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APPLICATION OF INPUT–STATE OF THE SYSTEM
TRANSFORMATION FOR LINEARIZATION
OF SELECTED ELECTRICAL CIRCUITS

Andrzej Zawadzki — Sebastian Różowicz
∗

The paper presents a transformation of nonlinear electric circuit into linear one through changing coordinates (local
diffeomorphism) with the use of closed feedback loop. The necessary conditions that must be fulfilled by nonlinear system
to enable carrying out linearizing procedures are presented. Numerical solutions of state equations for the nonlinear system
and equivalent linearized system are included.

K e y w o r d s: nonlinear electrical circuits, linearization, feedback linearization, local diffeomorphism, Lie algebras,
differential geometric approach

1 INTRODUCTION

The actual physical systems exhibit the features of
nonlinearity and additionally have time-varying parame-
ters. The study of such systems boils down to the analysis
of mathematical model which in general case is nonlin-
ear. The analysis of nonlinear systems, especially in dy-
namic states, is a very difficult task of circuit theory. In
most cases, there is no analytical solution of the problem
(which is frequently sought) and the information about
the current flow and voltage distribution can be obtained
using the methods of numerical integration. As shown
in [1–4], although they are universal and applicable to
any number of differential equations, they generate a nu-
merical solution (compiled in the form of tables, graphs,
etc). Therefore, in the search for analytical solutions the
transformation of nonlinear description into a linear one
by linearization (ensuring the equilibrium of the system
dynamics) is very useful in solving practical problems re-
lating to the behaviour of nonlinear circuits.

The modern theory of nonlinear systems, in particular
the geometric approach, has acquired major significance
in the linearization of nonlinear systems. The applica-
tion of geometric approach to solve nonlinear problems
initiated by Brockett in [5] was used in control theory
with observability and controllability of the systems [6, 7]
taken into account. The methods of differential geome-
try allowed the development of efficient techniques for
the analysis and synthesis of such systems. The series
of publications [8–12], which considered the problem of
nonlinear transformation of a linear system by changing
the coordinates (local diffeomorphism) and using feed-
back [10–19] considerably contributed to the development
of the techniques mentioned.

On the basis of papers mentioned it can be concluded
that although geometric methods are mainly applied in

control theory, they can be also used in other areas, eg,
in the theory of electrical circuits. Such attempts have
already been made (for example, [20–23]), but they are
too few and not exhaustive enough. Since the presented
issues are still valid, we attempt to use geometrical meth-
ods in the theory of electrical circuits. It seems that the
results presented can easily find other applications.

We consider nonlinear systems (modelling input- state
of the system) given by

dx(t)

dt
= f

(

x(t)
)

+

m
∑

i=1

gi

(

x(t)
)

ui(t) , x ∈ R
n, (1)

where t – time, x(t) – vector of state variables, ui(t)
– input vector, f and g1,g2, . . . ,gm are smooth vector
fields defined on the M = R

n manifold, known as the
state space. Methods of differential geometry allow lin-
earization (decoupling and decomposition) of nonlinear
systems (1) to the following linear form

dz(t)

dt
= Az(t) + Bv(t) , (2)

where z(t) and �v(t) are new state and input vectors and
A and B are matrices of proper dimensions. Equation
(2) is, of course, a linear equation shown in the new state
space with variables z(t). It is therefore, possible to anal-
yse such a model using methods known from the theory
of linear systems, and then transfer the results to the
nonlinear system (1) by means of inverse transformation

S−1(x).

Linear models (2) of nonlinear systems (1) are the re-
sult of linearizing transformation transforming a nonlin-
ear system by changing the coordinates in the state space.
The change consists in replacing the original state vari-
ables x(t) by new variables z(t) which describe the sys-
tem in new state space. The linearizing effect of such a
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transformation — transforming a nonlinear system by a

change of coordinates in the state space can be repre-

sented as follows

S(x) : x(t) =⇒ z(t) , (3)

where S(x) – linearizing transformation, z(t) a new state

vector. The systems which cannot be globally linearized

and are transformed only into quasilinear systems can be

further linearized by the feedback. In this case, a com-

bination of linearization by transformation of state vari-

ables and input transformation u(t) using a feedback is

applied. As the result of the transformation involving the

change of coordinates and the introduction of the feed-

back, the state vector in a new coordinate system can be

illustrated as

z = S(x) + feedback. (4)

The problems associated with the analysis of nonlinear

systems subjected to linearizing transformations can be

divided into the following two groups of tasks:

1) linearization of a nonlinear system by transformation

of the coordinate system, for which we can further

distinguish:

a. transformation input-state of the system,

b. transformation input-output of the system.

