 ensures that the closed-loop reduced
slow subsystem (24) becomes asymptotically stabilizing
about the origin. A corresponding slow Lyapunov func-
tion candidate is V, = 0.522. The reduced fast subsystem
is given by

d
d—i:—x—ey—l—l—i-us—l—uf.

(26)
Taking into account the above mentioned slow control,
the fast control uy = e¥ —e™® — y; stabilizes the state
y about the origin. y; is the fast part of the state y,
such that ys = y — ys. A corresponding fast Lyapunov
function candidate is Vy = 0.5y7 = 0.5(z + y)*. The
composite control, considered as the nominal control of
the fault free overall system, will be designed as the sum
of the slow and fast sub-controllers, taking the following
form

(27)

Ucomp = Us +ur =e€e¥ —y—1.

The resulting closed-loop overall system, after substitut-
ing of (27) in (23) is

$:—I+y,
. (28)
ey=—x—y
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Fig. 1. States trajectories in fault-free case. (a) — =z (dashed

line) and y (solid line) in open-loop, (b) — States in closed-loop
with composite control, (c¢) — fast (-.), slow (--) and composite ()
controllers by € = 0.01
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Fig. 2. States trajectories after the appearance of the actuator

fault. (a) — =z (dashed line) and y (solid line) in case of nominal

control, (b) — states in case of fault tolerant control, (c¢) — fault
tolerant control controller by € = 0.01

where the real parts of the eigenvalues remain negative.
This concludes that the origin of system (28) gets an
asymptotically stable equilibrium of the closed-loop sys-
tem. The simulation results in Fig. 1 show the composite
control and the states trajectories in the fault-free case,
starting from (xo,y0) = (—2,2). It is clear that the com-
posite control (27) ensures the asymptotical stability of
the origin.

However, the occurrence of constant additive actuator
fault of amplitude 0.7, at time instance 10 sec, yields
a loss of the actuator performance. Consequently, the
states drive to another stationary point (see Fig. 2(a)).
This means that the composite controller is not able to
stabilize the origin equilibrium point in the faulty case.
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Next, a fault tolerant control scheme will be proposed,
according to the equation (15), to compensate for the
actuator fault, it takes the form

T+y

0.7
[z +yli

(29)

u:ucomp+uadd:ey_y_1_

Figure 2(b) depicts that the states deviation is cor-
rected using the fault tolerant control (28) and the singu-
larly perturbed system stabilizes at the origin equilibrium
point, despite the presence of actuator faults. The zoom
in Fig. 2(b) illustrates the effect of fault on the states
when the fault tolerant control is used. Figure 2(c) shows
the corresponding fault tolerant control which presents
high chattering effect.

To solve this problem, the discontinuous function will
be changed with a saturation function. The simulation
results in Fig. 3(a) and (b) represent, respectively, the
states and the controller after the substitution of the dis-
continuity in the control law. It is clear that the chatter-
ing effect is reduced and the states remain at the same
equilibrium point.

xy

(2)

2l

(b)

Time (s) 4

Fig. 3. States trajectories (a) — and fault tolerant control (b) —
after the attenuation of chattering effect

5 Conclusion

The control for nonlinear singularly perturbed sys-
tems subject to actuator fault is considered. The control
scheme involves two parts. First, a composite controller,
depending on fast and slow sub-controllers, is designed to
treat the nominal case. The second part is generated to
deal with actuator faults in additive form. The Lyapunov
function for the overall system is designed in composite
weighted form using the slow and fast local Lyapunov
functions. To ensure the stability in presence of additive
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fault, which means that the time derivative of the Lya-
punov functions is negative definite, an additive controller
will be designed using slow and fast subsystems. A further
extension to this work can be the examination of other
forms of faults like loss of effectiveness in presence of ex-
ternal perturbation and the consideration of non standard
singularly perturbed systems.

In the illustrative example, it is shown that the com-
posite control was unable to hold the origin as an asymp-
totically stable equilibrium of the overall system, whereas,
the use of the reconfigurable control eliminates the effect
of actuator failure from the states trajectories.
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