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Simulation of PWM DC-DC converters
using eigenvalues and eigenvectors

Aleksandra Lekić
∗

In this paper, a time-domain simulation of the DC-DC converters’ dynamic behavior is described. Corresponding to the
state-space model for each possible operation mode of the circuit, an analytic solution is provided. Converter’s regulator is
discretized using the pole-zero placement technique based on its Laplace transfer function. An algorithm results in a very
accurate simulation due to the exact solution of the circuit’s equations.
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1 Introduction

Simulation of power electronics’ circuits has been a re-
search topic over the years [1]. Power electronics’ circuits
are built as switching circuits which makes their simu-
lation very challenging [2]. Furthermore, the switching
power converters’ simulators can be classified into gen-
eral purpose, piecewise-linear and averaged simulators.

General purpose simulators are developed for simu-
lation of the wide range of electronic circuits [3]. From
power electronics’ point of view, due to the existence
of switches, general purpose simulator Spice [3] and its
derivations being LTspice, HSPICE, etc. are shown to
have convergence issues. These problems are caused by
very complex models of switches, realized as transistors
and diodes, and from their very fast switching being much
faster than the line voltage frequency fS ≫ f0 . Some-
times the convergence problems can be bypassed by de-
creasing the simulation time step. However, there are
cases when a simulation cannot be performed although
the simulation step is very small (for example, PFC con-
verters).

Convergence problems in general purpose simulators
motivated the development of other simulators especially
made for simulating switching converter’s power stages.
Piecewise-linear simulators [4] assume a switching con-
verter with its linearized model for each state of the
switch, being on or off. However, not every type of switch-
ing is possible in circuits and the operation state (mode)
of the converter cannot be easily checked. Operation
mode determination causes in piecewise-linear simulators
problems similar to the previously mentioned convergence
problems.

Development of the averaged simulators, which are de-
veloped for power converter’s circuits with averaged volt-
ages and currents in the circuit, is based on slow vari-
ations of the circuit’s input voltage or current compar-
ing to the switching frequency. Averaging of the voltages
and currents in the circuit is often done on the level of a

switching cell and as the state-space averaging. Switch-
ing cell averaging is made by representing a converter as a
two port network consisting of inductors, capacitors and
switches [5]. A lot of the research effort has been done
in order to determine and classify switching cells; see [5–
7] for more details. However, averaging on the level of
a switching cell has to be carefully done in all of the
operating modes of the converter being continuous and
discontinuous ones. Another type of averaging simulators
is based on the state-space averaging. State-space aver-
aging is based on developing state-space system models
and then averaging them as described in [8–10].

In this paper an algorithm for the transient simulation
of the pulse width modulated (PWM) DC-DC convert-
ers, is presented. This algorithm is based on the piece-
wise simulation of the exact converter model described
with ordinary differential equations for the state vari-
ables. Ordinary differential equations (ODEs) are solved
using eigenvectors and eigenvalues of the system matrix
[11] and then the homogeneous and particular solutions of
the system are found. The outcome solution of the ODEs
is exact without any approximations, thus resulting in
this algorithm being very accurate and providing an op-
tion for increasing the simulation’s time step. However,
there is still a problem for determination operating modes
which is solved using the predefined switching mode as
will be described in Section 2. Due to development of mi-
crocontrollers and digital control [12], the regulation of
the converter is shown to be suitable for digital realiza-
tion. In that manner, the converter regulation is realized
in discrete-time.

The paper is organized as follows. Section 2 provides
the development of the circuit state-space models and the
solutions of ODEs, the regulation design and the deter-
mination of the circuit’s operation modes. In Section 3,
the program implementation is described. Simulation ex-
amples of practical importance are provided in Section 4.
Finally, some concluding remarks are given in Section 5.
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Fig. 1. Switches realization: (a) — transistor, (b) — a diode, (c) —
current bidirectional and (d) — voltage bidirectional
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Fig. 2. Buck converter

2 Transient Simulation – Constraints

In this section, the simulation algorithm and its im-
plementation are explained in detail.

