The New Field Quantities and the Poynting Theorem in Material Medium with Magnetic Monopoles

Open access

Abstract

The duality transformation was used to define the polarization mechanisms that arise from magnetic monopoles. Then, a dimensional analysis was conducted to describe the displacement and magnetic intensity vectors (constitutive equations) in SI units. Finally, symmetric Maxwell equations in a material medium with new field quantities were introduced. Hence, the Lorentz force and the Poynting theorem were defined with these new field quantities, and many possible definitions of them were constructed.

[1] MAXWELL, J. C. : A Treatise on Electricity and Magnetism, 3rd ed., vol. 1, Oxford University Press, New York, 2002.

[2] HEAVISIDE, G. : Some Properties of Maxwell Equations, Phil. Trans. Roy. Soc. A 183 (1893), 423–430.

[3] LARMOR, I. : Collected Papers, London, 1928.

[4] McDONALD, K. T. : Electrodynamics in 1 and 2 Spatial Dimensions (October 16, 2014), http://princeton.edu/~mcdonald/examples/2dem.pdf.

[5] POINCARÉ, H. : Remarques sur une Expérience de M. Birkeland, Compt. Rend. 123 (1896), 530–533.

[6] THOMSON, J. J. : Electricity and Matter, Scribners, New York, 1904.

[7] DIRAC, P. A. M. : Quantised Singularities in the Electromagnetic Field, Proc. Roy. Soc. Lond. A133 (1931), 60–72.

[8] DIRAC, P. A. M. : The Theory of Magnetic Monopoles, Phys. Rev. 74 (1948), 817-830.

[9] SCHWINGER, J. : Magnetic Charge and Quantum Field Theory, Phys. Rev. 144 (1966), 1087–1093.

[10] SCHWINGER, J. : Sources and Magnetic Charge, Phys. Rev. 173 (1968), 1536–1544.

[11] SCHWINGER, J. : Magnetic Charge and the Charge Quantization Condition, Phys. Rev. D 12 (1975), 3105–3111.

[12] SCHWINGER, J. : A Magnetic Model of Matter, Science 165 (1969), 757–761.

[13] ZWANZIGER, D. : Local-Lagrangian Quantum Field Theory of Electric and Magnetic Charges, Phys. Rev. D 3 (1971), 880–891.

[14] WU, T. T.—YANG, C. N. : Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields, Phys. Rev. D 12 (1975), 3845–3857.

[15] JACKSON, J. D. : The Nature of Intrinsic Magnetic Dipole Moments, CERN-77–17, 1977.

[16] GOLDHABER, A. S.—TROWER, W. P. : Resource Letter MM-1: Magnetic monopoles, Am. J. Phys. 58 (1990), 429–439.

[17] BRIDGMAN, P. W. : Dimensional Analysis, in Encyclopaedia Britannica, Wm. Haley, Editor-in-Chief, vol. 7, Chicago, 1969, pp. 439–449.

[18] JANCEWICZ, B. : Electromagnetic Polarizations, Bulg. J. Phys. 29 (2002), 151–154.

[19] ARTRU, X.—FAYOLLE, D. : Dynamics of a Magnetic Monopole in Matter, Maxwell Equations in Dyonic Matter and Detection of Electric Dipole Moments, Prob. Atom. Sci. Tech. 6 (2001).

[20] McDONALD, K. T. : Poynting’s Theorem with Magnetic Monopoles, (May 1, 2013), http://princeton.edu/~mcdonald/examples/poynting.pdf.

[21] HEAVISIDE, O. : On the Electromagnetic Effects due to the Motion of Electrification through a Dielectric, Phil. Mag. 27 No. 324 (1889).

[22] POYNTING, J. H. : On the Transfer of Energy in the Electromagnetic Field, Phil. Trans. Roy. Soc. London 175 No. 343 (1884).

[23] McDONALD, K. T. : Variants of Poynting’s Theorem (May 21, 2013), http://www.hep.princeton.edu/~mcdonald/examples/variants.pdf.

[24] PURCELL, E. M.—MORIN, D. J. : Electricity and Magnetism, 3rd ed., Cambrige University Press, 2013.

Journal of Electrical Engineering

The Journal of Slovak University of Technology

Journal Information


IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 104 4
PDF Downloads 104 89 4