
Journal of ELECTRICAL ENGINEERING, VOL 67 (2016), NO6, 444–448

THE NEW FIELD QUANTITIES AND THE
POYNTING THEOREM IN MATERIAL

MEDIUM WITH MAGNETIC MONOPOLES

Ömer Zor
∗

The duality transformation was used to define the polarization mechanisms that arise from magnetic monopoles. Then,
a dimensional analysis was conducted to describe the displacement and magnetic intensity vectors (constitutive equations)
in SI units. Finally, symmetric Maxwell equations in a material medium with new field quantities were introduced. Hence,
the Lorentz force and the Poynting theorem were defined with these new field quantities, and many possible definitions of
them were constructed.
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1 INTRODUCTION

Maxwell [1] developed his equations based on the as-
sumption of no magnetic charges. The equations, how-
ever, suggested the concept of magnetic charges. Heav-
iside [2] first observed that the Maxwell equations are
invariant in vacuum under the electromagnetic duality
transformations. He thought that there should be mag-
netic charges and currents in Maxwell equations, although
there are no experimental results that show magnetic
monopoles. Larmor [3] considered and generalized Heavi-
side’s discrete transformations as continuous rotations of
a complex field. Larmor’s formulation served continuous
freedom in the choice of electric and magnetic fields as
the radiation fields. The magnetic monopole has received
increasing interest, as its existence is not forbidden by
any known principles of physics.

Electromagnetic duality exists only for 3 spatial di-
mensions. This does not mean it can’t be by physically
correct for 3 spatial dimensions, but it remains that elec-
tromagnetic duality is something of a theoretical oddity
[4]. It should be stated that, the symmetric form of the
Maxwell equations facilitates the solutions of many prob-
lems in radiation and scattering.

Poincaré [5] studied the classical dynamics of a mov-
ing electron interacting with the field of a fixed mag-
netic monopole and gave angular momentum equation.
Poincaré’s works can be concluded as involving intrin-
sic angular momentum, nevertheless Poincaré was not
aware of this. Thomson [6] later reported the same re-
sults and defined the intrinsic angular momentum in re-
sulting equation. Multiplication of the radial component
of the conserved orbital angular momentum by half of
the modified Planck constant results in a quantization
condition. However, Dirac [7,8] first developed a quanti-
zation condition such that the unobservability of phase in

quantum mechanics allows singularities as sources of mag-
netic fields, which is similar to point-like electric charges
as sources of electric fields. Thus, Dirac showed that the
electric vector potential must be singular in the presence
of a magnetic monopole. The singularity occurs on a line
instantaneously extending outward from the monopole to
spatial infinity. Schwinger [9–12] generalized this quanti-
zation condition to dyons (particles with an electric and
magnetic charge). Later, Schwinger attempted to con-
struct a manifestly consistent field theory of dyons but
was unsuccessful.

In the works of Dirac, Schwinger and Zwanziger [13],
it was shown that it is not possible to develop an elec-
tromagnetic theory of point-like electric and magnetic
sources without introducing the Dirac string or multi-
valued potential [14].

In addition to these works, Jackson [15] analyzed the
dynamics of subatomic particles (electron, muon, proton,
neutron, nuclei) and showed the intrinsic magnetic mo-
ments of particles to be caused by circulation electric cur-
rents and not by magnetic charges. A comprehensive re-
source letter by Goldhaber and Trower [16] provides a
guide to the literature on magnetic monopoles.

Bridgman underlined the importance of dimensional
analysis in his work [17]. Consistent with his idea, many
physical problems have been examined using dimensional
analysis. Jancewicz [18] used dimensional analysis to find
symmetric relations between electromagnetic field quan-
tities and polarizations. However, he did not account for
the duality transformation. Artru and Fayolle [19] and
then McDonald [20] gave these equations directly. We
have used duality and dimensional analysis to construct
these equations in SI units.

The Maxwell equations and the Lorentz force [21]
equation define the classical dynamics of interacting
charged particles and electromagnetic fields. Poynting [22]
obtained the electromagnetic energy conservation law
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from the Maxwell equations. The Lorentz force and the
Poynting theorem have been defined in many forms in
a material medium in the literature. The scalar product
of the Lorentz force with the velocity of charges gives
the time rate of work conducted by an electromagnetic
field on free sources. This time rate of work is equal to
the flow of energy plus the time rate of change of stored
energy. McDonald [23] noted that Poynting’s theorem
can be rewritten in many ways with various source/sink
terms. McDonald [23] introduced the variations of the
Poynting theorem in a material medium without mag-
netic monopoles. In this work, we give the variations of
the Poynting theorem in a material medium with mag-
netic monopoles.

2 FORMULATION

The Maxwell equations define the fields that are radi-
ated by the sources in a medium, but they do not describe
the behavior of matter under the influence of the fields.

