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A NEW HIGH SPEED INDUCTION MOTOR
DRIVE BASED ON FIELD ORIENTATION

AND HYSTERESIS CURRENT COMPARISON

Cosmas Ogbuka — Cajethan Nwosu — Marcel Agu
∗

This paper presents a new high speed induction motor drive based on the core advantage of field orientation control

(FOC) and hysteresis current comparison (HCC). A complete closed loop speed-controlled induction motor drive system is
developed consisting of an outer speed and an inner HCC algorithm which are optimised to obtain fast and stable speed
response with effective current and torque tracking, both during transient and steady states. The developed model, being
speed-controlled, was examined with step and ramp speed references and excellent performances obtained under full load
stress. A speed response comparison of the model with the standard AC3 (Field-Oriented Control Induction Motor Drive)
of MATLAB Simpower systems shows that the model achieved a rise time of 0.0762 seconds compared to 0.2930 seconds
achieved by the AC3. Also, a settle time of 0.0775 seconds was obtained with the developed model while that of the AC3
model is 0.2986 seconds confirming, therefore, the superiority of the developed model over the AC3 model which, hitherto,
served as a reference standard.
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1 INTRODUCTION

The induction motor (IM), particularly, the squirrel-
cage type, is widely used in electric drives and is respon-
sible for most of the energy consumed by electric mo-
tors [1], hence it is called the workhorse of the indus-
try [2–6] because it has mechanical ruggedness, high ro-
bustness, design simplicity, reliability, economy, control
flexibility, less maintenance requirement, generally satis-
factory efficiency and ability to operate in explosive and
corrosive environments compared to other machines in ac
drives [3,4, 7–9].

The dominance of induction motors in industry has
continued despite the emergence of new motor types
such as the permanent magnet synchronous motors which
share some merits as well as some far-reaching limita-
tions [10–12]. Clearly, the induction motors will dominate
in industrial drives for decades and this is the fact behind
the sustained research efforts, particularly, in energy-
efficient adjustable speed drives (ASD) [13–15]. ASD be-
comes very pertinent because induction motors do not
have constant speed characteristics during load changes
and are, inherently, not capable of variable speed opera-
tion. Recent developments in the theory of vector control,
fast digital processor and power electronic devices provide
the possibility of achieving high performance induction
motor drive control [17].

Since torque is proportional to current either in the
stationary or rotor reference frames and control of current
gives control of torque and speed, current control strate-
gies are employed in ASD to ensure that stator currents
track their respective reference values. Prominent among

the current control strategies is the Hysteresis Current
Control (HCC) due to ease of implementation, excellent
transient response, attainment of maximum current limit
and insensitive to load parameter variations [11, 18–22].

In this work, a high speed induction motor drive based
on the core advantage of field orientation control (FOC)
and hysteresis current control was developed. The control
parameters were optimised to obtain fast speed response
and effective tracking of current and torque. The system
being a speed-controlled drive, the performance of the
developed model was examined with step and ramp speed
input under full load stress to examine the transient and
steady state performance. Finally, the developed model is
compared with the AC3 model (Field-Oriented Control
Induction Motor Drive) of MATLAB Simpower System
in terms of response speed.

2 INDUCTION MOTOR MODEL AND
FIELD ORIENTATION CONTROL (FOC)

Recall the dynamic voltage equations of the squirrel
cage induction motor in the synchronously rotating ref-
erence frame, the electromagnetic torque equation and
the rotor dynamic equation as shown from the following
equations [23, 24].
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Fig. 1. Phasor diagram of FOC for induction motor
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ψdriqs − ψqrids
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, (2)

Te = TL +Bωr + Jpωr , (3)

where vds, vqs = d, q -axis stator voltages; Rs, Rr=stator,
rotor resistances; Ls, Lr, Lm =stator, rotor, magnetizing
inductances; Llr, Lls =rotor, stator leakage inductances;
Lr = Llr + Lm ; Ls = Lls + Lm ; ωr, ωe, ωsl =rotor,
synchronous, slip speeds; P =number of poles; ωsl =

ωe −
P
2
ωr ; ψdr, ψqr = d, q -axis rotor flux linkages;

p =differential operator; Te =electromagnetic torque;
TL =load torque; B =rotor damping coefficient;
J =inertia constant.

The FOC controls the stator current vector of the in-
duction machine to achieve a precise and independent
control of torque and flux as obtainable in the dc ma-
chines. The stator current vector contains the torque con-
trolling component, iqs , and the flux controlling compo-
nent, ids as shown in the phasor diagram of Fig. 1.

