Experimental and Numerical Study on PDMS Collapse for Fabrication of Micro/Nanochannels

Open access

Abstract

PDMS (polydimethylsiloxane) collapse method is a simple and low cost approach for micronanochannel fabrication. However, the bonding pressure which influences the size of the final PDMS micro/nanochannels has not yet been studied. In this study, the effect of the bonding pressure on the size and maximum local stress of the PDMS micronanochannels was investigated by both experimental and numerical simulation method. The results show that when the bonding pressure is lower than 0.15 MPa the experiment results can agree well with the simulation results. The fluorescent images demonstrate that there is no blocking or leakage over the entire micro/nanochannels.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] SPARREBOOM W.—VANDENBERG A.—EIJKEL J. C. T. : Principles and applications of nanofluidic transport Nature Nanotechnology 4 No. 11 (2009) 713-720.

  • [2] FREEDMAN K. J.—HAQ S. R.—EDEL J. B.—JEMTH P.—KIM M. J. : Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field Scientific Reports 3 (2013) 1638.

  • [3] SCHOCH R. B.—RENAUD P. : Ion transport through nanoslits dominated by the effective surface charge Applied Physics Letters 86 No. 25 (2005) 253111.

  • [4] PLECIS A.—SCHOCH R. B.—RENAUD P. : Ionic transport phenomena in nanofluidics Nano Letters 5 No. 6 (2005) 1147-1155.

  • [5] WANG Y. C.—STEVENS A. L.—HAN J. Y. : Million-fold preconcentration of proteins and peptides by nanofluidic filter Analytical Chemistry 77 No. 14 (2005) 4293-4299.

  • [6] ZHOU K.—LI L.—TAN Z.—ZLOTNICK A.—JACOBSON S. C. : Characterization of Hepatitis B Virus Capsids by Resistive-Pulse Sensing Journal of the American Chemical Society 133 No. 6 (2011) 1618-1621.

  • [7] FU J. P.—MAO P.—HAN J. Y. : Nanofilter array chip for fast gel-free biomolecule separation Applied Physics Letters 87 No. 26 (2005) 263902.

  • [8] ABGRALL P.—LOW L.-N.—NGUYEN N.-T. : Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding Lab on a Chip 7 No. 4 (2007) 520-522.

  • [9] CHOI S.—YAN M.—ADESIDA I. : Fabrication of triangular nanochannels using the collapse of hydrogen silsesquioxane resists Applied Physics Letters 93 No. 16 (2008) 163113.

  • [10] YASUI T.—KAJI N.—OGAWA R.—HASHIOKA S.—TOKESHI M.—HORIIKE Y.—BABA Y. : DNA separation in nanowall array chips Analytical Chemistry 83 No. 17 (2011) 6635-6640.

  • [11] NAM S. W.—LEE M. H.—LEE S. H.—LEE D. J.—ROSSNAGEL S. M.—KIM K. B. : Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition NanoLetters 10 No. 9 (2010) 3324-3329.

  • [12] FAN L.—KHENGBOON T.—MALAR P.—BIKKAROLLA S. K.—VANKAN J. A. : Fabrication of nickel molds using proton beam writing for micro/nanofluidic devices Microelectronic Engineering 102 (2012) 36-39.

  • [13] VANKAN J. A.—ZHANG C.—MALAR P. P.—van der MAAREL J. R. C. : High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies Biomicrofluidics 6 No. 3 (2012) 036502.

  • [14] MENARD L. D.—RAMSEY J. M. : Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling NanoLetters 11 No. 2 (2011) 512-517.

  • [15] FANZIO P.—MUSSI V.—MANNESCHI C.—ANGELI E.—FIRPO G.—REPETTOL.—VALBUSA U. : DNA detection with a polymeric nanochannel device Lab on a Chip 11 No. 17 (2011) 2961-2966.

  • [16] PHAN V. N.—NGUYEN N. T.—YANG C.—JOSEPH P.—GUE A. M. : Fabrication and experimental characterization of nanochannels Journal of Heat Transfer 134 No. 5 (2012) 051012.

  • [17] RIEHN R.—AUSTIN R. H.—STURM J. C. : A nanofluidic railroad switch for DNA NanoLetters 6 No. 9 (2006) 1973-1976.

