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FPGA–BASED EFFICIENT HARDWARE/SOFTWARE
CO–DESIGN FOR INDUSTRIAL SYSTEMS WITH
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This work presents a field programmable gate array (FPGA)-based embedded software platform coupled with a software-
based plant, forming a hardware-in-the-loop (HIL) that is used to validate a systematic sensor selection framework. The
systematic sensor selection framework combines multi-objective optimization, linear-quadratic-Gaussian (LQG)-type control,
and the nonlinear model of a maglev suspension. A robustness analysis of the closed-loop is followed (prior to implementation)
supporting the appropriateness of the solution under parametric variation. The analysis also shows that quantization is robust
under different controller gains. While the LQG controller is implemented on an FPGA, the physical process is realized in a
high-level system modeling environment. FPGA technology enables rapid evaluation of the algorithms and test designs under
realistic scenarios avoiding heavy time penalty associated with hardware description language (HDL) simulators. The HIL
technique facilitates significant speed-up in the required execution time when compared to its software-based counterpart
model.

K e y w o r d s: sensor optimization, FPGA, maglev, embedded control, electromagnetic suspension, linear quadratic
Gaussian, hardware-in-the-loop, FPGA-in-the-loop

1 INTRODUCTION

Most control systems nowadays are embedded in a
sense that they rely on built-in special purpose digital
hardware to close any feedback loops. Embedded con-
trol systems are widely used in industrial control, trans-
portation systems, robotics, automobiles, aircrafts (incl.
UAVs), household appliances and other. These types of
system interface with the external environment (ie, sen-
sors and actuators) are real-time critical (ie, embedded
control algorithm must execute in synchrony with the
physical system which is controlled to guarantee perfor-
mance and safety), as well as allowing for distributed
control (ie, a network of embedded controllers). A model-
based embedded control software/hardware co-design ap-
proach is followed in this work. Modeling/simulation
alongside FPGA synthesis and HDL analysis tools (ie,
MATLAB/Simulink and Xilinx ISE) is used to enable
rapid prototyping, autocode generation (ie, generate
HDL code from a Simulink model), Hardware-In-the-
Loop (HIL) testing, and consider the functional correct-
ness of the model-based design with the generated HDL in
a co-simulation environment. HIL techniques are widely
used in the development and testing of complex real-time
control systems by effectively adding the complexity of
the plant under control to the test platform [1, 2]. The
model of the system is realized in soft form and modeled

via high-level language (eg, MATLAB) or a graphical
model-based design tool (eg, Simulink). Figure 1 illus-
trates an embedded control system, where the model of
the plant (realized on software) interfaces with the actual
controller (implemented on hardware) via a communica-
tion link.

A typical high integrity system requires both control
and reliable operation. Optimized performance, robust-
ness, fault tolerance, and low complexity are the main
goals of the designer. Industrial plants require a set of
sensor nodes for acquiring measurements of the system.
Part of this work is focused on minimizing the number of
sensors selected from a large set such that the system is
(i) stable, and (ii) satisfies a number of closed-loop per-
formance criteria. The task of sensor set selection in an
optimized manner for control design is a non-trivial task
to do; especially if there is a large number of sensor can-
didates to select from.

In [3], a framework for control and fault tolerance is
proposed, which takes into account the aforementioned
requirements for a non-trivial problem: the control of an
electromagnetic suspension (EMS) for a maglev train [4].
The systematic framework combines LQG control [5],
multi-objective optimization using genetic algorithms
(GA) [6], and reconfigurable fault tolerant control meth-
ods [7, 8]. The maglev EMS was used to test the efficacy
of the framework and the results, implemented at a sim-
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Fig. 1. A simplified diagram of an embedded control system

ulation level only, illustrate good potential for industrial
applications.

In this paper, the validation of the framework is done
via a model-based embedded control hardware/software
co-design approach [9, 10], where a full LQG controller
(combination of a linear-quadratic-regulator (LQR) and
a Kalman-Bucy estimator (KBE)) is implemented on an
FPGA chip and a HIL scheme is employed [11] for prac-
tical integration of the LQG controller on the FPGA chip
[12] with the physical process describing the EMS plant
under control, modeled in a high-level simulation environ-
ment (MATLAB/Simulink). In this setup, the control of
an inherently unstable, nonlinear maglev EMS subject to
a set of non-trivial control requirements (that industrial
systems of such nature have), using the minimum num-
ber of sensors was studied. In [13], the authors presented
some initial validation results of the systematic frame-
work using the HIL technique targeted on FPGA, here-
inafter referred to as FPGA-in-the-loop (FIL). While the
KBE, as part of the LQG controller, was implemented
on an FPGA chip, unlike our approach in this paper,
the LQR was modeled in MATLAB/Simulink. Moreover,
a comparison with increased number of sensor sets was
made in terms of performance and FPGA resource re-
quirements. The results show that the performance re-
mains the same even if more sensors are added in the set.
Moreover, the FPGA resource requirements are signifi-
cantly reduced when fewer sensors are used to control the
system. Finally, the FIL technique, as expected, shows a
significant speed-up in the required execution time when
compared to the software-based model.

