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NEW COMPRESSED SENSING ISAR IMAGING
ALGORITHM BASED ON LOG–SUM MINIMIZATION
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∗
— Zhao Jiaqun
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To improve the performance of inverse synthetic aperture radar (ISAR) imaging based on compressed sensing (CS), a new
algorithm based on log-sum minimization is proposed. A new interpretation of the algorithm is also provided. Compared
with the conventional algorithm, the new algorithm can recover signals based on fewer measurements, in looser sparsity
condition, with smaller recovery error, and it has obtained better sinusoidal signal spectrum and imaging result for real
ISAR data. Therefore, the proposed algorithm is a promising imaging algorithm in CS ISAR.
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1 INTRODUCTION

Inverse synthetic aperture radar (ISAR) can supply
high resolution images of targets all day, all-weather and
over long distance, so it has found wide applications in
military and for civilian use. The actual demands of anti-
interference, maneuvering target imaging and super res-
olution imaging promote the research of ISAR imaging
using limited pulses [1, 2]. Compressed sensing (CS), a
big idea in signal processing field, can reconstruct sig-
nals based on limited measurements by using the spar-
sity of signals [3]. As ISAR targets can be described by
a few strong scattering centers, which is consistent with
the sparsity requirement of CS, applying CS into ISAR
imaging has great potential.

To get good CS ISAR imaging performance, proper
sparsity penalty functions should be used. At present, CS
ISAR imaging are generally based on l1 norm to approx-
imate l0 norm. But geometrically, l1 norm can’t approx-
imate the desired l0 norm effectively. A weighted formu-
lation of l1 minimization has been designed. However it
was proposed instinctively [4]. Also Gini index was used
to measure the sparsity of signal in CS ISAR. But theoret-
ical conditions need to be established to guarantee exact
reconstruction [5]. In 2012, Zhao et al proposed a novel
reconstruction model based on Meridian norm [6]. It is a
pity that the solution algorithm is complex. In 2013, Li
et al applied smoothed l0 norm in CS ISAR imaging [7].
However, it often requires a large number of iterations
and cannot perform equally well in all scenarios [8].

To improve ISAR images quality based on CS, an
imaging algorithm based on log-sum minimization is pro-
posed in the paper. Compared with l1 norm, log-sum
penalty function can approximate l0 norm better [9, 10].
Although the optimization problem based on log-sum
penalty function is non-convex, it can be solved ef-
fectively by majorization-minimization (MM) algorithm

[11]. Compared with the existing methods, the proposed
algorithm has three advantages. The first advantage is
that it is simple and has low computational cost. The
second is that it has good theoretical basis. The third is
that it can get good recovery performance.

2 ISAR SIGNAL MODEL

ISAR transmits electromagnetic pulses and processes
the returned pulses to image targets. Linear frequency
modulated (LFM) signal transmitted by radar can be
expressed
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where t is fast time, τ is slow time, Tp is pulse width,
fc is carrier frequency, µ is chirp rate, and rect(·) is
rectangle function. The received signal from scatter P
can be written as
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where σ is reflection coefficient of scatter P , R(τ) is
distance between scatter P and radar, and c is light
speed. The reference signal is

sref(t, τ) = rect
t− 2Rref(τ)/c
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where Rref(τ) is distance between reference scatter Q
and radar, and Tref is pulse width of reference signal.
After dechirping, the echo signal becomes

sde(t, τ) = sr(t, τ) × s∗ref(t, τ) = σ × rect
t− 2R(τ)/c

Tp

× exp
(

−j
4π

c
µ
(

t−
2Rref(τ)

c

)

R∆(τ)
)

× exp
(

− j
4π

c
fcR∆(τ) + j

4πµ

c2
R2

∆(τ)
)

(4)

where ∗ is conjugation operator, and R∆(τ) = R(τ) −
Rref(τ). Applying Fourier transform to formula (4) with
respect to fast timet , the following is obtained
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where f is range frequency. After eliminating the residual
video phase (RVP), the following is obtained
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It can be seen from (6) that the peak locates at f equals

− 2µ
c
R∆(τ). If the sinc function in (6) is approximated by

Dirac delta function, formula (6) can be rewritten as
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After range alignment and phase compensation, suppos-
ing there are K scatters in the range cell which scatter
P is in, the signal in the range cell is

S(f, τ) =
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where σk is reflection coefficient of the k-th scatter.

