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ELECTROPHYSICAL PROPERTIES
OF GaAs P–I–N STRUCTURES FOR

CONCENTRATOR SOLAR CELL APPLICATIONS
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Beata Ściana
∗∗

— Marek T�lacza�la
∗∗

This paper is dedicated to electro-physical characterisation of a GaAs p-i-n structure grown for solar cell applications,
which was carried out by light and dark current-voltage (I–V ) and Deep Level Transient Fourier Spectroscopy (DLTFS)
methods. The conversion efficiency and open-circuit voltage were determined from I–V measurement at 1 and 20× sun light

concentrations. Three electron like defects TAn1 , TAn2 , TDn and one hole like defect TBp obtained by DLTFS measure-
ments were confirmed. The origin of these defect states was stated as native GaAs impurities.
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1 INTRODUCTION

Solar energy is one of the many energy forms harnessed
by humanity in order to produce electricity in an environ-
mental friendly and efficient way. Among the various solar
cell technologies [1–3], GaAs concentrator solar cells have
the potential to achieve higher conversion efficiencies and
are promising for space and terrestrial applications [4, 5].
These solar cell structures are optimized for specific ap-
plications — such as satellites, photovoltaic concentrator
systems and laser power beaming. The record efficiency
28.8%, GaAs solar cell had achieved in 2011 [5]. Due to
their good properties such as high quantum efficiency and
good irradiation tolerance, they are the ideal choices for
space applications [7, 8]. In comparison with Si space so-
lar cells, the radiation reliability of GaAs solar cells is
over 20% higher and the efficiency of energy conversion
is 20–25% and above. The lifetime in orbits of GaAs solar
cells is 40–60% over the one of Si solar cells [9, 10].

Key factor of development is to understand recom-
bination dynamics in GaAs solar cell structures. Valu-
able feedback for the technology process is provided by
the Deep Level Transient Fourier Spectroscopy (DLTFS)
method, which represents a unique technique of electri-
cally active defect and recombination centre investiga-
tion.

The aim of this paper is to introduce and discuss re-
sults of DLTFS defect investigations of the GaAs concen-
trator solar cell grown by Atmospheric Pressure Metal
Organic Vapour Phase Epitaxy (AP-MOVPE).

In addition, temperature dependent dark and light
current voltage characteristics at two light concentrations

were carried out to gain further insight on the structure
operation and performance.

2 EXPERIMENTAL

2.1 Device processing

The investigated p GaAs:Zn/i GaAs/n GaAs: Si so-
lar cell was grown by AP-MOVPE on a n-type GaAs
(Si doped) substrate at the Wroclaw University of Sci-
ence and Technology. The GaAs p-i-n junction was sand-
wiched between a Si doped GaAs substrate with n =
1 ÷ 2 × 1018cm−3 and a 50 nm thick Zn doped p+ =
1 ÷ 3 × 1019cm−3 cap layer. GaAs p-i-n with thick-
nesses of 200/800/200 nm was connected with the sub-
strate by a n type GaAs 200 nm thick buffer layer with
n = 2÷ 3× 1018cm−3 .

Doping concentrations of the p-i-n region was as fol-
lows: p layer p = 2 ÷ 3 × 1018cm−3 and n layer as a
gradient n = 2÷ 3× 1018cm−3 to n = 1÷ 2× 1017cm−3 ,
Fig. 1.

Type Thickness n, p (cm-3)

p GaAs cap:Zn ~ 50 nm 1÷3×1018

p GaAS:Zn ~ 200 nm 2÷3×1018

i GaAS ~ 200 nm -

n GaAs:Si ~ 800 nm
gradient 1÷2×1017

to 2÷3×1018

n+ GaAs:Si buffer ~ 200 nm 2÷3×1018

n GaAs:Si substrate ~ 350 nm 2÷3×1018

Fig. 1. Material compositions and layer properties of the investi-
gated p-i-n sample
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Fig. 2. Image of the fabricated metallization of test solar cell
structure — typical detector configuration with the circle shape

active area

The metallization was prepared as a typical detec-
tor ring structure with an inner diameter 150µm (circle
shaped active area), where the metallic p-type
(Pt/Ti/Pt/Au) and n-type (AuGe/Ni/Au) contacts were
deposited under vacuum conditions on the top and
around the mesa, respectively, Fig. 2.