The rest of this paper is organised as follows. Section 2
outlines the modeling aspects of the maglev EMS system.
Section 3 describes the systematic framework for opti-
mized sensor selection with the FIL concept and Section 4
introduces the LQG architecture and implementation on
the FPGA. Analysis, discussion on robustness and sim-
ulation results from the practical LQG implementation
with FIL as applied on the EMS are discussed in Sec-
tion 5, while Section 6 provides conclusions.

2 CONTROL REQUIREMENT

OF THE EMS MODEL

The section discusses the maglev model for this study,
while also presents the particulars on EMS control speci-

fications prior to proceeding with sensor selection and the
rest of analysis and implementation steps.

2.1 Non-linear model of the EMS

The single-stage EMS that represents one quarter of
a typical maglev vehicle, is based on a typical U-core
shape electromagnet. The non-linear model is described
as follows (for details the reader can refer to [4]),

dI

dt
=
Vc − IRc +

NcApKb

G2

(dzt

dt
− dZ

dt

)

NcApKb

G
+ Lc

,

B = Kb

I

G
,

F = KfB
2 ,

d2Z

dt2
= g −

Kf

Ms

I2

G2
,

dG

dt
=

dzt
dt

−
dZ

dt

(1)

where Vc is the coil’s voltage, F is the vertical force, I
is the coil’s current, G is the airgap, Z is the electro-
magnet’s position, and B is the flux density. The fixed
parameters of the model are as follows: Ms is the vehi-
cle’s mass, Rc is the coil’s resistance, Nc is the number
of turns, Ap is the pole face area and zt is the track’s
position. Kb , Kf and g reflect the flux, force and grav-
ity constants (with values equal to 0.0015, 0.0221 and

9.81m/s2 , respectively).

The linearization of the non-linear model is based on
small perturbations around the operating point, eg, the
airgap is assumed as G = Go + (zt − z), where the
lower case terms represent the small variation around the
operating point, and subscript ‘o ’ refers to the operating
point. A similar approach is followed for B , F , I , Vc
and Z (b , f , i , uc and z respectively).

The linearized state-space description of the EMS,

with state x , [ i ż (zt − z) ]
⊤

and the full sensor set

of the maglev y , [I, b, (zt − z) ż, z̈]
⊤
, is given by

ẋ(t) = Ax(t) +Buc
uc(t) +Bżt żt(t) ,

y(t) = Cx(t) ,
(2)

where, A is the 3×3 state matrix, Buc
is the 3×1 input

matrix, is the 3×1 disturbance matrix, and C is the α×3
output matrix (α varies from 1 to 5 (in this application),
since its size changes according to the number of sensors
in the sensor set). The aforementioned matrices are given
by (11)–(13) in the Appendix. The various sensor sets can
be obtained by appropriate selection of the corresponding
rows in the output matrix C .

Note that the linearized model of the EMS is used for
the design of the LQG controller, whereas for the tuning
of the controller as well as for the validation via FIL, the
non-linear model is applied in the loop.
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Fig. 2. Optimized sensor selection framework validation using FIL

2.2 Closed-loop control requirements

The closed-loop design requirements for the EMS de-

pend on the type and operating velocity of the train [14],

and are affected by the magnitude of the input distur-

bances to the suspension. There are two types of distur-

bances that enter in the vertical direction of the EMS:

(a) a stochastic behavior due to random variations of

the rail position during vehicle movement;

(b) a deterministic behavior [4], considered in this

work, occurs from the transition of the EMS onto the

rail’s gradients.