From Fig. 1, field orientation is feasible because the
entire rotor flux ψr is aligned to the d-axis thereby mak-
ing the q -axis flux component ψqr zero since they are
perpendicular to each other. Consequently, (2) reduces
to (4) where Te ∝ iqs . Also, from the rotor flux orienta-
tion described above, equation (5) shows that the rotor
flux ψr ∝ ids .

Te =
3

2

P

2

Lm

Lr

ψdriqs , (4)

ψr = ψdr = Lmids . (5)

Under this condition, the induction motor behaves ex-
actly as the separately excited dc motor where the q -axis
stator current iqs entirely controls the electromagnetic
torque and the d-axis stator current ids entirely controls
rotor flux.

3 OVERALL SCHEMATIC
OF THE DRIVE SYSTEM

The induction motor in the scheme of Fig. 2 is fed by
a hysteresis current-controlled PWM inverter operating
as a three-phase sinusoidal current source. The powerI0(A)
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Fig. 2. Complete schematic of the speed-controlled induction motor drive system



336 C. Ogbuka — C. Nwosu — M. Agu: A NEW HIGH SPEED INDUCTION MOTOR DRIVE BASED ON FIELD ORIENTATION AND . . .

I0(A)

a
ia

S1 D1

S4 D4

va b
ib

S3 D3

S6 D6

vb c
ic

S5 D5

S2 D2

vc
N

Vdc

2

Vdc

2

Fig. 3. Power circuit of three-phase inverter
I0(A)

Inverse

Park’s transform

Generation

of i*
qs

(8)

i*
a

Yr
*

q e

i*
b

i*
c

i*
ds

i*
qs

abc

dq
T*

e

ids

iqs

1

s

1

Lm

Generation

of slip

speed, (10)

1

1+tr S

+
+

w sl

(P/2) w r

Fig. 4. Generation of reference phase currents

circuit of the inverter is shown in Fig. 3. The rotor speed
ωr is sensed by the speed sensor and filtered by the 1st
order low pass filter. The speed error between the actual
rotor speed and its reference is processed through the
proportional-integral (PI) speed controller to nullify the
steady state error in speed. The output is restricted to an
upper and a lower limit to produce a realistic reference
torque T ∗

e . Figure 4 shows the realisation of the reference
phase currents as expressed from equation (6) to (13). All
reference or command values are superscripted with ∗ in
the diagrams.
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where τr = Lr/Rr is the rotor time constant.
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The reference phase currents are computed using the in-
verse park’s transform as

i∗a = i∗qs cos θe + i∗ds sin θe ,

i∗b = i∗qs cos
(

θe −
2π
3

)

+i∗ds sin
(

θe −
2π
3

)

,

i∗c = i∗qs cos
(

θe +
2π
3

)

+i∗ds sin
(

θe +
2π
3

)

.

(13)

The reference phase currents (i∗a , i
∗

b and i∗c ) and the ac-
tual phase currents (ia , ib and ic ) are compared, by feed-
back. Error signals are generated and used in the control
logic of appendix one to generate the voltage gating sig-
nals for the switches of the three phase inverter. The HCC
action is made possible by ∆i∗s where ∆ is an adjustable
hysteresis window which determines the effectiveness of
current and torque tracking.
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Fig. 5. Generation of inverter voltage gating signals

Current control is achieved as illustrated in Fig. 5
by the appropriate firing of the power semiconductor
switches S1 to S6 of the three phase inverter. The in-
verter is supplied by an adequately filtered dc source Vdc .
Each phase current to the motor is limited by the series
RL branch (R = 0.001Ω and L = 5 mH).

4 RESULTS AND DISCUSSIONS

The complete drive system is simulated for the motor
of appendix two and the results presented under three
headings (i) Hysteresis comparison a pulse width modu-
lation, (ii) Response to step speed input, (iii) Response
to ramp speed input. To obtain the best possible per-
formance, tuning method was employed to obtain the
optimal proportional and integral gain values. It is an
industrial practice to lower the proportional and inte-
gral gain values and gradually tune them up until the
best possible performance is achieved. This is procedure
is adopted here.. The optimal control variables are: Pro-
portional gain= 5, Integral gain= 100, 1st order low pass
filter time constant= 1.6× 10−3 seconds, Torque limiter
upper lower= 75 Nm/−75 Nm.
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4.1 Hysteresis Comparison as Pulse Width
Modulation

The no load run of the motor at a constant speed of
500 rpm is used to illustrate the hysteresis comparison
as pulse width modulation. Figure 6 shows the inverter
phase to phase voltage vab . Similar results are obtained
for vbc and vca . The variation and delay in the conduction
time of the inverter switches highlights the pulsewidth
modulation nature of the hysteresis current comparison.

