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WLAN–BASED INDOOR LOCALIZATION
USING NEURAL NETWORKS
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Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates
Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of
an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance
with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We
incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads
to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and
complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that
ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.

K e y w o r d s: wireless local area network, localization, channel fading, neural network

1 INTRODUCTION

A localization system determines the position of a
person or object within a predefined coordinate system
[1]. Indoor localization systems have received significant
attention in the last few years because of many health
and safety-related applications for locating patients, de-
vices, or law-enforcement personnel in large buildings
[2], [3]. The Global positioning system (GPS) signals are
greatly attenuated while penetrating building materials
[4], which necessitates the need for developing alternative
indoor localization techniques. The initial systems devel-
oped for indoor localization have the drawback of requir-
ing dedicated infrastructure and some specialized equip-
ment to be worn by the person to be localized, see [5],
[6] and [7]. However, in recent years the widespread avail-
ability of Wireless local area networks (WLANs) based
on the IEEE802.11 standard, commonly termed as Wi-
Fi, has led to new techniques for efficient indoor localiza-
tion [8]. The common availability of multiple Wi-Fi access
points (APs) in indoors and widespread use of portable
smart devices allows cost-effective solutions for location
estimation, which require minimal additional hardware;
see for example [3], [7], [9], and [10]. The WLAN-based
localization systems determine user location by utilizing
the received signal strength (RSS), which is a measure
of signal power received by a device, from multiple APs.
The RSS values are measurable by a wireless network in-
terface card even for private Wi-Fi networks that require
a password for usage [4], [10].

The two major categories of WLAN-based localization
techniques are Triangulation and Fingerprinting [1]. The
triangulation approach infers target location by using the
distance/angle information from at least three APs that

act as reference locations. The required distance/angle
information can be obtained by using the Time of arrival
(TOA), Time difference of arrival (TDOA), or Angle of
arrival (AOA) information of the signals received from
the multiple APs [11], [12]. For indoor environments often
the line-of-sight (LOS) path between the transmitter and
receiver is not available due to severe attenuation by walls
and other blocking objects. For this reason AOA, TDOA
and TOA methods, which require a clear LOS path for
operation, are not reliable methods for indoor localization
[11].

In contrast, fingerprinting-based techniques use em-
pirical data to estimate user location and are more ro-
bust to measurement errors relative to the triangulation
techniques [7], [13]. A fingerprinting-based method op-
erates in two stages: an offline stage in which the fea-
tures/fingerprints from the region of interest are collected
at some known locations named anchor locations, fol-
lowed by an online stage in which the unknown location
of the desired object/person is estimated by matching the
online measurements with the closest a-priori location fin-
gerprints. The fingerprinting approach provides accurate
positioning even in complex indoor environments without
the necessity to model the wireless propagation channel.
In the literature, indoor localization has been investigated
for many variants of the fingerprinting approach such as
k-nearest-neighbor (k -NN) [13], probabilistic methods [7]
and artificial neural networks (ANNs) [3].