3 NOVEL CS ISAR IMAGING ALGORITHM

First, CS is briefly reviewed. Suppose Φ ∈ CN×N is
basis space of signal x ∈ CN , ie x = Φs , where s is K
sparse coefficient vector, ie the number of non-zero coef-
ficient satisfies K ≪ N . Based on measurement matrix
Ψ ∈ CM×N (M < N), M dimension measurement y can
be obtained y = Ψx . If Θ = ΨΦ satisfies restricted isom-
etry property (RIP) condition, original signal x can be
reconstructed accurately with high probability based on
observation y by solving an optimization problem.

Then, ISAR imaging in cross-range is transformed into
a CS problem. Formula (8) can be written in sparse rep-
resentation model

x = Φs (9)

where x ∈ CN×1 is signal in one range cell, Φ ∈ CN×N

represents Fourier basis matrix, s ∈ CN×1 is K sparse
coefficient vector which indicates the distribution of scat-
ters of targets, and N is the total number of sam-
ples in cross-range. By employing measurement matrix
Ψ ∈ CM×N (M < N), signal is observed compressively

y = Ψx+ n = Θs+ n (10)

where y is measurement, Θ = ΨΦ, and n is noise. Then
s can be solved by

min ‖s‖0 st ‖y −Θs‖2 ≤ ε (11)

where ‖ · ‖0 denotes l0 norm, and ε is the noise level.

As the above formula is a NP-hard non-convex opti-
mization problem, it is usually transformed into a convex
optimization problem based on l1 norm. However studies
show that only in very strict conditions are the results of
optimization based on l1 norm and l0 norm equal. So in
many cases, the method based on l1 norm can’t get good
performance.

In 2013, Deng et al combined log-sum term into the
framework of low-rank structure learning and demon-
strated the log-sum heuristic recovery algorithm performs
much better than the convex-norm-based method [9].
And Shen et al have provided a theoretical justifica-
tion for adopting the log-sum as an alternative sparsity-
encouraging function [10]. Inspired by their work, log-sum
minimization is employed here to improve imaging perfor-
mance. Replacing l0 norm in formula (11) with log-sum
penalty function leads to

min
N
∑

i=1

log
(

|si|+ δ
)

st ‖y −Θs‖2 ≤ ε (12)

where δ > 0 is a very small constant to avoid negative
infinity in log-sum penalty function. From a Bayesian per-
spective, there is intrinsic relevance between log-summin-
imization and Sparse Bayesian Learning (SBL) [12]. In
fact, log-sum minimization is a special case of lp norm as
p approaches zero on the left side [9]. And it is also shown
in [10] that when δ ≈ 0, log-sum penalty function is es-
sentially the same as the l0 norm. Therefore, compared
with the l1 norm and lp norm, log-sum minimization can
approach l0 norm more effectively.

However log-sum penalty function in formula (12) is a
concave function. Fortunately, majorization-minimization
(MM) algorithm, an effective strategy for solving non con-
vex problems, can be employed to solve formula (12). MM
algorithm proceeds in an iterative way. In this problem,
non convex optimization problem is solved by a series of
convex optimization problems, ie the following updating
rule is obtained

s(n+1) = argmin
N
∑

i=1

|si|

|s
(n)
i |+ δ

st‖y −Θs‖2 ≤ ε (13)
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Fig. 1. Recovery errors of algorithms based on log-sum minimiza-
tion and l1 norm for different sparsity
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Fig. 2. Recovery error of the proposed algorithm and BP algorithm
with different numbers of measurements
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Fig. 3. Recovery error of the proposed algorithm and BP algorithm
in different SNR

where n represents the number of iterations.