For the narrow time range of 0.3205 to 0.3207, the volt-
age gating signals, vg1 and vg4, for the complementary
switches in the first leg of the inverter, S1 and S4 , are
shown in Fig. 7 for hysteresis band ∆ = 0.05 using phase
’a’ to highlight the hysteresis property for purpose of clar-
ity. It can be seen that the two switches conduct alter-
nately as earlier explained. The phase ’a’ current ia tracts
the upper boundary i∗a +∆i∗s (increases) when switch S1

is conducting and tracts the lower boundary i∗a − ∆i∗s
(decreases) when switch S4 is conducting. The hysteresis
current control action, which makes ia to track its refer-
ence i∗a , is seen as ia moves between i∗a+∆i∗s to i∗a−∆i∗s
as switches S1 and S4 conduct alternately. Still using
the ’a’ phase, the procedure is repeated for ∆ = 0.07 and
0.09 as shown in Figs. 8 and 9 respectively. It can be seen
from the pulse widths that the switching speed decreases
as the hysteresis band is increased. As a result, the best

ia tracking of i∗a is when the hysteresis band is narrow-

est (ie∆ = 0.05). Smaller hysteresis bands imply higher

switching frequency. This may constitute a practical lim-

itation on the power device switching capability due to

switching losses which need to be mitigated.

Figures 10–12 show the hysteresis current control

property for the phases a, b and c respectively for the

same narrow time band. Phase shift of 120 degrees be-

tween the phases is observed.

4.2 Response to Step Speed Input (1000 rpm to

500 rpm to −500 rpm)

The motor is started at a reference speed input of

1000 rpm at no load as shown in Figs. 13 and 14.

At 0.4 seconds, the speed reference is stepped-down to

500 rpm with a simultaneous application of 49.9 Nm

rated load. At 0.8 4seconds, a negative speed command

of −500 rpm is applied with the load torque removed.

As shown in Fig. 14, to sustain speed rise during start-

ing from rest, the electromagnetic torque rises even at no

load. The motor briefly enters into generation mode as

soon as the speed crosses the reference. This forces the

reference and the electromagnetic torque to negative be-

fore stabilising at zero during steady state since no load

is applied.
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Simultaneous application of rated load (49.9 Nm) and

step-down of speed to 500 rpm at 0.4 seconds forces the

reference and electromagnetic toques to the negative ex-
treme (−75 Nm). This enables speed decrease. The elec-
tromagnetic toque is less than the reference due to the
frictional effect of the load.

When the speed crosses the reference, the electromag-
netic and the reference torque instantly rises above the
load torque to support regeneration before the electro-
magnetic torque settles to the load torque at steady state.
The reference toque remains above that the load torque
by a proportion of the frictional effect of the load.

Negative step speed command of −500 rpm and load
removal is made at 0.8 seconds resulting, instantly, on
the reference and electromagnetic torque of −75 Nm since
load is zero. Electromagnetic torque, thereafter, decreases
with speed until speed crosses the reference. After the
brief period of regeneration, the reference and the elec-
tromagnetic torque settles at zero since load is zero.

Figures 15 and 16, respectively, show the reference
stator phase and the actual stator phase currents. The
phase currents responded to the speed and load changes.
The actual phase current effectively tracks the reference
values.

The switching speed decreased by 100% when speed
is changed from 1000 rpm to 500 rpm as shown, more
clearly, for ’a’ phase in Fig. 17. The switching speed is
the same both for 500 rpm and −500 rpm. An expanded
view, Fig. 18, is shown of the nature of the phase current
inversion (reversal) from a-b-c to c-b-a at the instant
of speed change from 500 rpm to −500 rpm (positive to
negative).

Rotor position which is zero at start, as seen in Fig. 19,
increases for as long as speed remains positive but creates
a new orientation at each instant of speed change but
reverses direction with speed reversal.

4.3 Response to ramp speed input (500 rpm to
−500 rpm to 500 rpm)

The interest here is to observe the motor behaviour
during negative and positive ramp speed commands un-
der simultaneous full load stress.

Negative ramp speed command of −500 rpm is made
from 0.3 seconds to 0.6 seconds at full load stress as
shown in Figs. 20 and 21. The load is removed at
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0.6 seconds when −500 rpm is attained. Between 0.9 se-

conds and 1.2 seconds, a positive ramp speed command

is made on full load. As can be seen, ramping provides

a gradual speed transition thereby enabling the actual

rotor speed to trace the path of the reference speed input

very closely. The effect of gain and loss of load at the

inception and end of ramping respectively can be seen of

the rotor speed. The frictional effect of the load torque

as well as the torque gradient due to the gradual speed

change during ramping are also observed.
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The speed ramps occurred simultaneously at rated
loading of 49.9 Nm as shown in Fig. 21. Unlike in the
step input where the reference torque takes its minimum
value at the instant of speed reversal thereby, momen-
tarily, forcing the electromagnetic torque to the negative
extreme, the torque profile during speed ramping from
positive to negative is positive due to the gradual speed
transition. At steady state, the electromagnetic torque
and the reference torque are zero since no loading oc-
curred during steady state.