The k -NN approach offers a simple solution for es-
timating unknown user position by averaging the geo-
graphical coordinates of k closest reference points from
the previously built database. However, this simplicity of
implementation is acquired at the cost of relatively poor
accuracy of location estimates [10]. Many authors have
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also investigated the use of ANNs for indoor localization,
see for example [14], [15], [16], [17], and [18]. In [14] the
authors have used an ANN along with TOA and AOA
methods to reduce location estimation errors in non-line-
of-sight (NLOS) scenarios. In [15] the authors have com-
pared a multilayer perceptron (MLP) ANN, combined
with triangulation or trilateration techniques, with two
variants of a Kalman filter. By experimental results, they
have shown that MLP achieves a higher accuracy and re-
quires lesser computational resources than the Kalman
filter. In [16] the authors evaluated node localization in
a wireless sensor network using an ANN and obtained
higher accuracy than traditional schemes of location es-
timation. In [17], an adaptive neural fuzzy inference sys-
tem was employed to model the dependency between RSS
values and physical distances in the offline stage. In the
online stage the distance between AP and target mobile
device was determined by using this RSS-position depen-
dency model and then an extended Kalman filter was
used to compute the unknown position of mobile device
in 2D space. It was concluded that the adaptive neural
fuzzy system provides good distance estimates due to its
nonlinear ability and fast learning capacity. However, the
authors in [14], [15], [16], and [17] have not used an ANN
in combination with the fingerprinting approach. A per-
formance comparison of three types of dynamic neural
networks was presented in [3]. It was shown that the feed
forward time-delay neural network gives better location
estimation with smaller training time than the nonlinear
autoregressive network and the layer recurrent network.
However, details of the chosen ANN parameters were not
provided and the authors did not discuss how to han-
dle the case of missing APs in the online phase; such a
scenario may arise when RSS values from certain APs
are available in the offline phase but are not received in
online stage due to severe fading. In [18] an ANN with
fingerprinting approach has been investigated and the au-
thors propose a modular MLP-ANN approach to handle
the problem of missing APs in online stage. The authors
select an ANN architecture with two hidden layers that
can result in increased complexity. All the aforementioned
works have considered location independent shadow fad-
ing to simplify generation of theoretical RSS datasets for
offline phase. However, neglecting the spatial correlation
of the shadow fading can result in inaccurate performance
analysis of localization algorithms [1].

This work revisits the localization performance of the
modular MLP-ANN approach of [18], and also proposes
alternative low-complexity approaches to handle missing
APs in the online stage. In contrast to [18], our local-
ization evaluations show that only one hidden layer in
the ANN is sufficient to achieve good accuracy. We then
compare the performance of the aforementioned ANN-
based techniques with the probabilistic method, which
is frequently used as a performance benchmark for lo-
calization evaluations [5], [19]. It may be noted that if
interpolation is not used in the probabilistic method, the
maximum likelihood estimate (MLE) of the unknown user
location will always belong to the set of reference points

measured in the offline phase. Therefore, we propose two
simple interpolation methods for the MLE-based location
fingerprinting. Our work incorporates spatial correlation
effects of the shadow fading in the offline RSS database,
which is generated from the model of [1].

2 INDOOR POSITIONING WITH

LOCATION FINGERPRINTING

Indoor localization viewed in the context of an ANN
is a function Artificial neural networks (ANNs) approx-
imation problem, where the task is to approximate the
nonlinear function that maps RSS values (inputs) to geo-
graphical coordinates (outputs) in the region of interest.
A neural network is composed of multiple neurons ar-
ranged in a set of layers; each neuron in a given layer is
connected to every neuron in the successive layer through
adjustable weights that work together to approximate a
function [20]. In its training/offline phase an ANN learns
the non-linear function between observed RSS values (in-
puts) and the geographical locations (target outputs) of
the measurement, by adjusting its weights to minimize
the error between the ANNs training outputs and its tar-
get outputs [21]. Once the network has been trained, it
can estimate the unknown location of user equipment
(UE) in the online phase by using RSS measurements
only.