2.1 Formulation of circuit equations

DC-DC converters are the switching circuits consist-
ing of two or more switches. Most of the families of DC-
DC converters have even number of switches [13]. Each
switch has two operation modes: on and off. Switches are
classified according to the polarity of the current which
flows through the switch when it is on and the polar-
ity of voltage in the off state of the switch. The possi-
ble realizations are one-quadrant, two-quadrant and four-
quadrant switches [2]. As can be seen in Figs. 1a and
1b possible ways for realization of a one-quadrant switch
is to use a transistor or a diode, two-quadrant switches
are current (Fig. 1c) and voltage bidirectional (Fig. 1d)
and four-quadrant is a combination of the previous two
two-quadrant switches (current and voltage bidirectional
switch). Also, switches can be controllable or not. Con-
trollable switches are the ones which have a transistor.
In Fig. 1 controllable switches are transistor, current and
voltage bidirectional.

In Fig. 2, the Buck converter is depicted, which rep-
resents one of the common DC-DC converters besides
Boost and Buck-Boost converter. As can be seen from
Fig. 2, Buck converter has two switches, which provides
four operation states of the circuit. However, not all of the
states are possible. For example state when both switches
are on makes the independent voltage source vIN short-
connected which is not valid and makes this state impos-
sible.

Determination of the valid converter’s operation modes
can be done in a few steps. After defining all switches’
states, first the states that are not possible when the
desired control is applied, are eliminated. In the second
step, the loops consisting only of switches and voltage
sources, and cutsets of switches and current sources, are
determined. The loops consisting only of switches and
voltage sources result in a short-connected independent
voltage source when all switches in the loop are on. In
the cutsets consisting of switches and current sources, the
current sources would be disconnected if all the switches
in the cutset are off. These states are clearly not valid
and thus eliminated.

The third step is to find the states which can produce
one of the discontinuous conduction modes: discontinuous
inductor current mode (DICM) or discontinuous capaci-
tor voltage mode (DCVM). This is necessary for the cir-
cuit equations’ formulation. According to [14] there can
only be two continuous states and some number of dis-
continuous states which is not bigger than the number of
state variables (ie inductors and capacitors). In [15] it is
described that DICM can occur if in the circuit exists a
cutset consisting only of current sources, inductors and
switches, denoted as DICM cutsets. The current of this
DICM cutset is given as

∑

i

±iLi +
∑

j

±iSj +
∑

k

±iGk = 0 , (1)

where iLi are inductors’ currents, iSj are switches’ cur-
rents and iGk are independent current sources’ currents.
Converter enters DICM when the sum of the switches’
currents reaches zero which forces the switches to turn
off. In general case, as shown in [16], during the DICM,
the sum of inductors’ voltages is equal zero, but their
current has some nonzero value which is nearly constant
during the whole DICM interval.

A similar scenario is with DCVM which occurs when in
the converter exists a loop with switches, capacitors and
independent voltage sources when all switches in DCVM
loop are closed (in the remaining text denoted as DCVM
loops). The sum of the voltages in the DCVM loop is

∑

i

±vCi +
∑

j

±vSj +
∑

k

±vGk = 0, (2)

where vCi are capacitors’ voltages, vSj are voltages
across switches and vGk are voltages of independent volt-
age sources. Equality of the sum of capacitor voltages to
the sum of independent voltage sources’ voltages, since
∑

j ±vSj = 0 for all switches closed, is the condition for

entering DCVM.

Circuit equations are formed by the modified nodal
analysis [17] which is defined as

Hx = z , (3)

where x presents a vector consisting of node voltages,
currents through independent voltage sources and cur-
rents through switches, as well as derivatives of inductor
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Fig. 3. Ćuk converter

currents and derivatives of capacitor voltages. Vector z

consists of independent sources’ values, inductor currents
and capacitor voltages, while matrix H contains quanti-
ties. In order to solve the converter’s circuit containing
switches, an extra equation for each state of the switch,
on and off state, must be added as

iS = 0 for S off,
vS = 0 for S on.