2.2 Experiment

Fabricated GaAs p-i-n solar structure was investigated
by current-voltage (I–V ) and DLTFS measurements [11].
Light and dark I–V measurements were carried out using
a source-meter unit Keithley 2612A in temperature range
from 100 K to 400 K. Solar simulator 16S-002-300 with
spectrum AM1.5 was used as a source of illumination. The
nitrogen cryostat system with quartz glass window was
used for temperature control during the measurements.
The optical loses due to the glass window are around
10%. The light I–V measurements were carried out under
1× sun light intensity (100mW/cm2 ) and under 20×

sun light intensity (2000mW/cm2 ) achieved by focusing
the light with Fresnel lens.

Electrically active defects (deep energy levels) were in-
vestigated by the DLTFS BIORAD DL8000 measuring
system in temperature range from 85 K to 550 K. Mea-
sured capacitance transients were evaluated by Fourier
transform analysis. This method is based on measure-
ments of capacitance differences caused by excited emis-
sion and capture processes of deep energy levels in semi-
conductor materials [12]. The obtained DLTFS spectra
were evaluated using the Fourier transform analysis by
“Direct auto Arrhenius single level evaluation”. The val-
ues of activation energies ∆ET and cross sections σT of
deep energy levels were determined from an Arrhenius
diagram using known equations [11, 12].

3 RESULTS AND DISCUSSION

Figures 3(a)–(c) show temperature dependent I–V cha-
racteristics of the investigated GaAs p-i-n structure mea-
sured in the dark and under sun simulator with 1× sun
and 20× sunlight concentrations.

Light I–V measurements allowed us to determine ba-
sic output photovoltaic parameters: open circuit voltage
VOC , short circuit current density JSC , fill factor FF ,
and conversion efficiency ηf , which are summarized for
T = 300 K in Tab. 1. Temperature dependent output pa-
rameters for 1× sun and 20× sun light concentration are
shown in Figs. 4(a)–(d).

Table 1. Solar cell output parameters extracted from light I–V cha-
racteristics of the GaAs p-i-n structure at T = 300 K

Voc Jsc Vmax Jmax FF ηf Intensity
(V) (A/cm2) (V) (A/cm2) (%) (%)

0.74 0.02 0.62 0.015 74.7 9.09 1× sun
0.87 0.35 0.73 0.323 76.6 11.70 20× sun

Figure 4(a) shows a negligible change of JSC with
T for both 1× sun and 20× sun light concentrations.
More significant temperature dependencies are observed
for VOC , FF which are consequently reflected also in
ηf , Fig. 4(b)–(d). The decrease of the VOC upon the
temperature has a physical origin and it can be explained
by considering the following equation

VOC =
AkT

q
ln

JSC
JSat

, (1)

where A is the ideality factor, JSat is the saturation cur-
rent density and JSC is the short-circuit current density.
JSat is strongly related with intrinsic carrier concentra-
tion of the GaAs, which increases upon the increase of
temperature resulting into the increase of JSat . While the
VOC is reciprocally proportional to the saturation cur-
rent, the VOC increases with the decrease of T , Fig. 4(b).

Both VOC and FF have downward trends with the
T and determine the temperature behaviour of ηf . The
temperature dependent ηf allowed us to determine tem-
perature coefficients of efficiency ηTKR (in the linear
temperature region 200–400K) with values of −0.37
and −0.31%/ ◦C for light concentrations 1× sun and
20× sun, respectively. Such a coefficient describes the rel-
ative decrease of the efficiency with the increase of T .

Considering (1) it is obvious that high Jsat has a detri-
mental effect on the VOC and thus on the output pho-
tovoltaic performance. High quality materials with low
concentration of defects are required to keep the Jsat
low. The investigation of electrically active recombina-
tion centres is therefore crucial for optimization of solar
cells. Using the DLTFS method, four deep energy levels
were detected (Figs. 5, 6) in the investigated structure.
Three of them, labelled by us as TAn1,2 , and TDn , are
linked to majority traps and one labelled as TBp to a
minority trap. We have produced several DLTFS spectra
sets by experiments with different initial measurement
conditions filling (UP ) and reverse (UR ) voltages, capac-
itance transient period width - time period (Tw ) and fill-
ing pulse length (tP ). Typical DLTFS spectra measured
on the GaAs p-i-n solar structure are displayed in Fig. 5.
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Fig. 3. Temperature dependent current-voltage characteristics of
the GaAs p-i-n structure measured in the dark (a) — and under so-
lar simulator with (b) — 1× sun, and (c) — 20× sun concentrated

light

Table 2. Calculated and compared deep energy level parameters of
TAn1 , TAn2 and TBp before and after data selection with various

evaluation procedures

Trap
∆ET

σT(cm
2)