In a material medium, the presence of electric and
magnetic fields influences the motion of bound charges
(atomic nuclei and their electrons), inducing local dipole
moments. Bound charges are not mobile but elastically
bound, contributing, by their slight displacement, to the
polarization mechanisms. Purcell [24] proposed the name
“structural charges” for bound charges, as these charges
are integral parts of the atoms or molecules.

Supplemented material equations need to be defined
for a self-consitent solution of the electromagnetic field.
We defined these material equations in a linear, non-
dispersive, isotropic and homogeneous medium in the
presence of magnetic monopoles.

2.1 Field quantities in SI units

The microscopic Maxwell equations in the presence of
magnetic monopoles,

∇ · e(r, t) = 1

ε0
ρe(r, t) , (1)

∇× b(r, t)−
1

c2
∂e(r, t)

∂t
= µ0je(r, t) , (2)

∇ · b(r, t) = µ0ρm(r, t) , (3)

−∇× e(r, t)− ∂b(r, t)

∂t
= µ0jm(r, t) , (4)

where c is the speed of light (c = 1/
√
ε0µ0 ). We can

construct duality transformations from equations (1)–(4),

e → cb , cb → −e , cρe → ρm , ρm → −cρe . (5)

In macroscopic electrodynamics, when there are free
electric and magnetic charges in a material medium, the
electromagnetic field in the medium is radiated by all free
and bound charges. Thus, electric and Ampèrian mag-
netic dipole moments and Gilbertian electric and mag-
netic dipole moments emerge under the influence of the

electromagnetic field. We therefore have two more dipole
moments with the existence of magnetic charges. In this
part, we determine what volume density of dipole moment
needs to be added to which field quantity using dimen-
sional analysis. Hence, we use the subscript “e” to show
that a vector field is influenced by the motion of electric
charges and the subscript “m” to show that a vector field
is influenced by the motion of magnetic charges.

Electric polarization causes positive and negative
charges to gather on opposite sides, either within the ma-
terial or at its surface along the direction of an applied
electric field. If there is a pair of opposite sign, equal mag-
nitude (qe ) charges separated by a distance ℓ , then the
electric dipole moment is defined as

pe = qeℓ . (6)

The electric polarization vector is a spatial average of the
electric dipole moment,

Pe =
pe

V
. (7)

As the electric charge is acted upon by the electric and
magnetic fields due to both electric and magnetic charges,
we can write a constitutive equation using the total
macroscopic electric field (E )

De(r, t) = ε0E(r, t) +Pe(r, t) . (8)

Applied electric fields influence the motion of charges
in the material. Applied magnetic fields align the axes of
the magnetic dipoles formed by the circulating electric
charges (electric current) in the material. The magnetic
dipole moment due to the fields is the product of the loop
current (Ie ) and the vector area of the loop (A),

me = IeA . (9)

The magnetic polarization vector is a spatial average of
the magnetic dipole moment,

Me =
me

V
. (10)

We can write the constitutive equation in the presence of
the electric and magnetic charges using the total macro-
scopic magnetic field (B )

He(r, t) =
B(r, t)

µ0

−Me(r, t) . (11)

We can use the duality transformations defined in (5)
to obtain the quantities with magnetic monopoles,

cpe → mm , me → −cpm , cIe → Im . (12)

Note that these quantities are corresponded to the electric
or magnetic sources (ρe, ρm ) for dual symmetry in appro-
priate manner. If we apply these transformations to the
quantities in (6) and (9), we obtain the dual quantities
that arise from magnetic monopoles in Table 1.
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Table 1. Dual quantities in SI units

Electric dipole moment Gilbertian magnetic dipole

pe = qeℓ moment mm = qmℓ

Electric polarization Gilbertian magnetic

Pe = pe/V polarization Mm = mm/V

Ampèrian magnetic dipole Gilbertian electric dipole

moment me = IeA moment pm = −µ0ε0ImA

Ampèrian magnetic Gilbertian electric

polarization Me = me/V polarization Pm = pm/V

The physical dimension of Gilbertian magnetic polar-
ization can be obtained easily in SI units,

[

Mm

]

=
[A

m

]

. (13)

Its dimension is the same as the magnetic intensity. Thus,
we need not divide this value by µ0 . The Gilbertian
magnetic polarization vector can be defined in the same
direction as the magnetic field vector,

Hm(r, t) =
B(r, t)

µ0

+Mm(r, t) . (14)

The physical dimension of the Gilbertian electric po-
larization can also be obtained easily in SI units,

[

Pm

]

=
[ C

m2

]

. (15)

Its dimension is the same as the electric displacement.
Therefore, we need not multiply this value by ε0 ,

Dm(r, t) = ε0E(r, t) −Pm(r, t) . (16)

The resulting equations (14) and (16) are, respectively,
the dual quantities of (8) and (11) and can help to deter-
mine the Maxwell equations in a material medium with
magnetic monopoles.