2) linearization by transformation of the coordinate sys-

tem and feedback where we can distinguish:

a. transformation input-state of the system obtained

by the feedback,

b. transformation input-output of the system obtained

by the feedback.

Linearization of nonlinear generator by transformation

input-state of the system (task 1a) is presented in [23],

while for nonlinear circuit is presented in [24]. Our aim in

this paper is to deal with linearization of a group of non-

linear electrical circuits by feedback (task 2a). The main

examples are the systems describing indefinite state in

electrical circuits containing elements that collect energy

(eg systems with RLC elements), or those described by

Van der Pol or Lotka-Volterra nonlinear equations.

For the construction of linearizing transformation (4)

the elements of Lie algebra (Lie derivative and the proper-

ties of group operation-Lie brackets) [25–27] are applied.

The paper is organized as follows. Chapter 2 provides ba-

sic definitions and theorem concerning the conditions to

be met by nonlinear system to perform the linearizing

procedures. The elements of Lie algebra, used in the con-

struction of a new base of state space are included. The

effective transformation of mathematical model of non-

linear electrical circuit illustrating the operation of the

linearization is given in Chapter 3. Conclusions and com-

ments are presented in Chapter 4. The paper ends with

a list of references.

2 PRELIMINARIES

Some basic definitions and concepts of differential ge-
ometry are presented. Attempts have been made to dis-
cuss them in a simplified and compact form. More de-
tailed information can be found in the references [10–
12, 25-30].

In the analysis of nonlinear systems the operation in-
volving smooth vector fields f and g defined on an open
set M of space deserves special attention. The result of
the operation (defined below) is a new smooth vector
field.

Definition 1. Let f and g be vector fields defined on
the manifold M = R

n . Lie brackets of the vector field are
called the third vector field, defined by

[f ,g ] =
∂g

∂x
◦ f −

∂f

∂x
◦g = (∇⊗g)◦ f − (∇⊗ f )◦g , (5)

where ∇ – Hamilton operator, ◦ – scalar product, ∇⊗g

and ∇ ⊗ f are gradients of vector fields ~f and g . Lie
brackets can be written in a compact form (used in the
subsequent parts of the paper) as adf g .

The next operation is Lie derivative comprising real-
valued function h and vector field f defined on manifold
M of Rn space. The result of the operation is a smooth
real-valued function defined for each x from M set as
follows:

Definition 2. Let mapping h : Rn → R
n be a smooth

scalar function n of x = (x1, x2, . . . , xn)
⊤ ∈ R vari-

ables and f : Rn → R
n vector field defined on man-

ifold M = R
n , then Lie derivative of scalar function

h(x) = h(x1, x2, . . . , xn) directed towards ~f field is the
scalar function given by

Lf h =
∂h

∂x
◦ f =

n
∑

i=1

∂h

∂xi

fi = (∇⊗ h) ◦ f . (6)

The necessary and sufficient conditions for the trans-
formation of nonlinear system into linear one by feedback
are given by the following theorem.

Theorem 1. Nonlinear system (1) is locally linearizable
in the terms of state space and static feedback if and only
if in the neighbourhood U of equilibrium point f (x0) = 0
the following conditions are fulfilled

dim
(

span{adj
f
gi}

)

=n , 1 ≤ i ≤ m, j=0, . . . , n− 1 ,

(7a)

adkf gi, ad
l
f gj] ∈ ∆ , 1 ≤ i, j ≤ m, k, l ≥ 0 ∀x ∈ V .

(7b)
where g is involutive distribution of (n − 1) rank. If
the conditions (7a) and (7b) are fulfilled, then accord-
ing to Frobenius theorem [10] there is a scalar function
h(x) : Rn → R such that in the neighbourhood of x0

point the following system of equations is satisfied:

〈dh , adn−1
(−f ) g〉 = c 6= 0 ,

〈dh , adi(−f ) g〉 = 0 , 0 ≤ i ≤ n− 2 ,
(8)
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and h(0) = 0 .