Phase current sequence reversal also occur at the two
instances of speed change from positive to negative just

as in the case of step speed input, as seen in Figs. 22–
24. A comparison of Figs. 18 and 24, however, show that
ramp speed command provides a smooth speed transition
offering excellent dynamic stability during phase reversal.
The rotor position shown in Fig. 25 smoothly changes
orientation at each instant of speed reversal.

5 DRIVE COMPARISON WITH AC3
OF MATLAB SIMPOWER SYSTEM

The dynamic speed response of the developed model is
compared with the standard AC3 of MATLAB simpower
system under exactly the same control condition of the
same 10Hp induction motor for a constant speed com-
mand of 500 rpm on no load. Emphasis is on the rise and
settling time of the speed response for the two models.

With rise time defined as the time to attains 98% of
the final value (98% of 500 rpm is 490 rpm), the rise
time for our developed model is 0.0762 seconds while the
rise time for AC3 model is 0.2930 seconds as shown in
Fig. 26(a) and (b) respectively.

The two systems are critically damped; meaning that
the settle time coincidence with the final value time. The
settle time for our developed model is 0.0775 seconds
while that of the AC3 model is 0.2986 seconds as shown
in Fig. 26(c) and (d) respectively.
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Fig. 26. Rise and settle time for the deveq loped (a), (c) and AC3 models (b), (d) respectivelly
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6 CONCLUSION

This work has presented a new high speed induction

motor drive based on field orientation and hysteresis cur-

rent comparison. The results show that the set objectives

of the research have been achieved.

Since torque can be made proportional to current ei-

ther in the stationary or rotor reference frames and ef-

fective control of current gives effective control of torque,

current control by hysteresis comparison has been utilised

to drive a three phase inverter controlling a three induc-

tion motor whose stator current has been decoupled just

as in DC motors to achieve independent and precise con-

trol of torque and flux.

The developed speed-controlled drive consisting of an

outer PI speed controller and an inner HCC current con-

troller was optimised to yield fast speed response under

full load stress for step and ramp speed inputs. In each,

the HCC strategy has been used to ensure that the actual

motor phase currents tracked their respective sinusoidal

references. Gradual speed transition due to speed reversal

was obtained during speed ramping thereby permitting

the speed profile to remain positive all through unlike in

the speed input which forced the torque reference to the

negative limit at the instant of speed reversal.

When compared to the standard AC3 of MATLAB

Simpower systems which attained a rise time of 0.2930 se-

conds, a rise time of 0.0762 seconds was attained by the

developed model. Similarly, the settle time of the AC3

is 0.2986 while that of the developed model is 0.0775.

Clearly, the developed model has shown superiority over

the AC3 model which, hitherto, served as a reference

standard.

Appendix 1: Inverter switch gating voltage sig-

nal estimation

(a) For inverter phase ”a” leg
If ia < i∗a −∆i∗s OR (ia > i∗a −∆i∗s AND ia < i∗a +∆i∗s

AND dia
dt

> 0)

vg1 = 1; vg4 = 0
else vg1 = 0; vg4 = 1
end

(b) For inverter phase ”b” leg
If i<b i

∗

b −∆i∗s OR (ib > i∗b −∆i∗s AND ib < i∗b +∆i∗s

AND dib
dt

> 0)

vg3 = 1; vg6 = 0
else vg3 = 0; vg6 = 1
end

(c) For inverter phase ”c” leg
If ic < i∗c −∆i∗s OR (ic > i∗c −∆i∗s AND ic < i∗c + ∆i∗s

AND dic
dt

> 0)

vg5 = 1; vg2 = 0
else vg5 = 0; vg2 = 1
end

Appendix 2: Sample squirrel cage induction
motors

Rated Power, Hp 10
Rated Line Voltage, V 400
Rated Frequency, Hz 50
Stator Resistance, Ω 0.7384
Stator leakage inductance, H 0.003045
Rotor Resistance Referred to Stator, Ω 0.7402
Rotor Leakage Inductance Referred 0.003045

to the Stator, H
Mutual Inductance, H 0.1241
No. of Poles 4
Motor Inertia, Kgm2 0.0342
Motor Friction Factor 0.000503
Direct Axis Rotor Flux, wb/sec 0.97644
Speed, rpm 1440
Rate Torque, Nm 49.9
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