(4)

The equations for reactive elements in the circuit, induc-
tor and capacitor, are similar to the equations for inde-
pendent current and voltage source, respectively. There-
fore, an extra equation for the inductor in the example of
Buck converter shown in Fig. 2, is given as

diL
dt

=
v2

L
−

v3

L

and for capacitor
v3 = vC .

For the example including the Buck converter in the
state when switch S1 is on and S2 (switch S2 represents a
diode which is a non-controllable switch) is off, the system
of equations (3) is as follows:


























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













v1
v2
v3
iIN
iS1

iS2

diL
dt
dvC
dt



























=
























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0

−iL
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vIN
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

























. (5)

When the converter operates in a discontinuous mode,
DICM or DCVM, some modifications in the equations
are made. In general, sum of inductor currents or capaci-
tor voltages is constant. The discontinuous mode enables
the system reduction by one equation in the form of cut-
set/loop equations. The equation for DICM cutset (1) is
reduced to

∑

i

±iLi +
∑

k

±iGk = 0 (6)

and for DCVM loop (2)

∑

i

±vCi +
∑

j

±vGj = 0. (7)

Thus, DCVM and DICM provide one extra equation

by including dependence of capacitor voltages or induc-

tor currents. On the other hand one of the unknown

state variables is symbolically changed to the combina-

tion of sums of inductor currents and current sources cur-

rents/capacitor voltages and voltage sources voltages.

A common case for DICM is when inductor current be-

comes zero which means that DICM cutset contains only

one inductor and switches and possibly current sources.

Then the equation is modified by setting inductor voltage

to zero. In Fig. 2, DICM cutset is depicted as red dashed

circle and as it can be seen this cutset contains one in-

ductor and two switches. Other, more complicate case,

is when the number of inductors in the DICM cutset is

greater than one. From Fig. 3 it can be seen that this kind

of DICM occurs in the Ćuk converter where DICM cutset

is depicted as red dashed circle and crosses two inductors

and two switches. The equation for DICM cutset for the

Ćuk converter in DICM is given by

iL1 − iL2 = 0 (8)

and therefore current iL1 is replaced by −iL2 inside vec-

tor z . An extra equation which has to be added is then

diL1

dt
−

diL2

dt
= 0. (9)

When all possible states in which DC-DC converter

can operate are formulated, it is important to determine

the switching between the states. According to [13] PWM

converter can have two continuous conduction modes and

a number of discontinuous conduction modes. They can

operate in discontinuous quasi resonant mode (DQRM)

when both discontinuous modes, DICM and DCVM, oc-

cur during one switching interval.

For PWM converters possible transitions are as fol-

lows:

• 01 → 10,

• 01 → 10 → 00,

• 01 → 11 → 10.

The states are represented as binary variables where 20

bit represents controllable switch S1 equal to 1 during

interval nTS ≤ t < (n + d)TS and 21 bit is S2 with

possible realization as a diode. In the case when DQRM

can occur, which means that in the circuit exist both a

DICM cutset and a DCVM loop, in addition it is possible

to have transition 01 → 11 → 10 → 00.
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2.2 Solving State-Space Equations Using Eigenvalues

A system consisting of ordinary differential equations
can be presented in the standard state-space form as
follows:

ẋ = Ax + Bu , (10)

y = Cx +Du , (11)

where x is the vector which consists of state variables,
i.e., inductor currents and capacitor voltages, u is the
vector of independent sources and y is the vector of out-
put variables [18]. In this work only DC-DC PWM con-
verters with one input and one output, as described in
[6, 5], will be considered. Let us denote the number of
inductors in the converter as m and the number of ca-
pacitors as n . Generally, the number of inductors and the
number of capacitors doesn’t have to be equal. However,
in order to obtain independent output voltage of the load
resistance, it is shown that the total number of inductors
should be equal to the total number of capacitors, m = n

[19]. The switching cell is considered as a three-port ele-
ment between input and output of the converter and it is
made of switches, inductors and capacitors.