In constructing the ANN architecture for indoor local-
ization, we have adopted the approach of [2], [20], [21],
[22] [23] to use a feed-forward multi-layer perceptron ar-
chitecture because it presents a good tradeoff between
accuracy and memory requirements; the latter is desir-
able in view of memory and computational constraints
of many handheld smart devices. We consider a three-
layered MLP architecture, ie , a single hidden layer in ad-
dition to the input and output layers. The choice of only
a single hidden layer is motivated by the universal ap-
proximation theorem, which states that a single correctly
dimensioned hidden layer is sufficient for approximating
continuous non-linear functions [1], [20]. The number of
nodes in the input layer equals the number of APs mea-
sured in the offline stage. In the output layer there are
two neurons corresponding to two-dimensional (2D) co-
ordinates of the unknown user location, ie , a 2D localiza-
tion problem is considered herein. Finally, to dimension
the hidden layer appropriately, one approach suggested
in [22] is to select the number of hidden layer neurons
such that the total number of weights in the network is
approximately a tenth of the available training samples.
However, many works have used more than this num-
ber of hidden neurons, see [22] and references therein. A
more structured approach suggested by [22] is to initially
start with a large number of hidden neurons then to re-
duce this number gradually while the estimation error
is within acceptable limits. We have adopted the latter
approach whereby the network was trained for over 100
epochs with an error of 10-6 being set as the training goal.
After substantial trials we determined that 10 neurons in
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the hidden layer were sufficient to provide the desired ac-
curacy within the given training restrictions.

In selecting an activation function for the hidden layer
neurons Sigmoid functions are widely used because hid-
den neurons with sigmoid function are responsive for a
broad range of inputs, i.e., it is more likely that a given in-
put value influences several hidden neurons [22]. We have
chosen a hyperbolic tangent sigmoid function for the hid-
den layer neurons of the considered ANN. Furthermore,
for the output layer neurons a linear activation function
is used for function approximation problems because in
this case the output values can take values in a continuous
range rather than being divided into classes. To facilitate
an appropriate selection of the network training function
for an ANN, the authors in [24] present an empirical inves-
tigation of different network training functions for various
benchmark problems; for function approximation prob-
lems the Levenberg-Marquardt training algorithm is sug-
gested because it produces lower error than other training
functions. Furthermore, the Levenberg-Marquardt train-
ing algorithm has also been demonstrated to have the
fastest convergence rate for networks having less than a
few hundred weights [24]. In view of these considerations,
we have selected the Levenberg-Marquardt training algo-
rithm for the ANN considered in this work.

2.1 Probabilistic methods

Probabilistic fingerprinting techniques treat RSS val-
ues at a location as random variables and utilize the sta-
tistical distribution of the RSS values to identify an un-
known location [25]. Let l denote a location and o the
vector of RSS values received at this location from all
available APs. Assuming there are n anchor point loca-
tions and RSS values from available APs are collected
at each location in the offline phase. Then in the online
phase, the user at an unknown location will measure a
vector of RSS values and according to the Probabilis-
tic fingerprinting method, the anchor point location that
has the highest posteriori distribution p(li/o) will be re-
turned as an estimate of the unknown user location [23]
[26].

Mathematically: Select li if p(li/o) > p(lj/o), i, j =
1, 2, 3, . . . , n, j 6= i .

According to the well-known Bayes rule

p
( li
o

)

=
p
(

o

li

)

p(li)

p(o)
(1)

where p(li) is the prior probability of location li before
receiving o. Assuming that the anchor locations have an
identical probability of being chosen, p(li) will be a uni-
form distribution that is identical for all locations. Fur-
thermore, p(o) given by,

p(o) =

n
∑

i=1

p
( o

li

)

p(li), (2)

is not a function of location and is therefore identical for
all locations li in the region of interest. The term p(o/li)

seen in (1) is the likelihood function of location li , which
determines the probability of observing RSS vector o at
location li . Therefore, to determine the highest posteriori
probability we require to maximize p(o/li) only while
treating p(o) and p(li) as constants. Now considering a
location li , the likelihood function at li is estimated as
the product of likelihood functions for all m available
APs as,

p
(o

li
) =

m
∏

j=1

p
(oj
li
), (3)

where oj is the RSS received from j -th AP at location
li .This method of approximating user location using a
probabilistic approach is known as maximum likelihood
estimation (MLE) [19]. One drawback of this approach is
that it can only estimate the unknown user location as one
of the anchor point locations. For more accurate estima-
tion of the unknown location, interpolation between the
anchor locations can be introduced. Two different ways
of interpolating the locations have been proposed in the
literature.