In other words, conditions (7a) and (7b) of Theorem 1
guarantee that there exists solution h of the system of
differential equations

〈dh,g〉 = 0 ,

〈dh, ad−f g〉 = 0 ,

...

〈dh, adn−2
−f g〉 = 0 ,

〈dh, adn−1
−f g〉 = c(x) .

(9)

Defining n of function h(x) , Lf h(x), dotsL
n−1
f

h(x) we

obtain the sought vector of S(x) transformation

S(x)=











S1(x1, . . . , xn)
S2(x1, . . . , xn)

...
Sn(x1, . . . , xn)











=











z1(t)
z2(t)
...

zn(t)











=







h(x)Lf h(x)
...

Ln−1
f

h(~x)






.

(10)
By differentiating (10) with respect to time the linearized
system of equations takes the form

żi = zi+1 , 1 ≤ i ≤ n− 1 ,

żn = Ln
f h(x) + LgL

n−1
f

h(x) · u(t) .
(11)

After introducing static feedback represented by

u(t) = −
Ln
f h(x)

LgL
n−1
f

h(x)
+

1

LgL
n−1
f

h(x)
v(t) =

α(x) + β(x)v(t) , (12)

where v(t) is a new power supply, in the transformed co-
ordinate system (U, z1, z2, . . . , zn) with feedback (12) we
obtain the following representation of linearized system
in the matrix notation:
















ż1
ż2
ż3
...

żn−1

żn

















=

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . 0 1
0 0 0 . . . 0 0

































z1
z2
z3
...

zn−1

zn

















+

















0
0
0
...
0
1

















v(t) . (13)

The linear system (13) in the other notation can be writ-
ten as

ż(t) = Az + b · v(t) , (14)

where A is matrix (n x n), b is a vector of the dimension
(n× 1).

3 EXAMPLE

Let us consider an indefinite state in the electrical cir-
cuit of the third order containing nonlinear resistor pre-
sented in Fig. 1. The assumed current-voltage character-
istics of a nonlinear resistive element is

U(i) = a i ln i , (15)

where a is a coefficient of (1× 1) dimension. The equa-

tions describing the circuit are

u1 = L1
di1
dt

+ u(i)− u(t) ,

u2 = L2
di2
dt

+ R2i2 ,

u3 = uc .

(16)

Since i3 = i1− i2 , u1 = −u3 , u2−u3 = 0 equations (16)

can be written as

di1
dt

= −
a

L1
i1 ln i1 −

1

L1
uc +

1

L1
u(t) ,

di2
dt

= −
R2

L2
i2 + uc ,

duc

dt
=

1

C
i1 −

1

C
i2 .

(17)

„R1“

L1

i1

C

R2

u(t)

u2

L2

i2 i3

t = 0

u3

u(i)

Fig. 1. Diagram of nonlinear electrical circuit of the third order

If we assume that state variables are the currents

flowing through the inductor and the capacitor voltage:

i1 = x1 , i2 = x2 , uc = x3 and insert them into (17)

then after coefficient normalization the system of equa-

tions takes the form

ẋ1 = −x1 lnx1 − x3 + u(t) ,

ẋ2 = −x2 + x3 ,

ẋ3 = x1 − x2 .

(18)

Vectors f (x), g(x), (f ,g ∈ R
3 , n = 3) in (18) are

f =





−i1 ln i1 − uc

−i2 + uc

i1 − i2



=





−x1 lnx1 − x3

−x2 + x3

x1 − x2



=

(−x1 lnx1−x3)
∂

∂x1
+(x3−x2)

∂

∂x2
+(x1−x2)

∂

∂x3
, (19)
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g =





1
0
0



 =
∂

∂x1
. (20)

In order to determine the linearizing transformation we
should check the conditions in which S(x) transforma-
tion exists for system (18) using Theorem 1. For this pur-
pose, for vector functions f and g we determine a set of
vectors (which are Lie brackets) which for a system with
a single power supply (input) takes the form

span
{

g , ad1f g , . . . , ad
n−1
f g

}

= n . (21)