Depending on the switch realization and the switching
cell network during one switching interval, a number of
subintervals may occur. However, that number is equal to
2+ k , where 2 subintervals are usual CCM intervals and
k represents different number of discontinuous modes, as
in [14]. During one switching period consisting of 2 + k

subintervals, the state-space models are

ẋ(t) =











































A1x(t) + B1u(t), nTS ≤ t < (n+ d1)TS

A2x(t) + B2u(t),

(n+ d1)TS ≤ t < (n+ d1 + d2)TS

. . .

Ak+2x(t) + Bk+2u(t),
(

n+
∑k+1

j=1 dj
)

TS ≤ t < (n+ 1)TS

(12)

and

y(t) =











































C1x(t) +D1u(t), nTS ≤ t < (n+ d1)TS

C2x(t) +D2u(t),

(n+ d1)TS ≤ t < (n+ d1 + d2)TS

. . .

Ck+2x(t) +Dk+2u(t),
(

n+
∑k+1

j=1 dj
)

TS ≤ t < (n+ 1)TS

(13)

In this work all of the discontinuous modes are considered
[15]. Again, m is the number of inductors in the circuit,
n is the number of capacitors, p is the number of inde-
pendent sources and q is the number of output variables.
Earlier defined vectors and matrices are of dimensions
A(m+n)×(m+n) , B(m+n)×p , Cq×(m+n) and Dq×p .

State-space differential equations have the solution of
the form

x(t) = xp(t) + xh(t) (14)

where xp is the particular and xh is the homogeneous
solution. Homogeneous solution is found by calculating
eigenvalues of the system matrix A from equation (10).
Matrix A has (m + n) rows and columns, so there are
m+n eigenvalues, λj ∈ C where j ∈ {1, 2, . . . ,m+n} . In

the case of DC-DC converters, eigenvalues are either zero
or distinct real or complex numbers. In the case when
there are complex eigenvalues, they are in conjugate-
complex pairs because their characteristic polynomial has
real coefficients. The homogeneous solution in the case of
distinct eigenvalues is given by

xh(t) =

m+n
∑

i=1

xie
λi(t−t0) =

m+n
∑

i=1

Xi e
λit, (15)

where t = t0 denotes the beginning of the interval. Thus,
for each interval during one switching period, the homo-
geneous solution can be analytically solved by calculating
system eigenvalues.

The particular solution is obtained by solving the fol-
lowing equation

Axp(t) + Bu(t) = 0. (16)

If matrix A is invertible, particular solution is equal to

xp(t) = −A−1Bu(t). (17)

However, the system matrix can have zero eigenvalue,
meaning being singular. If matrix A has zero eigenvalues,
then the particular solution can be determined as

(

P
−1

Qu(t)
)⊤

(18)

where matrix P is obtained from matrix A by the elimi-
nation of rows and columns which are containing only ze-
ros or that are linear combination of other rows/columns.
This occurs in the case of discontinuous modes and in
some continuous conduction modes as well. Vector Q is
obtained from vector B by elimination the same rows
that are eliminated in matrix A . The particular solution
for the state variables whose equations are eliminated in
equation (18) are their values from the end of the previous
time interval.

Assuming that t = t0 denotes the end of the previous
and the beginning of the next time interval, the value
of the state variables at the beginning of the interval is
known and denoted as x(t0). Using previously formulated
equations (10), the system of m + n equations can be
written as

x(t0) = xp(t0) +

m+n
∑

i=1

Xie
λit0 ,

ẋ(t0) = ẋp(t0) +

m+n
∑

i=1

λi Xi e
λit0 = Ax(t0) + Bu(t0),

... (19)

x
(m+n−1)(t0) = x

(m+n−1)
p (t0) +

m+n
∑

i=1

λm+n−1
i Xie

λit0

= Am+n−1
x(t0) +

m+n−1
∑

j=1

Am+n−1−jBu(j−1)(t0),
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where Xi are spectral components of all state variables
corresponding to eigenvalue λi . In DC-DC converters,
the vector of independent sources u is constant or slowly
changing during one switching period. Thus, all deriva-

tives u
(j−1)(t0), j ≥ 1 will be considered as zero and

omitted in what follows. Derivatives of the partial solu-
tion are zero, because they are linear combinations of in-
dependent sources values. The solution of equations (19)
provides quantities for further calculation which can be
found using the reduced row echelon form [11] of the sys-
tem as

M











X1

X2

...
Xm+n











=











x(t0)− xp

A x(t0) + B u

...
A(m+n−1)

x(t0) + A(m+n−2)Bu











(20)

where matrix M(m+n)2×(m+n)2 consists of (m+ n)2 ma-
trices indexed as Mi, j as follows:

M =











M0,1 M0,2 . . . M0,m+n

M1,1 M1,2 . . . M1,m+n

...
...

