Effects of HSQ e–beam Resist Processing on the Fabrication of ICP–RIE Etched TiO2 Nanostructures

Open access

Abstract

Patterning of metal oxide nanostructures with different shapes and well-defined size may play an important role in the improvement of MEMS systems, sensors and optical devices. We investigated the effects of HSQ e-beam resist processing on the fabrication of sputtered TiO2 nanostructures. They were patterned using direct write e-beam lithography combined with ICP-RIE etching in CF4/Ar plasma. Experimental results confirmed that the HSQ resist with a thickness of about 600 nm is suitable as a masking material for optimal etching process and allows patterning of the dots array in TiO2 sputtered films with a thickness up 150 nm. TiO2 arrays with a minimal dots diameter of 180 nm and spacing of 1000 nm were successfully developed.

[1] PEROTTO, G.—ANTONELLO, A.—FERRARO, D.—MATTEI, G.—MARTUCCI, A. : Patterned TiO2 Nanostructures Fabricated with a Novel Inorganic Resist, Materials Chemistry and Physics 142 (2013), 712–716.

[2] ZURUZI, A. S.—MacDONALD, N. C. : Facile Fabrication and Integration of Patterned Nanostructured TiO2 for Microsystem Applications, Advanced Functional Materials 15 (2005), 396–402.

[3] KAMAT, P. V. : TiO2 nanostructures: Recent Physical Chemistry Advances, The Journal of Physical Chemistry C 116 (2012), 11849–11851.

[4] HUANG, Y.—PANDRAUD, G.—SARRO, P. : The Atomic Layer Deposition Array Defined by Etch-Back Technique: a New Method to Fabricate TiO2 Nanopillars, Nanotubes and Nanochannels Arrays, Nanotechnology 23 (2012), 485–306.

[5] PAULOSE, M.—VARGHESE, O. K.—MOR, G. K.—GRIMES, C. A.—ONG, K. G. : Unprecedented Ultra-High Hydrogen Gas Sensitivity in Undoped Titania Nanotubes, Nanotechnology 17 (2006), 398–402.

[6] KIM, I.—ROTHSCHILD, A.—LEE, B. H.—KIM, D. Y.—JO, S. M.—TULLER, H. L. : Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers, Nano Letters 6 (2006), 2009-2013.

[7] DRBOHLAVOVA, J.—VOROZHTSOVA, M.—HRDY, R.—KIZEK, R.—SALYK, O.—HUBALEK, J. : Self-Ordered TiO2 Quantum Dot Array Prepared via Anodic Oxidation, Nanoscale Research Letters 7 (2012), 123.

[8] LEOPOLD, S.—KRENIN, C.—ULBRICH, A.—KRISCHOCK, S.—HOFFMAN, M. : Formation of Silicon Grass: Nanomasking by Carbon Clusters in Cyclic Deep Reactive Ion Etching, J. Vac. Sci. Technol. B 29 (2011), 011002.

[9] YUE, W.—WANG, Z.—YANG, Y.—CHEN, L.—SYED, A.—WONG, K.—WANG, X. : Electron-Beam Lithography of Gold Nanostructures for Surface-Enhanced Raman Scattering, J. Micromech. Microeng. 22 (2012), 125007.

[10] HENRY, M. D.—WALAVALKAR, S.—HOMYK, A.—SCHERER, A. : Alumina Etch Masks for Fabrication of High-Aspect-Ratio Silicon Micropillars and Nanopolars, Nanotechnology 20 (2009), 255–305.

[11] LU, K.—HAMMOND, C.—QIAN, J. : Surface Patterning Nanoparticle-Based Arrays, Mater. Sci. 45 (2010), 582–588.

[12] GUPTA, S. M.—TRIPATHI, M. : A Review of TiO2 Nanoparticles, Chinese Science Bulletin, Physical Chemistry 56 (2011), 1639–1657.

[13] GAO, P.—LI, A.—SUN, D. D.—JERN, NG, W. : Effects of Various TiO2 Nanostructures and Graphene Oxide on Photocatalytic Activity of TiO2, Journal of Hazardous Materials 279 (2014), 96–104.

[14] NAKATA, K.—FUJISHIMA, A. : TiO2 Photocatalysis: Design and Applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13 (2012), 169–189.

[15] KUPSTA, M. R.—TASCHUK, M.—BRETT, M. J.—SIT, J. C. : Reactive Ion Etching of Columnar Nanostructured TiO2 Thin Films for Modified Relative Humidity Sensor Response Time, IEEE Sensors Journal 9 (2009), 1979–1986.

[16] YAMAZOE, N.—SHIMANOE, K. : New Perspectives of Gas Sensor Technology, Sensors and Actuators B 138 (2009), 100-107.

[17] KOSC, I.—HOTOVY, I.—ROCH, T.—PLECENIK, T.—GREGOR, M.—PREDANOCY, M.—CEHLAROVA, M.—KUS, P.—PLECENIK, A. : Double Layer Films based on TiO2 and NiOx for Gas Detection, Applied Surface Science 312 (2014), 120–125.

[18] HOTOVY, I.—KOSTIC, I.—NEMEC, P.—PREDANOCY, M.—REHACEK, V. : Patterning of Titanium Oxide Nanostructures by Electron-Beam Lithography Combined with Plasma Etching, J. Micromech. Microeng. 25 (2015), 074006.

[19] HOTOVY, I.—HASCIK, S.—GREGOR, M.—REHACEK, V.—PREDANOCY, M.—PLECENIK, A. : Dry Etching Characteristics of TiO2 Thin Films using Inductively Coupled Plasma for Gas Sensing, Vacuum 107 (2014), 20–22.

[20] HOTOVY, I.—KOSTIC, I.—HASCIK, S.—PREDANOCY, M.—REHACEK, V.—BENCUROVA, A. : Patterning of Titanium Oxide Surfaces using Inductively Coupled Plasma for Gas Sensing, Applied Surface Science 312 (2014), 107–111.

Journal of Electrical Engineering

The Journal of Slovak University of Technology

Journal Information


IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 251 149 6
PDF Downloads 204 137 11