∆ETref
σTref(cm

2) Origin
(eV) (eV)

TAn1 0.486 5.11 × 10−16 0.48 eV
3.8× 10−16 Ni

EC2 [12]

TAn2 0.400 1.57 × 10−17 0.37 eV
4.0× 10−18 [13]EL16

TBp 0.691 2.34 × 10−16 0.63 eV
4.0× 10−17 Zn/Ni

HC1 [12]

TDn 0.747 2.95 × 10−15 0.73 eV
1.3× 10−14 AsGa

EX2 [15]

The reverse and filling voltage variation allowed us to esti-

mate the type and layer origin of these specific responses.

Since in the case of a p-i-n structure the depletion region

is located at the i-layer, the active layer of the solar cell,
the presence of these defect states can greatly affect the
efficiency.

Figure 4(b) shows higher VOC for 20× sun compared
to 1× sun light concentration. This phenomenon could
be explained by considering (1). While the JSat is not
dependent on light, the VOC increases with the increase
of JSC at the higher light concentration.

The FF exhibits initial increase upon the decrease of
T , which is followed by saturation in the temperature
region of 200-100K. The FF is a very complex parameter,
which describes the current transport, recombination of
carriers and contact properties in the structure.

At slightly forward biased conditions hole injection to
the i layer is ensured thereby the DLTFS curve should
include also results from minority carrier traps. Higher
filling voltages should increase the injection thereby am-
plifying initial or reveal additional minority traps. This
procedure is visible in Fig. 5(a), where in the first case
at higher UP value (0.3 V) the minority trap TBp in-
dicated increasing tendencies, while in the second at a
very low value of reverse voltage UR = −2 V the minor-
ity response disappeared revealing an additional majority
trap TDn , Fig. 5(b). Figure 6 shows the obtained Arrhe-
nius curves where TAn1,2 and TBp were calculated at
UR = -0.1V UP = 0.3V TW = 0.3, 1, 3 ms and tP =
0.3 ms, while TDn was identified at UR = −2 V, UP =
0.05 V, TW = 2.5 s and tP = 0.8 ms. At UR = −0.1 V,
UP = 0.3 V not only the peak amplitude of TBp but also
TAn1,2 was increased. This fact indicated that one of the
TAn1,2 complex (EC2 or EL16) has a more significant
concentration at the i/n interface. Also higher hole injec-
tion (UP = 0.3 V, increased peak of TBp ) made possible
to more precisely detect the TBp level. TDn was identi-
fied as EL2 (EX2) a frequently described and discussed
arsenic antisite defect of GaAs, by lowering the reverse
voltage to −2 V.

At these measurement parameters of the TAn1,2 level
was also evidently present, but unfortunately it was no
separable by the deconvolution method, Fig. 5(b). Only
the presence of TAn1 was confirmed more strongly sug-
gesting that TAn2 is located near the i/n interface.

Table 2 lists the evaluated deep energy levels with
their parameters (activation energy ∆ET , capture cross-
section σT ) and the probable origin of the deep en-
ergy level. All energy levels that were evaluated were
identified as well-known material defects of GaAs. Elec-
tron energy level TAn1 was identified as EC2 (0.48 eV,

3.8 × 10−16cm2 ) and was originated from a NiGa com-
plex [13]. It is highly probable that this defect state
was introduced by the growth process. The second elec-
tron energy level TAn2 was identified as EL16 (0.375 eV,

4.0 × 10−18cm2 ) [14]. Not many reports were published
about this defect state, therefore the possible origin of a
complex defect state between EC2 and EL16 is thereby
not clearly understood. In our interpretation the TAn,2

level (EL16) could be introduced by the GaAsi-n inter-
face of the GaAs p-i-n sample, which together with the
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Fig. 4. Extracted (a) — JSC , (b) — VOC , (c) — FF, and (d) — ηf as a function of temperature at 1× sun and 20× sun light
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EC2 response produces a complex DLTFS peak in the
spectrum.
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Fig. 5. DLTFS measurements of the GaAs p-i-n sample at different

reverse (UR ) and filling voltage (UP ) conditions

Our investigation showed, that the deep energy level

TBp highly corresponds with a single p type deep energy

level HC1 (0.63 eV, 4.0 × 10−17cm2 ). According to the

literature HC1 was observed in VPE samples diffused

with Zn (Ni, Zn), which were used to study hole traps [13].