...
Mm+n−1,1 Mm+n−1,2 . . . Mm+n−1,m+n











.

Matrices Mi,j have (m+ n) rows and columns and

Mi,j = diag
{

λi
j e

λjt0
}

.

Equations (19) and (20) can be rewritten for the case of
singular system matrix A . System matrix is singular in all
discontinuous conduction modes and in some continuous
conduction modes, eg, continuous conduction modes of

the Ćuk converter (see Appendix 2). Let us assume that
the number of zero eigenvalues is r . That means that the
column connected matrices A and B have r zero rows
or rows that are some linear combination of other rows.
Therefore, r equations can be eliminated and degener-
ated system of equations is then of dimension r (m+ n).

The solution for the described problem is to eliminate
eigenvalues equal to zero while calculating spectral com-
ponents Xi and to reduce the order of the system. In
the case of r zero eigenvalues, the number of nonzero
eigenvalues is m+ n− r , and the originally system (20)
becomes

M











X1

X2

...
Xm+n−r











=











x(t0)− xp(t0)
Ax(t0) + Bu(t0)

...
A(m+n−r−1)

x(t0) + A(m+n−r−2)Bu(t0)











(21)

with matrix M(m+n)(m+n−r)×(m+n)(m+n−r) . It should be

mentioned that r elements’ values can be formulated as

linear combinations of the remaining m+n−r equations.
Equation (21) shows that even for those elements m+n−
r coefficients are calculated. Other elements operating
continuously have m+n− r coefficients of which at least
one is different than zero.

Described algorithm is easy to be realized in some
programming languages. For the given matrices A , B ,
C and D , eigenvalues can be calculated and eliminated
ones with value zero. Afterwards, the particular solution
can be found as reduced row echelon form of the equa-
tion (17). In this paper we used Python 2.7 to compute
matrix obtained via reduced row echelon form with the
vector consisting of indices of leading 1. Of course in dis-
continuous mode or in marginally stable continuous con-
duction mode there would be r rows completely equal
to zero, but for other state variables particular solution
is provided as the value in the last column pointed by
corresponding index. Zero rows are at the end of the ma-
trix. In the programs for elements corresponding to the
“skipped” indices are assigned values from the end of the
previous time interval.

After determining coefficients of the homogeneous so-
lution (21) and particular solution (17), the overall solu-
tion can be determined as

ẋ(t) = N











X1

X2

...
Xm+n−q











+ xp (22)

with matrix N(m+n)×(m+n)(m+n−q) , where q = 0 if ma-

trix A is nonsingular and q = r if matrix A has r zero
eigenvalues, equal to

N = [N1 N2 . . . Nm+n−q ] (23)

and
Ni = diag

{

eλit
}

. (24)

2.3 Regulator Design

The regulator generates a PWM signal which controls
the controllable switch. Duty-ratio of the PWM signal is
calculated inside regulator and provides exact moment
of the transition between on-state and off-state of the
controlled switch or switches. The exact time of the state
transition is determined by the use of cutset algorithm
with given absolute and relative errors.