Importantly, a new interpretation of the proposed al-
gorithm is provided in the following. A novel reconstruc-
tion model deducted from Meridian prior is proposed [6]

min

N
∑
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log
(

1 +
|si|

2βs

)

st‖y −Θs‖2 ≤ ε (14)

Where βs is the scaling parameter in Meridian prior. As
βs is a constant, formula (14) can be written as

min
N
∑

i=1

log(2βs + |si|) st ‖y −Θs‖2 ≤ ε . (15)

If the scaling parameter βs is very small, let 2βs = δ ,

and formula (15) is equivalent to the log-sum minimiza-

tion of (12). Consequently, sparsity enhancement evalua-

tion via Lorentz curve and signal compressibility analysis

in [6] also provide theoretical basis for log-sum minimiza-

tion from another perspective. However, compared with

the solution algorithm in [6], the proposed algorithm is

much simpler and has lower computational cost.

4 EXPERIMENTAL RESULTS

AND DISCUSSION

The effectiveness of the proposed algorithm has been

verified by processing simulation data and real data.

First, the new algorithm is used in one dimensional

real value sparse signals recovery to show log-sum penalty

function superior to l1 norm in CS.

Experiment 1: Performance of the proposed algorithm

and BP algorithm based on l1 norm in different sparsity

conditions is compared. Sparse signals of size N = 100

are used in experiments. The sparsity K ranges from 5 to

30. The amplitudes of non zero signal values obey normal

distribution with mean 0 and variance 10. Measurement

matrix employs random Gaussian matrix of size 60×100.

White Gaussian noise is added to the signal, which makes

SNR = 30 dB. The values of δ in log-sum minimization

are 0.1 and 1, respectively. The average recovery errors

of 50 experiments are shown in Fig. 1.

As shown in Fig. 1, the recovery errors of the pro-

posed algorithm are lower than that of BP algorithm.

What’s more, the recovery error of BP algorithm starts

to increase significantly from K = 15, while the recovery

error of the proposed algorithm begins to increase visibly

from K = 21. So compared with BP algorithm, the pro-

posed algorithm can reconstruct signals in looser sparsity

condition.

Experiment 2: Performance of the proposed algorithm

and BP algorithm with different numbers of measure-

ments is compared. Sparse signals of size N = 256 with

sparsity of K = 20 are employed in experiments. The

amplitudes of non zero signal values obey normal distri-

bution with mean 0 and variance 10. Measurement matrix

is M × 256 dimensional random Gaussian matrix, where

M ranges from 60 to 150. White Gaussian noise is added

to the signal, which makes SNR = 30 dB. The values

of δ in log-sum minimization are 0.1 and 1, respectively.

Average recovery errors of 50 experiments are shown in

Fig. 2.

It can be seen, on the whole, recovery errors of the

proposed algorithm are lower than that of BP algorithm.

The recovery errors of the proposed algorithm are close

to 0 when M ≥ 90, while the recovery errors of BP algo-

rithm approach 0 when M ≥ 120. Therefore, compared
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Fig. 4. Spectrum estimation of sinusoidal signal, (a) — based on BP algorithm, (b) — based on log-sum minimization

(a)

Range cell

40

80

120

0

40 80
Cross-range cell

1200

Range cell

40

80

120

0

40 80
Cross-range cell

1200

(b)

Fig. 5. CS ISAR imaging of real data, (a) — based on BP algorithm, (b) — based on log-sum minimization

Table 1. Parameters of radar

Parameter Value

Carrier frequency 5.52GHz
Bandwidth 400MHz

Pulse width 25.6µs
Pulse repetition frequency 400Hz

Sampling frequency 10MHz

with BP algorithm, the proposed algorithm can recon-
struct signal with fewer measurements.