In this case we obtain the distribution of vectors

∆ =
{

g , ad1f g , ad
2
f g

}

. (22)

By determining next Lie brackets that form distribution
g and are present in (22) we get

adf g =
∂

∂x
g ◦ f −

∂f

∂x
◦ g =





0 0 0
0 0 0
0 0 0









f1
f2
f3





−





− lnx1 − 1 0 −1
0 −1 1
1 −1 0









1
0
0



 =





lnx1 + 1
0
−1



 , (23)

ad2f g = adf
(

adf g
)

=
∂

∂x

(

adf g
)

◦f −
∂f

∂x
◦
(

adf g
)

=




1/x1 0 0
0 0 0
0 0 0



 ◦





−x1 lnx1 − x3

−x2 + x3

x1 − x2



−





− lnx1 − 1 0 −1
0 −1 1
1 −1 0









lnx1 + 1
0
−1



 =





(lnx1)
2 + lnx1 −

x3

x1

1
− lnx1 − 1



 . (24)

From the computations it follows that

span
(

g , ad1f , ad
2
f

)

=








1
0
0



 ,





lnx1 + 1
0
−1



 ,





(ln x1)
2 + lnx1 −

x3

x1

1
− lnx1 − 1







 . (25)

Hence the distribution ∆ represented by matrix D has
the form

∆=





1 lnx1 + 1 (lnx1)
2 + lnx1 − (x3/x1)

0 0 1
0 −1 − lnx1 − 1



 = D . (26)

Since detD = −1 6= 0, a nonsingular distribution, the set

of vectors {g , adf g , ad
2
f g} is linearly independent. Thus

the condition (7a) of Theorem 1 is fulfilled. Similarly, we
should check whether (7b) is also satisfied.

Distribution D is involuntive (integrable) when the
following relations are met:

[g , adf g ] ∈ D ,
[

g , ad2f g
]

∈ D ,
[

adf g ad2f g
]

∈ D ,

(27)

which means that each bracket [Xi, Xj ] can be repre-

sented as a linear combination of vectors
{

X1,X2,X3

}

,
that is

[Xi, Xj ] =

3
∑

l=1

Cl
ijXl =

i=1,j=2
C1

ijX1+C2
ijX2+C3

ijX3 . (28)

When making calculations we can easily check that both
relations (27) and the condition (7b) of Theorem 1 are
met. Each bracket (27) can be expressed as a linear com-

bination of vectors
{

g , adf g , ad
2
f g

}

. Thus, the set of
vectors D is an involuntive, linearly independent set and
matrix rankD = 3 = n equals the dimension of the space
R
3 = n . Hence, we seek the function h(x) satisfying the

system of equations (8) which for n = 3 takes the form

〈dh,g〉 = 0 ,

〈dh, ad−f g〉 = 0 ,

〈dh, ad2
−f g〉 = c 6= 0 .

(29)

Determining vectors ad−f g , ad2
−f g successively and

substituting them to equations (10) we find that the
scalar function h(x) sought for the considered system has
the form

h(x) = c x2 . (30)

Thus transformation vectors S(x) (10) have the following
representation

S1(x) = h(x) = z1(t) ,

S2(x) = L1
f h(x) = z2(t) ,

S3(x) = L2
f h(x) = z3(t) .

(31)

Directly from (30) (for c = 1) we can determine the
differential of a function h(x) from (6) for Lie derivative
of the function h :

∂h(x)

∂x
=

[∂h(x)

∂x1

∂h(x)

∂x2

∂h(x)

∂x3

]

= [0 1 0] . (32)

Derivatives are calculated as follows

Lf = [0 1 0]





−x1 lnx1 − x3

−x2 + x3

x1 − x2



 = −x2 + x3 , (33)

L2
f h = Lf

(

Lf h
)

= [0 1 0]





−x1 lnx1 − x3

−x2 + x3

x1 − x2



 =

x2 − x3 + x1 − x2 = x1 − x3 . (34)
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The result is that:

z1(t) = h(x) = x2 ,

z2(t) = Lf h(x) = −x2 + x3 ,

z3(t) = L2
f h(x) = x1 − x3 .