Since the simulation program is a natural environment
for the implementation of digital and/or discrete regu-
lators, the regulator is completely designed in discrete
manner. With a given Laplace transfer function which de-
scribes the dynamic behavior of an analog regulator, the
discretization is done using pole-zero matching method.
General form of the regulator transfer function in analog
domain is given by

Gc(s)=
d(s)

e(s)
=

ac,ns
n + ac,n−1s

n−1 + · · ·+ ac,0s
0

bc,msm + bc,m−1sm−1 + · · ·+ bc,0s0
, (25)
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where d(s) represents duty-ratio and e(s) is the output
error in the Laplace domain. Equation (25) can be rewrit-
ten as

Gc(s) =
d(s)

e(s)
= Gc0

∏n
i=1

(

1 + s
szi

)

∏m
j=1

(

1 + s
spj

)

where, n is the order of nominator and m is the or-
der of denominator. Pole-zero matching transformation,
Gc(s) → Gd(z), is done as follows [12]

• Finite poles and zeros of continuous transfer func-
tion Gc(s), sp/z,i = sreal,i + jsimag,i , are trans-

formed into their discrete equivalent by using zp/z,i =

e(sreal,i+jsimag,i)Ts , where Ts represents sampling pe-
riod.

• Zeros at sz,i → ∞ are mapped into zz,i = −1.

• DC gain of discrete transfer function is set to be equal
to the DC gain of continuous transfer function |Gc(s =
j · 0)| = |Gd(z = 1 + j · 0)| .

Hence, using the obtained discrete transfer function, dif-
ference equation (or recurrent equation) for the duty-ratio
determination is derived in a simple manner as

Gd(z) =
d(z)

e(z)
=

∑i
l=0 ad,lz

l

∑j
k=0 bd,kz

k
=

∑i
l=0

ad,l

bd,j
zl−j

1 +
∑j−1

k=0
bd,k
bd,j

zk−j

with the nominator of degree i and the denominator of
degree j .

d[n] = −

j−1
∑

k=0

bd,k

bd,j
d[n+ k− j] +

i
∑

l=0

ad,l

bd,j
e[n+ l− j] . (26)

For the desired regulator, values of errors and duty-ratio
are updated once during switching period. Converter out-
put values, which are same as regulator input values, at
the end of the switching period t = nTS are sufficient for
that purpose. Those values are already known, calculated,
and thus new value for duty-ratio is easily obtained.

2.4 Switching time determination

DC-DC converters allow two switching types: inter-
nal, which occurs in case when condition for entering dis-
continuous mode is satisfied, and external triggered by
the regulator, for which exact time of the transition and
state variables’ and output variables’ values have to be
known. An algorithm used for internal switching time de-
termination relies on second-order Newton’s interpolation
method. External switching is closely related to the reg-
ulator design.
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Fig. 6. Transient diagrams of state variables of the Ćuk converter
shown in Fig. 3 for the first 800µs and d = 0.2
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Fig. 7. Transient diagrams of state variables of the Ćuk converter
shown in Fig. 3 for the first 800µs and d = 0.8
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Fig. 8. Synchronous buck converter

Internal switching

Function that describes internal switching has the fol-
lowing form

f(x) = αx + βu,

where α and β are vectors consisting of values 0, 1 and
−1. Those values are coefficients that contain information
for state variables and independent sources in equation
(6) or (7) and depend on the determined discontinuous
mode.

According to the second-order Newton’s interpolation
method, time is determined as

tn+1 = tn +
1

f(2)(xn)

2ḟ(xn)
− ḟ(xn)

f(xn)

. (27)

Matrix form of state-space model is very useful in this
case, because

ḟ(xn) = αAxn +αBu

and
f (2)(xn) = αA

2
xn +αABu .

This method is used because it converges fast and is suit-
able for matrix state-space system’s representation [4].

External switching

According to the regulator design, duty-ratio and error
are calculated once during the switching period. On the
other hand, the condition for state change caused by
the regulator has to be checked after every time interval
(switching period is divided into smaller time intervals).
Checking is done based on whether the controlled switch
or switches turns on or off. In both cases if the switching
occurs a new point with exact switching time in which the
state change occurs must be added and all state variable
values must be calculated.