MLE with interpolation method 1

The coordinates of the unknown UE location can be
estimated as a weighted sum of the coordinates of all an-
chor locations with the posteriori probabilities of these
locations adopted as their respective weights. The esti-
mated location coordinates of UE are then expressed as
[23].

(x̂, ŷ) =

n
∑

i=1

p

(

li
o

)

· (xli , yli) (4)

MLE with interpolation method 2

In this approach, anchor locations are sorted according
to their descending posteriori probability values and the
k largest posteriori probability location coordinates are
averaged to obtain an estimate of the unknown location
coordinates as [5],

(x̂, ŷ) =
1

k

k
∑

i=1

(

xli , yli) (5)

where k is taken to be the number of APs available in
the scenario under consideration [5].

3 SIMULATION MODEL

For evaluating the localization performance of the se-
lected techniques, we adopt the indoor scenario proposed
in [27] which consists of a room of size 20 × 20 m2 as
shown in Fig. 1. There are four APs deployed at four
corners of the room and 25 anchor locations are equally
spaced on a grid with a spacing of 4 m between adjacent
anchors. All simulation results have been generated by
using the MATLAB computational software.
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Fig. 1. Simulation layout for room size 20× 20 m2 with 4 APs in
corners and 25 anchor locations, [27]

Table 1. Parameters of Propagation model, [28]

Parameter d0 Pr(d0) n σ Dc

(m) (dBm) (−) (dB) (m)

Value 1 −40 2.0 3.0 10

The RSS value at distance d from an AP is computed
according to the propagation model [27],

Pr(d) = Pr(d0)− 10n log
( d

d0

)

−Xσ. (6)

Here d0 is the reference distance, Pr(d) and Pr(d0)
denote the received signal power at distance d and d0 ,
respectively [27,28]. Further, n is the path loss exponent
and Xσ is a zero mean Gaussian random variable with
standard deviation σ , which models the shadow fading
due to signal blockage in the indoor scenario. A spatial
correlation is induced into the shadow fading observed at
close-in physical locations due to the similarity in environ-
mental obstructions encountered in the signal propaga-
tion path [1]. Therefore, accurate evaluation of the local-
ization performance requires that this correlation is also
taken into consideration when generating the RSS dataset
[1]. The parameter values for the propagation model in
(6) have been selected after careful considerations of the
indoor environment [27,28] and are shown in Table 1. For
computing spatially correlated shadow fading values, a
covariance matrix K is generated whose element Kij is
obtained as [1]

Kij(dij) = σ2 exp
(

−
dij
Dc

ln 2
)

, (7)

where Dc is the correlation distance K is decomposed
as K = LL

⊤ [29] and then matrix L is used to generate
correlated shadow fading values in the vector Xσ as,

Xσ = Lw (8)

where w is a vector of uncorrelated random variables with

zero mean and unit variance. The selected values for Dc

and σ are shown in Table 1 for the considered indoor

environment.
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Fig. 2. Block diagram of the simulation procedure

The complete simulation procedure is illustrated by

the flowchart given in Fig. 2, the RSS values from all

available APs are computed at each anchor location in

the offline phase. This dataset is used for training the
ANN and also for acquiring the offline dataset for the

probabilistic methods, ie , mean and standard deviation

of RSS values. For the online phase, a single trial is exe-
cuted by randomly placing the UE in the room according

to a uniform distribution of its x and y coordinates; thus

any position within the room is equally likely for the on-

line phase, which constitutes the worst case scenario from
an estimation perspective. The RSS values from the avail-

able APs in online phase are then generated according to

the model of (6). The UE location estimated by the lo-
calization algorithm was compared with the true location

to compute the localization error for a single trial. In this

way 10000 independent trials were conducted to collect

error statistics for the reported performance evaluation.

4 PERFORMANCE METRICS AND RESULTS

The performance of a localization technique is typi-
cally quantified by metrics such as localization accuracy,

precision, robustness and computational complexity [23].