(35)

After differentiating (31) with respect to time the equa-
tion of state in new coordinates takes the form

ż1(t)= ẋ2 = −x2 + x3 = z2(t) ,

ż2(t)=−ẋ2+ẋ3=x2−x3+x1−x2=x1 − x3 = z3(t) ,

ż3(t)= ẋ1 − ẋ3 = −x1 lnx1 − x3 − x1 + x2 + u(t) .

(36)

The last equation of the system (36) is linearized by
applying (12). Calculating the derivatives from (12), we
obtain

L3
f h(x) = Lf

(

L2
f h(x)

)

= Lf (x1 − x3) =

[ 1 0 −1 ]





−x1 lnx1 − x3

−x2 + x3

x1 − x2



 =

− x1 lnx1 − x3 − x1 + x2 , (37)

LgL
2
f h(x) = Lg (x1−x3) = [ 1 0 −1 ]





1
0
0



 = 1 . (38)

Hence

α(x) = −
L3
f
h(x)

LgL2
f
h(x)

= −x1 lnx1 − x3 − x1 + x2 , (39)

β(x) =
1

LgL2
f
h(x)

= 1 . (40)

Thus according to (12) a new rule decomposing input-
state of nonlinear system is defined by

u(t) = x1 lnx1 + x3 + x1 − x2 − v(t) . (41)

Hence, a new power supply

v(t) = −x1 lnx1 − x3 − x1 + x2 + u(t) . (42)

For such feedback the dynamics of linearized system in
the new coordinates can be written as follows:

ż1(t) = z2(t) ,

ż2(t) = z3(t) ,

ż3(t) = v(t) .

(43)

where v(t) is a new power supply after transformation of
supply u(t).

The resulting system of equations is a linear system
in the canonical form (13), decomposed and decoupled.
Each state variable is determined by differential equation
with the right-hand side expressed by the simplest form
of the first degree polynomial.

4 RESULTS VERIFICATION

In order to verify the results obtained, the numerical

simulation of the solution of nonlinear equation of state

(18) and its linearized model (43) was conducted. The

first stage was a digital simulation of non-linear differen-

tial equations representing the model of nonlinear elec-

trical circuit shown in Fig. 1. The simulation was carried

out for zero initial conditions: x1(0) = 0, x2(0) = 0,

x3(0) = 0 and input u(t) = 1(t). The results in the form

of time characteristics of state variables and phase tra-

jectory are presented in Fig. 2.

1.4

1.2

1.0

0.8

0.4

0.6

0.2

0 2 4 6 8 10 12 14 16

x1

x2

x3

Fig. 2. Numerical solution of nonlinear system of equations (18)

In order to conduct simulation for a linearized system

described by system of equations (43) computations were

carried out. From relation (35) the state variables x :

x1(t) = z3(t)− z1(t)− z2(t) ,

x2(t) = z1(t),

x3(t) = z1(t) + z2(t) .

(44)

together with new power supply are determined:

v(t) = −
b2

C
u−

b

C
z2(t) +

b

C
(z1(t))

2. (45)

By substituting the above relations to linear equation of

state (43) the characteristics of state variables for the

original was determined. The initial conditions were de-

termined from the following relations.

z1(0) = x2(0) ,

z2(0) = −x2(0) + x3(0) ,

z3(t) = x1(0)− x3(0) .

(46)

In Fig. 3 and Fig. 4, the time course of the new supply v(t)

and are the phase trajectory of the solution are presented.
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1.0

1.5

1.0

1.5

0.5

0.5
0.5

0

x1

x2

x3

0

1.0

Fig. 3. The time characteristic of the new supply v(t)

v

1.2

0

0.8

-0.4

0.4

-0.8
0 2 4 6 8 10 12 14 16

t

Fig. 4. Phase trajectory of the solution of non-linear system of
equations (18)

5 CONCLUSION

Numerical solutions (time characteristics) of state
equations of nonlinear systems and the corresponding
solutions of linearized systems are the same which proves
that the derived mathematical models of linear systems
subjected to linearization are correct. It means that non-
linear system can be simulated by linearized system.