Experiment 3: The performance of the proposed al-
gorithm and BP algorithm in different SNR is com-
pared. The sparse signals in experiment 2 with param-
eter M = 90 are employed here. SNR ranges from 0 dB
to 100 dB and the values of δ in log-sum minimization
are 0.1 and 1. Average recovery errors of 50 experiments
are shown in Fig. 3.

It can be seen from Fig. 3, when SNR ≥ 50 dB, the
recovery errors of the two algorithms approach 0, ie they
both get excellent results. When 5 dB ≤ SNR < 50 dB,
the recovery errors of the proposed algorithm are less
than that of BP algorithm. The recovery errors of BP
algorithm are less than that of the proposed algorithm
when SNR < 5 dB, but the recovery errors are very big, ie

neither of the two algorithms can reconstruct signal here.
In a word, the performance of the proposed algorithm is
not worse than that of BP algorithm in different SNR
when signals can be reconstructed successfully.

Second, the proposed algorithm is used in spectrum es-
timation of sinusoidal signal, which simulates the process
of CS ISAR imaging in cross-range.

Experiment 4: The performance of the proposed algo-
rithm and BP algorithm in spectrum estimation of sinu-
soidal signal is compared. A length of N = 128 sinusoidal

signal is used, where frequency f0 = 100 Hz, amplitude
is 2, and sparsity K = 2. Sparse basis is 128 × 128 di-
mensional discrete Fourier matrix and measurement ma-
trix is 30 × 128 dimensional random Gaussian matrix.
White Gauss noise is added to the signal, which makes
SNR = 15 dB. The value of δ in log-sum minimization is
0.1. The estimated spectrum is shown in Fig. 4.

It can be seen from Fig. 4 that there is extra clutter
in the spectrum obtained by BP algorithm, while the
proposed algorithm has obtained clear spectrum. So in
spectrum estimation of sinusoidal signal, the proposed
algorithm has more advantages over BP algorithm.

Last, the proposed algorithm is applied into real data
from ground-based ISAR radar to verify its feasibility in

CS ISAR.
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Experiment 5: Imaging performance of the two algo-

rithms for real ISAR data of Yark-42 aircraft is com-

pared. Radar parameters are shown in Table 1. The data

set consists of 128 pulses. Suppose due to system and

maneuver limitations, there are only 64 pulses available

in cross-range. To improve imaging resolution in cross-

range, CS ISAR imaging algorithm is used. Sparse basis

is 128×128 dimensional discrete Fourier matrix and mea-

surement matrix is 64 × 128 dimensional random Gaus-

sian matrix. Imaging results are shown in Fig. 5.

As shown in Fig. 5, there are many artificial points

in Fig. 5(a), which almost overwhelm the strong scatter-

ing points of the target, so the imaging quality is not

good. While a clear image of target has been obtained in

Fig. 5(b), ie the strong scattering points of target are well

recovered and there are not extra artificial points around

the target, so the imaging quality is good. Therefore to

real data, imaging performance of the proposed algorithm

is superior to that of BP algorithm.

5 CONCLUSION

A new CS ISAR imaging algorithm based on log-sum

minimization has been proposed in the paper. Compared

with BP algorithm based on l1 norm, it can not only

reconstruct signals with fewer measurements or in looser

sparsity conditions or with smaller recovery errors, but

also estimate sinusoidal signal spectrum better. When

applied into real ISAR data imaging, the proposed al-

gorithm has obtained better imaging result than BP al-

gorithm. So the new algorithm is a promising CS ISAR

imaging method.

One scientific contribution of the paper is that a novel

CS ISAR algorithm has been proposed, which is simple

and has a good theoretical basis. At present, CS ISAR

imaging performance is significantly dependent on the

number of pulse, the sparsity of targets and the noise

level. The proposed algorithm has better performance

than the algorithm based on l1 norm with decrease of the

number of pulses and signal-to-noise ratio, and increase

of the sparsity.

The other original contribution is that a novel inter-

pretation of the proposed algorithm has been provided

and a relation with the model based on Meridian norm

has been built.
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