These metrics are used in the sequel for performance com-

parison of the considered ANN and probabilistic methods.
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Fig. 4. CDF of localization error for ANN and probabilistic approaches

Accuracy

The accuracy is measured by the mean value of the
distance error which is computed as [23],

Ed =
1

N

N
∑

i=1

Ed (9)

where N is the number of independent trials and Ed

is the Euclidean distance between the estimated location
and the true location of UE. For the 2D localization prob-
lem considered herein, the Euclidean distance is written
as,

Ed =
√

(x− x̂)2 + (y − ŷ)2 (10)

where, (x, y) and (x̂, ŷ) are the x and y location coor-
dinates of the true and estimated locations, respectively.
A smaller mean error in the location estimate is desir-
able and leads to a more accurate localization algorithm.
In Fig. 3, the mean distance error and the error devia-
tion about the mean for ANN and the three probabilistic
methods are plotted against the number of anchor points.
From the figure it can be seen that by increasing the
number of anchor locations in offline phase, both the av-
erage distance error as well as the error deviation about
the mean decrease monotonically for all localization al-
gorithms. However, the mean and standard deviation of
the location estimation error for ANN is smaller than all
three variants of the MLE method. With 5 anchor loca-
tions, average error and its deviation are 2.35 m and 1.50
m for ANN and 4.40 m and 2.38 m for MLE with interpo-
lation method 1. With 13 anchor locations, average error
and its deviation are 0.53 m and 0.52 m for ANN and
2.16 m and 1.54 m for MLE with interpolation method
1. With 25 anchor locations, average error and its devia-
tion are 0.27 m and 0.36 m for ANN and 1.54 m and 1.03
m for MLE with interpolation method 1. It can be seen
from the figure that MLE in conjunction with interpola-
tion method 1 yields the smallest average error of 1.54
m among the probabilistic methods while the other two
probabilistic methods yield 1.69 m and 1.90 m average
error values.

Precision

While accuracy considers the average error, precision
explores the distribution of error. A localization algorithm
that exhibits an error distribution in which small errors
occur with higher probability and large errors occur with
lower probabilities is preferred [11] [23]. We have used
the cumulative distribution function (CDF) of error dis-
tance for investigating the precision of the localization al-
gorithms [11]. The CDF plot of error for ANN and three
probabilistic approaches is shown in Fig. 4 for 25 anchor
locations. From Fig. 4 it is clear that ANN has higher
probability for low errors. For example, percentage prob-
ability of achieving less than or equal to 0.5 m error is
86% for ANN whereas this probability is only 10%, 19.5%
and 5% for the three probabilistic methods. If we make
a comparison among probabilistic approaches, it can be
seen that MLE with interpolation method 1 returns a dis-
tance error below 0.5 m with probability 19.5%, which is
significantly larger than the other two interpolation meth-
ods, which have only 10% and 5% probability of giving
error values below 0.5 m, ie , higher distance errors are
more probable with these approaches relative to MLE
with interpolation method 1. In view of the better accu-
racy and precision performance of the MLE with interpo-
lation method 1 relative to other two MLE variants, we
consider only the MLE with interpolation method 1 for
subsequent evaluations of algorithm robustness and com-
plexity in comparison with the ANN-based approach.

Robustness

Robustness of a localization technique is a measure
of its ability to provide reasonable location estimates in
the absence of RSS values from one or more APs in the
online phase. Such a scenario may arise if the signals
from certain APs, that were available during training
phase, are significantly attenuated due to severe channel
fading in the online phase. For investigating the algorithm
robustness to missing RSS values, test data for online
phase is generated in which RSS values from AP1 shown
in Fig. 1 are not available while valid RSS values from



304 F. Saleem — S. Wyne: WLAN-BASED INDOOR LOCALIZATION USING NEURAL NETWORKS

remaining three APs are received. The error statistics for
both the ANN and MLE with interpolation method 1 are
then evaluated for this scenario.