Zn creates a shallow p type donor level at 0.024 eV so it

was ruled out.

Definite origin of HC1 was not stated however a mi-

nority character trap caused by majority carrier capture

(electron) was described. A further example of this en-

ergy state showed a hole trap population including the

energy 0.63 eV where oxygen was also discussed possi-

bly accommodating certain charge states [15]. Presence

of oxygen in MOVPE grown samples are frequently ob-

served, therefore we can not entirely rule out this con-

sideration. The electron trap TDn probably corresponds

with defects EX2 or EL2. EL2 is a mid-gap defect level

of GaAs, more precisely an arsenic antisite defect. EX2 is

a formation of EL2 identified in annealed GaAs samples

by rapid thermal annealing process [16].

It was suggested that EX2 is a complex of two va-

cancies and an antisite without interstitial arsenic atoms

(VAs , VGa , AsGa ). To ensure a more pure growth process

further investigations are needed in connection with all

possible relations of the observed defects and the growth

technology.
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(a)
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Fig. 6. Arrhenius curves of the GaAs p-i-n sample after DLTFS
parameter variations. Arrhenius curves (a) – of the complex defect
state TAn1,2 with defined reference data (EC2+EL16), (b) – of the

defect state TBp with reference data HC1, (c) – of the defect state
TDn with reference data EL2 and EX2

4 CONCLUSION

This paper summarises the results of temperature de-
pendent light and dark I–V measurements and DLTFS
study of a GaAs p-i-n solar cell structure. Comparing out-
put performance at different light conditions, the higher
conversion efficiency as well as better temperature coef-
ficient of efficiency measured at 20× sun light intensity
indicated a good applicability of developed structures for
concentrator applications. Four electrically active defects
were confirmed by means of DLTFS. These were identified
with high probability in connection with the growth pro-

cess as well-known material defects of GaAs originated
from a NiGa complex, Oxygen and the arsenic antisite
defect EL2. To achieve an increased efficiency, improved
GaAs quality and the optimization of the solar cell de-
sign decreased concentration of recombination centres are
needed.
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[5] PERNÝ, M.—KUSKO, M.—ŠÁLY, V.—PACKA, J. : PV Con-
centrator Cells Complex Impedance under the Bias in the Dark,

Conference Record of the IEEE Photovoltaic Specialists Confer-
ence, art. no. 5614438, 2010, pp. 1461–1464.

[6] GREEN, M, A.—EMERY, K.—HISHIKAWA, Y.—WARTA,
V.—DUNLOP, E. D. : Solar Cell Efficiency Tables (version 47),
Prog. Photovolt: Res. Appl. 24 (2016), 3–11.

[7] ASIM, N.—SOPIAN, K.—AHMADI, S.—SAEEDFAR, K.—
ALGHOUL, M. A.—SAADATIAN, O. et al : A Review on the
Role of Materials Science in Solar Cells, Renew Sustain Energy
Rev 16 (2012), 5834–47.

[8] FRAAS, L.—PARTAIN, L. : Solar Cells and their Applications,
2nd ed., John Wiley & Sons, Inc., 2010.

[9] LILENSTEN, J. : Le Systeme Solaire Revisite, Edition Eyrolles,
2006.

[10] LOO, R. Y.—KAMATH, G. S. Li,—S. S. : Radiation Damage

and Annealing in GaAs Solar Cells, IEEE Trans Electron De-
vices 31 No. 2 (Feb 1990).

[11] WEISS, S.—KASSING, R. : Deep Level Transient Fourier Spec-
troscopy (DLTFS) — A Technique for the Analysis of Deep Level
Properties, Solid-State Elecrronics 3l, No. 12 (1988), 1733–1742,
Institut für Technische Physik, Universität Kassel Dl-3500 Kas-
sel F.R.G..

[12] LANG, D. V. : Deep Level Transient Spectroscopy: A New
Method to Characterize Traps in Semiconductors, J. Appl. Phys.
45 (1974), American Institute of Physics.

[13] PARTIN, D. L.—CHEN, J. W.—MILNES, A. G.—VASSAMIL-

LET, L. F. : Deep Level Transient Spectroscopy Studies of Ni
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