2.2 Maxwell equations in material medium with

magnetic monopoles

The microscopic Maxwell equations in the presence
of magnetic monopoles (1)–(4) are linear and thus allow
direct averaging, which reduces to the simple replacement
of parameters by their mean values.

In a material medium on a microscopic scale, the
bound charge-current densities can be added directly to
the free charge-current densities in equations (1)–(4),

ρe(r, t) → ρfe(r, t) + ρbe(r, t) , (17)

je(r, t) → jfe(r, t) + jbe(r, t) , (18)

ρm(r, t) → ρfm(r, t) + ρbm(r, t) , (19)

jm(r, t) → jfm(r, t) + jbm(r, t) . (20)

Here, the known equations of the electric bound charge-

current densities are

ρbe(r, t) = −∇ · pe(r, t) , (21)

jbe(r, t) =
∂pe(r, t)

∂t
+∇×me(r, t) . (22)

The magnetic bound charge-current densities can be ob-

tained from equations (21) and (22) using the duality

transformations defined in (12),

ρbm(r, t) = −∇ ·mm(r, t) , (23)

jbm(r, t) =
∂mm(r, t)

∂t
− 1

µ0ε0
∇× pm(r, t) . (24)

By applying a statistical average over a smooth re-

gion, the averaged field and source quantities can be ob-

tained. Thus, the microscopic field and source quantities

in the linear Maxwell equations can be replaced directly

by macroscopic field and source quantities.

∇×E(r, t) +
∂B(r, t)

∂t
= −µ0

(

Jfm(r, t)+

∂Mm(r, t)

∂t
− 1

µ0ε0
∇×Pm(r, t)

)

, (25)

∇×B(r, t) − 1

c2
∂E(r, t)

∂t
=

µ0

(

Jfe(r, t) +
∂Pe(r, t)

∂t
+∇×Me(r, t)

)

, (26)

∇ · E(r, t) =
1

ε0
(ρ̄fe(r, t)−∇ ·Pe(r, t)), (27)

∇ ·B(r, t) = µ0(ρ̄fm(r, t)−∇ ·Mm(r, t)). (28)

If we use the constitutive equations in (8), (11), (14)

and (16), we obtain a macroscopic Maxwell equation in

a form in which only free sources appear (similar forms

were given directly by Artru and Fayolle [19] and McDon-

ald [20]),

−c2∇×Dm(r, t) −
∂Hm(r, t)

∂t
= Jfm(r, t) , (29)

∇×He(r, t)−
∂De(r, t)

∂t
= Jfe(r, t) , (30)

∇ ·De(r, t) = ρ̄fe(r, t) , (31)

∇ ·Hm(r, t) = ρ̄fm(r, t) . (32)
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2.3 The Poynting theorem in material medium

with magnetic monopoles

An electric field (e ) in microscopic electrodynamics is
proportional to the electric displacement vector (d ), with
the multiplicative constant (ǫ0 ) depending on the phys-
ical units. Similarly, a magnetic field (b ) in microscopic
electrodynamics is proportional to the magnetic intensity
(h), with the multiplicative constant (µ0 ) depending on
the physical units.

In macroscopic electrodynamics, electric polariza-
tion and Ampèrian magnetization charges and currents
emerge inside an Ampèrian magnetic material illumi-
nated by an electromagnetic field. Thus, if a magnetic
charge moves along a closed path, any part of which
passes through an Ampèrian magnetic material, then the
energy could be extracted from the system. Gilbertian
electric and magnetic polarization charges and currents
emerge inside a Gilbertian magnetic material illuminated
by an electromagnetic field. Thus, if an electric charge
moves along a closed path, any part of which passes
through a Gilbertian magnetic material, then energy
could be extracted from the system. Thus, the internal
dynamics of the material medium changes the equilib-
rium of the energy of the moving charges, with the effect
of external fields. In accordance with this proposition,
the Lorentz force and the Poynting theorem have new
definitions in the material medium.

First, we introduce Lorentz force definitions for the
electric charge and magnetic monopole. In microscopic
electrodynamics, an electromagnetic force acts on a mov-
ing electric charge with velocity v as

fe(r, t) = qe(e(r, t) + v(t) × b(r, t)) . (33)

The electromagnetic force on a moving magnetic mono-
pole with velocity v can be obtained using the duality
transformations in (5) on (33),

fm(r, t) = qm(b(r, t) − v(t)

c2
× e(r, t)) . (34)

In macroscopic electrodynamics, the force on free charges
and current densities can be defined in two sets of equa-
tions, which have been proposed by various scientists (in
the second set, our new field quantities are used),

Fe(r, t) = ρ̄fe(r, t)E(r, t) + Jfe(r, t)×B(r, t) , (35)

Fm(r, t) = ρ̄fm(r, t)B(r, t) − Jfm(r, t)

c2
× E(r, t) , (36)

or

Fe(r, t) =
1

ǫ0
ρ̄fe(r, t)Dm(r, t) + µ0Jfe(r, t) ×Hm(r, t) ,

(37)
Fm(r, t) = µ0(ρ̄fm(r, t)He(r, t)− Jfm(r, t)×De(r, t)) .