3 Program implementation

Using the constraints explained in Section 2, a pro-
gram is implemented in Python 2.7 programming lan-
guage. Program reads input netlist whose form is pro-
vided in Appendix 1. At the beginning of the simulation,
the state-space model for each possible mode of operation
is created and stored. After that the calculation of the
transient begins during which the simulation results are
stored. In Fig. 4, the simulation initialization is described.
As can be seen from Fig. 4, the state-space matrices are
calculated for every possible combination of the conduct-
ing switches. Then, the no valid states are eliminated. If
in the circuit exists a DICM cutset or a DCVM loop then
a discontinuous mode (DICM or DCVM) is possible and
that state is saved. Afterwards for each possible state,
eigenvalues are calculated and stored.
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With determined possible states and transitions and
also calculated matrices and eigenvalues, simulation pro-
ceeds starting at time t = 0 with given initial values for
the state variables. The simulation starts with the ini-
tial state and continues with the same procedure until it
reaches the stop time.

Step interval is 1000 points per period by default, but
precision can be given as an input to the program. After
each step interval, it is checked if there can be changes
of state either by the regulator (limited duty-ratio) or by
some of discontinuities inside the converter. In the case
when a change occurs, by intersect algorithm, accurately
a moment when the transition occurs is determined. This
procedure is presented in Fig. 5 by the flowchart.

4 Application Examples

In this section, two simulation examples are provided.

First example is the Ćuk converter operating in discon-
tinuous modes with a constant duty-ratio. This exam-
ple proves that this simulator works for cases in which
the system matrix is singular. The second example is the
Buck converter with the regulator.

For the example of the Ćuk converter in the open-loop
configuration parameters vIN = 5 V, L1 = 645.4µH,
L2 = 996.3µH, C1 = 217 nF, C2 = 14.085µF, R =
43Ω, fS = 30 kHz are taken. Time domain diagrams are
obtained as a result of detailed simulation during first
0.8 ms using calculated state-space matrices provided in

Appendix 2. In Fig. 6, the Ćuk converter which for some
intervals of time operates in DICM with constant duty-
ratio d = 0.2, is shown. The converter operates in DICM
after first 580µs.

The simulation of the same Ćuk converter in an open-
loop configuration with constant duty-ratio d = 0.8 pro-
vides converter operating in DCVM for some intervals of
time during the switching period. In Fig. 7, it can be seen
that the simulator successfully simulates the converter op-

erating in DCVM. Both simulations of the Ćuk converter

whose results are shown in Figs. 6 and 7 are verified using
PLECS [20] and GeckoCIRCUITS [21]. Originally simu-
lations were done with 100 points per period, but the
number of points can be decreased to 30 points per pe-
riod with the same simulation results.

The second example is the Buck converter. The first
simulation is done for the synchronous Buck converter
(realized using four-quadrant switches) depicted in Fig. 8
with parameters vIN = 20 V, L = 200µH, C = 1 mF,
R = 5Ω and fS = 100 kHz, whose input netlist is in
Appendix 1 and system’s matrices in Appendix 3, with
the regulator defined using the following transfer function

H(s) =
1.05 · 106s2 + 3.193 · 109s+ 3.161 · 1011

3.011 · 105s2 + 1.076 · 1010s
(28)

where the error signal is defined in comparison to refer-
ence voltage e = vC − 5 V. Simulation results are shown
in Fig. 9.

The second case is when the Buck converter is realized
using a switch and a diode as depicted in Fig. 2 with
parameters vIN = 10 V, L = 25µH, C = 330µF, R =
15Ω and fS = 100 kHz. The converter is controlled with
the regulator whose transfer function is

H(s) =
0.06 s+ 90

s
(29)

and error signal defined as e = vC − 5 V. This converter
operates in DICM for some intervals of time in the pe-
riod, which can be seen in Fig. 10. Again, all simulation
results are verified using simulators PLECS and Gecko-
CIRCUITS.

5 Conclusion

In this paper, an algorithm for simulation of DC-DC
converters based on exact solutions of the circuits’ equa-
tions, is provided. DC-DC converters’ equations are writ-
ten in the matrix form and solved as ordinary differential
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Fig. 9. Transient diagrams of state variables of the synchronous
buck converter shown in Fig. 8 for the first 13.2 ms
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Fig. 10. Transient diagrams of state variables for buck converter
shown in Fig. 2 for the first 7.5 ms
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equations by calculating their homogeneous and partic-
ular solutions. For the converter, a discrete regulator is
designed which controls the switches.