For the MLE method, a solution for handling the miss-
ing AP is to set likelihood p(oj/l) = 1 at all locations for
j -th missing AP [23]. For the ANN approach, multiple
ways of handling this situation are investigated as follows.
One simple approach is to replace the missing RSS value
in the online phase by a suitable value. We propose three
possibilities of choosing this value as described below:

Location ID
Observe

online RSS

measurement

Select

ANN

Location ID

Location ID

ANN

ANN

ANN

Fig. 5. Modular ANN selection scheme to handle missing APs in
online stage, [18]

Mean 1:

Replace the missing RSS value with the mean of offline
phase RSS values of missing AP at all anchor locations
as

Mean 1 =
1

n

n
∑

i=1

RSSji (11)

where RSSji is the RSS value from j -th AP at i -th
location in the offline phase(i =1,2,,n), and RSS values
from the j -th AP are not available in the online phase.

Mean 2:

Select the RSS value from the missing AP to be the
RSS value that was available in training phase at an
anchor location centrally located in the considered region
of interest; for example, the missing online RSS value is
replaced by its offline value at the central location in
the considered simulation setup with coordinates (x, y)
= (10,10), ie , the missing RSS value is given as,

Mean 2 = RSSj(10,10) (12)

Mean 3:

RSS value of j -th AP, which is missing in online phase,
is replaced with mean of RSS values of remaining APs,
which are available in the online phase, ie , the missing
RSS value is obtained as,

Mean 3 =
1

m− 1

m
∑

i=1,i6=j

RSSi (13)

where, RSS i is the RSS value from i -th AP that is avail-

able in the online phase.

In [18] an alternative approach to handle the problem

of missing AP has been suggested whereby different neu-

ral networks are trained in offline phase by considering

the absence of RSS values from a particular AP. Then, in

the online phase, the appropriate ANN is selected accord-

ing to the available set of RSS values as shown in Fig. 5,

[18].

Figure 6 plots the distribution of location errors for 25

anchor locations for the four methods discussed above.

Here ANN3 denotes a stored ANN with 3 inputs, ie ,

one input corresponding to the missing AP has been dis-

carded from the original set of four inputs. Furthermore,

ANNm1, ANNm2 and ANNm3 denote the ANN-based

approach with the missing RSS value replaced by one of

the three means discussed above. It can be observed from

Fig. 6 that ANN with 3 inputs (ANN3) is better than

all other techniques. Furthermore, it is evident that even

the ANN approach that uses one of the three means to

replace the missing RSS is more robust than MLE with

interpolation method 1. Probability of obtaining low er-

ror eg 0.5 m is 51%, 11%, 10.5%, 9% and 3.8% for ANN3,

ANNm1, ANNm2, ANNm3, and MLE with interpolation

method 1, respectively.
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Fig. 6. Error CDF for different ANN schemes and MLE with
interpolation method 1, AP1 is assumed to be missing in the online

stage

The comparison of the localization error of ANN with

3 inputs (ANN3), MLE with interpolation method 1, and

ANN with mean 1 is demonstrated in Fig. 7 for differ-

ent number of anchor points. It can be seen that aver-

age distance error as well as the error deviation decreases

with increasing number of anchor locations. However, the

mean and standard deviation of the localization error of

ANN3 method is lower than the other approaches. For

example, from Fig. 7 it can be seen that for 25 anchor

locations, ANN3 method has an average error and devia-

tion of 0.84 m and 1.24 m, respectively. While for ANNm1

method the average error and deviation are 2.90 m and
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2.45 m respectively. Finally for MLE with interpolation
method 1, the average error and deviation are 3.34 m and
2.45 m, respectively. Hence it can be concluded that the
ANN with 3 inputs has the most robust localization per-
formance against missing RSS values. However, the ANN
using the mean is more robust than MLE with interpola-
tion method 1.
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Average distance error (m)