  • [18] KUTCHOUKOV V. G.—LAUGERE F.—VANDERVLIST W.—PAKULA L.—GARINI Y.—BOSSCHE A. : Fabrication of nanofluidic devices using glass-to-glass anodic bonding Sensors and Actuators a-Physical 114 No. 2-3 (2004) 521-527.

  • [19] MAO P.—HAN J. Y. : Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding Lab on a Chip 5 No. 8 (2005) 837-844.

  • [20] CHANTIWAS R.—HUPERT M. L.—PULLAGURLA S. R.—BALAMURUGAN S.—TAMARIT-LOPEZ J.—PARK S.—DATTA P.—GOETTERT J.—CHO Y.-K.—SOPER S. A. : Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits Lab on a Chip 10.

  • [21] TENG L.—KIRCHNER R.—PLOETNER M.—TUERKE A.—JAHN A.—HE J.—HAGEMANN F.—FISCHER W.-J. : Fabrication and characterization of sub-500 nm channel organic field effect transistor using UV nanoimprint lithography with cheap Si-mold Microelectronic Engineering 97 (2012) 38-42.

  • [22] HAWKINS K. R.—YAGER P. : Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in mu TAS Lab on a Chip 3 No. 4 (2003) 248-252.

  • [23] LLOPIS S. D.—STRYJEWSKI W.—SOPER S. A. : Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices Electrophoresis 25 No. 21-22 (2004) 3810-3819.

  • [24] XU B. Y.—XU J. J.—XIA X. H.—CHEN H. Y. : Large scale lithography-free nanochannel array on polystyrene Lab on a Chip 10 No. 21 (2010) 2894-2901.

  • [25] LO K. F.—JUANG Y. J. : Fabrication of long poly(dimethyl siloxane) nanochannels by replicating protein deposit from confined solution evaporation Biomicrofluidics 6 No. 2 (2012) 026504.

  • [26] KIM S. H.—CUI Y.—LEE M. J.—NAM S.-W.—OH D.—KANG S. H.—KIM Y. S.—PARK S. : Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma Lab on a Chip 11 No. 2 (2011) 348-353.

  • [27] JOHN H. : The molding of biological features using a flexible polymer mold Micron 42 No. 5 (2011) 429-433.

  • [28] KIM B.—HEO J.—KWON H. J.—CHO VS. J.—HAN J.—KIM S. J.—LIM G. : Tunable Ionic Transport for a Triangular Nanochannel in a Polymeric Nanofluidic System Acs Nano 7 No. 1 (2013) 740-747.

  • [29] LEE J.—YOON Y.-K.—KIM J.—KIM Y.—JO K. : Roof-collapsed PDMS mask for nanochannel fabrication Bulletin of the Korean Chemical Society 32 No. 1 (2010) 33-34.

  • [30] PARK S. M.—HUH Y. S.—CRAIGHEAD H. G.—ERICKSON D. : A method for nanofluidic device prototyping using elastomeric collapse Proceedings of the National Academy of Sciences of the United States of America 106 No. 37 (2009) 15549-15554.

  • [31] TAEKYUNG K.—JEONGKOO K.—OKCHAN J. : Measurement of nonlinear mechanical properties of PDMS elastomer Microelectronic Engineering 88 No. 8 (2011) 1982-5.

  • [32] NAGARAJAN P.—YAO D. : Uniform Shell Patterning Using Rubber-Assisted Hot Embossing Process. II. Process Analysis Polymer Engineering and Science 51 No. 3 (2011) 601-608.

  • [33] HOCHENG H.—NIEN C. C. : Numerical analysis of effects of mold features and contact friction on cavity filling in the nanoimprinting process Journal of Microlithography Microfabrication and Microsystems 5 No. 1 (2006) 011004.

  • [34] XIANGDONG Y.—HONGZHONG L.—YUCHENG D. : Research on the cast molding process for high quality PDMS molds Microelectronic Engineering 86 No. 3 (2009) 310-13.

  • [35] MYEONGSUB K.—BYEONG-UI M.—HIDROVO C. H. : Enhancement of the Thermo-mechanical Properties of PDMS Molds for the hot Embossing of PMMA Microfluidic Devices Journal of Micromechanics and Microengineering 23 No. 9 (2013) 095024.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 187 110 5
PDF Downloads 139 109 6