It appears that linearization of the system under con-
sideration is a combination of transformation of state
variables and input transformation. The above example
shows that in some cases, in order to solve the problem,
a combination of the transformation of state variables
and input transformation by feedback should be used. It
is worth adding that nonlinear systems described by the
equation in controllable canonical form (as in the case of
equation 36) written in the following general form









ẋ1

...
ẋn−1

ẋn









=









x2

...
xn

f(x) + g(x)u









(47)

are often mathematical models of numerous electrical cir-
cuits of the nth order. As an example, non-linear RLC
circuit or controllable generator circuits [31] described by
mathematical models by Van der Pol equation can be
given. For such systems linearization by feedback can be
used directly by the introduction of a new power supply
removing non-linearity. Linearization of nonlinear mathe-
matical models of dynamic systems by means of feedback
can be successfully applied in practical problems which
is confirmed by the case of nonlinear electrical circuit.
Undoubtedly, the presented theory can also be used, for
example, in the automatic control of complex electrical
and electronic equipment and electric drives.

References

[1] LAMBERT, J. D. : Numerical Methods for Ordinary Differen-

tial Systems, John Wiley & Sons, Chichester, 1991.

[2] QUARTERONI, A.—SACCO, R.—SALERI, F. : Numerical

Mathematics, Springer-Verlag, New York, 2000.

[3] ATKINSON, K.—HAN, W.—STEWART, D. : Numerical So-

lution of Ordinary Differential Equations, John Wiley & Sons,

Inc., Hoboken, New Jersey, 2009.

[4] NAJM, F. N. : Circuit Simulation, John Wiley & Sons, Inc.,

Hoboken, 2010.

[5] BROCKETT, R. W. : Nonlinear Systems and Differential Ge-

ometry, Proc. Of IEEE 64 No. 1 (1976), 61–71.

[6] JAKUBCZYK, B.—RESPONDEK, W. : On Linearization of

Control Systems, Bull. Acad. Polonaise, Sci., Ser. Sci. Math. 28

(1980), 517–522.

[7] BYRNES, C. I.—ISIDORI, A. : Local Stabilization of Minimum

Phase Nonlinear Systems, Syst. Control Lett. 11 (1988), 9–19.

[8] CELIKOVSKY, S.—NIJMEIJER, H. : Syst. Control Lett. 27

No. 3 (1996), 135–144.

[9] JORDAN, A.—NOWACKI, J. P. : Global Linearization of

Non-Linear State Equations, International Journal Applied

Electromagnetics and Mechanics 19 (2004), 637–642.

[10] NIJMEIJER, H.—van der SCHAFT, A. J. : Nonlinear Dynam-

ical Control Systems, Springer-Verlag, New York, 1991.

[11] ISIDORI, A. : Nonlinear Control Systems: An Introduction,

Springer, Berlin, 1989.

[12] ISIDORI, A. : Nonlinear Control Systems, Springer, Berlin,

1995.

[13] BROCKETT, R. W. : Feedback Invariants for Nonlinear Sys-

tems, Proc. 6th IFACWorld Congr., vol. 6, Helsinki, 1978,

pp. 1115–1120.

[14] ISIDORI, A.—KRENER, A.—GORI, A. J.—MONACO, S. :

Nonlinear Decoupling via Feedback: a Differential Geometric

Approach, IEEE Trans. Automat. Contr. AC-26 No. 2 (1981),

331–345.

[15] TALL, I. A.—RESPONDEK, W. : Feedback Linearizable

Strict Feedforward Systems, in Proceedings of the 47th IEEE

Conference on Decision and Control, Canc´un, Mexico, 2008,

pp. 2499–2504.

[16] DEVANATHAN, R. : Linearization Condition through State

Feedback, IEEE Transactions on Automatic Control 46 No. 8

(2001), 1257–1260.

[17] BOUKAS, T. K.—HABETLER, T. G. : High-Performance In-

duction Motor Speed Control using Exact Feedback Lineariza-

tion with State and State Derivative Feedback, IEEE Transac-

tions on Power Electronics 19 No. 4 (2004), 1022–1028.

[18] DEUTSCHER, J.—SCHMID, C. : A State Space Embedding

Approach to Approximate Feedback Linearization of Single In-



Journal of ELECTRICAL ENGINEERING 67, NO3, 2016 205

put Nonlinear Control Systems, International Journal of Circuit

Theory and Applications 16 No. 9 (2006), 421–440.
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