ANN3

MLE int1

0 5 10 15 20 25 30

Number of Anchor Locations

ANNm1

Fig. 7. Accuracy of ANN schemes and MLE with interpolation
method 1, AP1 is assumed to be missing in the online stage

Complexity

A localization algorithm that provides the desired ac-
curacy with minimal computational complexity is desir-
able. We follow the approach of [23] in using the process-
ing time of an algorithm, which is required to estimate
the unknown UE location, as a measure of the algorithm
computational complexity. The average runtime over 20
independent trials for each algorithm was evaluated in
MATLAB version 8.1.0.604 (R2013a) on a desktop ma-
chine hp CORE i3 with 4.00 GB RAM and a 2.4 GHz
processor. The emphasis here was to obtain a measure
of relative computational complexity of the algorithms
rather than an absolute measure of computational time.
The processing time was measured separately for the of-
fline and online phases for ANN and MLE with interpo-
lation method 1 and the results are provided in Table
2.

Table 2. Processing time of localization algorithms in seconds

Offline—phase Online—phase

ANN MLE int1 ANN MLE int1

1.0526654 0.011679 0.00000784 0.0040

From Table 2 it can be seen that the ANN approach
requires two orders of magnitude larger computational
time than MLE with interpolation method 1 in the offline
phase. This is because the ANN requires training during
which its weights are adjusted. However, in the online

phase, the processing time of ANN is three orders of
magnitude smaller than the processing time required by

MLE with interpolation method 1. Although the offline
complexity for ANN is larger, this phase is encountered

only once when the ANN is initially trained. In contrast,
the processing time of the online phase is more critical

because the online phase is invoked each time the UE
location has to be estimated. With these considerations,
the ANN algorithm that requires lesser processing time

for online phase is preferable.

5 CONCLUSION AND FUTURE WORK

We have compared the indoor localization perfor-
mance of an ANN with the MLE-based fingerprinting
approach by using RSS values from multiple APs of a

WLAN. For the MLE-based approach, two different in-
terpolation methods have been considered in addition to

the basic MLE localization without interpolation. Our
evaluations conclude that ANN-based localization out-

performs all variants of the MLE approach for the per-
formance metrics considered in this work, whereas among
the MLE variants the interpolation method 1 outperforms

the other two MLE approaches. The mean localization er-
ror and the error deviation about the mean for the ANN-

based approach are consistently smaller than those of the
MLE with interpolation method 1 under identical con-

ditions. For example, with 25 anchor locations the mean
error and error deviation for the ANN approach are 0.27
m and 0.36 m, respectively. While under the same con-

ditions the mean error and error deviation for MLE with
interpolation method 1 are 1.54 m and 1.03 m, respec-

tively. On the other hand, the average error for MLE with
interpolation method 2 is 1.9 m and for MLE without in-

terpolation the mean error is 1.69 m. The probability of
estimating the true user location within an error of 0.5
m is 86% for the ANN whereas the probability of the

same event is 19.5% for MLE with interpolation method
1, 10% for MLE with interpolation method 2, and only

5% for the basic MLE localization without interpolation.
To evaluate the robustness of localization performance in

the event of a missing AP, four different variants of the
ANN-based localization were investigated and compared
with MLE with interpolation method 1. The modular

ANN approach, which stores network parameters of mul-
tiple ANNs, each trained with a different subset of the set

of all APs, was shown to outperform the other three vari-
ants of the ANN approach. However, all ANN variants

outperform the localization performance of MLE with in-
terpolation with method 1. For example, the probability
of estimating the true user location within an error of 0.5

m is 51% for ANN3, 11%, for ANNm1, 10.5% for ANNm2,
9% for ANNm3 and only 3.8% for MLE with interpola-

tion method 1. Future work will focus on investigating
localization performance of the considered methods with

measured RSS values in practical indoor scenarios.
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