(38)
We analyzed the electromagnetic force onmoving charges.
The rate of work on electric charges and magnetic charges

in microscopic and macroscopic electrodynamics, contain-
ing Lorentz force vectors, are given respectively,

fe(r, t) · v(t) , fm(r, t) · v(t), (39)

Fe(r, t) · v(t) , Fm(r, t) · v(t). (40)

The rate of work conducted by electromagnetic fields on
free charges and monopoles in macroscopic electrodynam-
ics can be obtained using (37) and (38),

dω(r, t)

dt
= Fe(r, t) · v(t) + Fm(r, t) · v(t) =

1

ǫ0
Jfe(r, t) ·Dm(r, t) + µ0Jfm(r, t) ·He(r, t) . (41)

We use Maxwell equations (29) and (30) to obtain this
equation with field quantities. We take the scalar product
of (29) with µ0He on both sides, and then we take the
scalar product of (30) with 1/ǫ0Dm on both sides. By
summing these equations, we obtain the Poynting theo-
rem with field quantities,

dω(r, t)

dt
= − 1

ǫ0
∇ · (Dm(r, t)×He(r, t))

− 1

ǫ0
Dm(r, t) · ∂De(r, t)

∂t
− µ0He(r, t) ·

∂Hm(r, t)

∂t

≡ −
(

∇ · S(r, t) + ∂u(r, t)

∂t

)

. (42)

The Poynting vector in any medium is

S(r, t) =
1

ǫ0
Dm(r, t)×He(r, t) . (43)

The total density stored in an electromagnetic field in
linear medium is

u(r, t) =
1

2ǫ0
De(r, t) ·Dm(r, t) +

µ0

2
He(r, t) ·Hm(r, t) .

(44)

2.4 Variants of Poynting theorem

As noted by McDonald [23], the Poynting theorem
generally defines the flow of electromagnetic energy and
does not definitely identify the electromagnetic energy
density. He proposed that many definitions can be con-
structed using electrical and magnetic field quantities.
McDonald [23] introduced the idea that, in a material
medium without magnetic monopoles, the Poynting the-
orem could be defined in 36 = 729 variants with the
help of permutation using the equalities of field quanti-
ties (D = ǫ0E +P ), (H = B/µ0 −M ).

In this work, we calculate the variants of the Poynting
theorem in a material medium with magnetic monopoles.
We can permutate the field quantities in equations (8),
(11), (14) and (16) through the Poynting theorem in (42)
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to obtain 56 = 15625 variants. One of them that is dif-
ferent from (42) is given below,

dω(r, t)

dt
= − 1

ǫ0
∇ · (De(r, t)×Hm(r, t))

− 1

ǫ0
De(r, t) ·

∂Pe(r, t)

∂t
− µ0Mm(r, t) · ∂He(r, t)

∂t

≡ −
(

∇ · S(r, t) + ∂u(r, t)

∂t

)

. (45)

These variations consist of the standard Poynting theo-
rem and Poynting theorems in which the source terms are
electromagnetic.

3 CONCLUSION

We have assumed the existence of magnetic monopoles
in material medium and, in this manner, defined po-
larization vectors of magnetic monopoles using the du-
ality transformation. Then, the displacement and mag-
netic intensity vectors (constitutive equations) were de-
scribed in SI units using dimensional analysis. Finally,
symmetric Maxwell equations with new field quantities,
in which only free sources appear, were introduced. Thus,
the Lorentz force and the Poynting theorem were defined
using these new field quantities, and many possible defi-
nitions of them were given.

As magnetic monopoles have not been observed in the
real world, it is difficult to define certain physical quan-
tities including magnetic monopoles. Therefore, duality
and dimensional analysis are very helpful instruments in
describing these quantities.

Acknowledgement

Thanks to Kirk T. McDonald for his useful comments
which serve as support.

References

[1] MAXWELL, J. C. : A Treatise on Electricity and Magnetism,
3rd ed., vol. 1, Oxford University Press, New York, 2002.

[2] HEAVISIDE, G. : Some Properties of Maxwell Equations, Phil.
Trans. Roy. Soc. A 183 (1893), 423–430.

[3] LARMOR, I. : Collected Papers, London, 1928.

[4] McDONALD, K. T. : Electrodynamics in 1 and 2 Spatial Di-

mensions (October 16, 2014),
http://princeton.edu/∼mcdonald/examples/2dem.pdf.
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