The proposed algorithm is implemented in Python
2.7 programming language which is a free software. It
is shown to have high accuracy by decreasing the number
of calculation points. The simulation results for the two
DC-DC converters of practical importance are provided.
Furthermore, these simulation results verify the perfor-
mance of the algorithm for each operating mode of the
converter.

Appendix A: Input netlist example

Here, the input netlist for the synchronous Buck con-
verter with parameters vIN = 20 V, L = 200µH, C =
1 mF, R = 5Ω and fS = 100 kHz is provided.

model = System.System()

# SYSTEM DESCRIPTION

model.create element(System.V(1, 1, 0, 20.0))

model.create element(System.SW(1, 3, 1, 2))

model.create element(System.SW(2, 3, 2, 0))

model.create element(System.L(1, 2, 3, 200e-6))

model.create element(System.C(1, 3, 0, 1e-3))

model.create element(System.R(1, 3, 0, 5.0))

model.set control(1, ’on state’)

model.set control(2, ’off state’)

model.set output([[’node’, 3]])

controller = Controller.Controller([1], [2], \

’pole zero matching’, [[[1.05e06, 3.193e09, \

3.161e11], [3.011e05, 1.076e10, 0], 5]], 100e3)

simulation time = 10e-3

Appendix B: Ćuk converter

For the Ćuk converter depicted in Fig. 3, the calculated
state-space matrices (matrices’ index is switches’ state in
order (S2, S1)) are given below. Matrices C and D are
the same for all of the states and therefore they are given
just once.

A(0,0) =











0 0 − 1
L1+L2

− 1
L1+L2

0 0 − 1
L1+L2

− 1
L1+L2

0 1
C1

0 0

0 1
C2

0 − 1
C2 R











, B(0,0) =









1
L1+L2

1
L1+L2

0
0









A(0,1) =











0 0 0 0
0 0 − 1

L2
− 1

L2

0 1
C1

0 0

0 1
C2

0 − 1
C2 R











, B(0,1) =









1
L1

0
0
0









A(1,0) =











0 0 − 1
L1

0

0 0 0 − 1
L2

1
C1

0 0 0

0 1
C2

0 − 1
C2 R











, B(1,0) =









1
L1

0
0
0









A(1,1) =









0 0 0 0
0 0 0 − 1

L2

0 0 0 0
0 1

C2
0 − 1

C2 R









, B(1,1) =









1
L1

0
0
0









C = [ 0 0 0 1 ] , D = [ 0 ] ,

State variables’ vector, independent source’s vector and

output variable’s vector are given in the following forms

x =







iL1

iL2

vC1

vC2






, u = [ vIN ] , y = [ vC2 ] .

Appendix C: Buck converter

For the Buck converter depicted in Fig. 2 and in Fig. 8,

the state-space matrices are

A(0,0) =

[

0 0
0 − 1

C R

]

, B(0,0) =

[

0
0

]

,

C(0,0) = [ 0 1 ] , D(0,0) = [ 0 ]

when switch S1 is off and diode S2 is off. This state

doesn’t occur in the synchronous Buck converter because

it has only four-quadrant switches which can handle both

polarities of the currents and voltages.

A(0,1) =

[

0 − 1
L

1
C − 1

C R

]

, B(0,1) =

[

1
L
0

]

,

C(0,1) = [ 0 1 ] , D(0,1) = [ 0 ]

when switch S1 is on and diode/switch S2 is off and

A(1,0) =

[

0 − 1
L

1
C − 1

C R

]

, B(1,0) =

[

0
0

]

,

C(1,0) = [ 0 1 ] , D(1,0) = [ 0 ]

when switch S1 is off and diode/switch S2 is on. It can be

seen that when both switches are not conducting inductor

current falls to zero and thus discontinuous inductor cur-

rent mode occurs. State when both semiconductors are

on is not valid.

State variables’ vector, independent source’s vector

and output variable’s vector are given in the following

forms

x =

[

iL
vC

]

, u = [ vIN ] , y = [ vC ] .
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