With the total weight taken as 1000 kg, the operating

point values for the EMS system are: Go = 0.015 m, Bo =

1 T, Io = 10 A, Vo = 100 V and Fo = 9810 N. Hence, the

parameters of the electromagnets, based on the operating

point of the EMS, were calculated as follows: Rc = 10Ω,
Lc = 0.1 H, Nc = 2000 and Ap = 0.01m2 . The deter-
ministic disturbance here corresponds to a 5% track gra-

dient at a vehicle speed of 15 m/s, an acceleration equal

to 0.5m/s2 , and a jerk (rate of change of acceleration)

of 1 (m/s2)/s. The EMS must support the payload and

follow the track gradients. As a result, there are specific

boundaries where the EMS is allowed to operate: (i) max-

imum airgap deviation, (zt−z)p ≤ 7.5 mm; (ii) maximum
control effort, ucp ≤ 300 V; (iii) settling time, ts ≤ 3 s,

and (iv) airgap steady state error, e(zt−z)ss = 0.

The control specifications are particularly addressed

by the LQR controller in the first instance.

3 SYSTEMATIC FRAMEWORK FOR FIL

Any industrial plant has a number of control in-

puts {ui : i = 1, . . . , nu} , input disturbances {di : i =

1, . . . , nd} and a set of possible outputs, ie, the full sen-

sor set, Yf = {yi : i = 1, . . . , ns} . Part of the problem is

to determine the set of sensors, Y ⊂ Yf , for which the
system is (i) stable, (ii) satisfies a number of closed-loop

performance criteria and (iii) has a minimum number of

sensing elements in the selected set, ie, the number of
elements in Yo is minimal1. The selection of Yo with

respect to the aforementioned properties is a very impor-

tant and complex process, especially if the plant has a

large number of actuator/sensor configuration possibili-

ties, ie, sets.

This work is focused upon optimized sensor selection

with respect to the aforementioned three properties. The

full sensor set Yo is a subset of the full sensor set Yf .

Many subsets of the full sensor set are possible to be

formed, and the number of them can be calculated from

Ns = 2ns − 1, where Ns is the total number of all sensor

sets and ns is the total number of sensors.

The LQG controller combines a linear quadratic regu-

lator (LQR), and a Kalman filter (KBE). The controller

tuning is done via the separation principle [5]; the frame-

work algorithm is executed in two stages:

1This paper deals only with minimizing the number of sensors,

however there are other objectives that could be meaningful for

applications other than the EMS systems. These can include mini-

mizing energy consumption, size of weight and cost, etc.
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(i) In the first step, the LQR controller is optimized
using a GA and the Pareto-optimality between the two

objective functions, (ie, φ1 = irms and φ2 = z̈rms )
is found. The LQR controller state feedback gains (ie,

Klqr =
[

Ki, Kż, K(zt−z), K
∫

(zt−z)

]

, deduce the desired

closed-loop response which is then selected and accounted

as the desired or reference response for the next step.

(ii) The KBE is tuned for every feasible sensor set in

order to achieve the desired closed-loop response.

Hence, a table is presented listing the optimised sensor

sets with the selection of the “best” sensor set obtained by
the overall control constraint violation function Ω. The

latter is given by,

Ω
(

k(l), f (j)
)

=

nk
∑

l=1

ωl

(

k(l)
)

+

nf
∑

j=1

ψj

(

f (j)
)

(3)

where ωl

(

k(l)
)

, ψj

(

f (j)
)

are the lth , jth soft and hard
control constraint violations respectively, nk and nf are

the number of soft and hard control constraints, and Ω
is a function where any control constraint violation is re-

flected. If all control constraints are satisfied Ω becomes
zero, otherwise its value depends on the level of the con-
straint(s) violation.

Figure 2 illustrates the FIL applied on the EMS where
all five outputs, Yf , out of which only the Yo (ie, the
“best” sensor set) is fed into the FIL-based KBE.

4 FPGA–BASED ARCHITECTURE

OF THE LQG CONTROLLER

The discrete linear time-invariant KBE has the follow-
ing state space form,

˙̂x(k + 1)=Adx̂(k)+Bd
uc
uc(k)+K

d
lqg

(

y(k)−Cdx̂(k)
)

,

ŷ(k)=Cdx̂(k)
(4)

where x̂ are the estimated states, Kd
lqg is the 3 × β

observer gain matrix (β is the number of sensors) that

minimizes E
{

[x − x̂]⊤[x − x̂]
}

(x represents the actual

states). Ad , Bd
uc

are the state and input matrices given by

(14) and (15) in the Appendix. Kd
lqg has been calculated

using the discrete time linear model of the EMS with a
sampling rate of 10. Standard discretization procedure is
followed here, hence full analysis is omitted.

The design architecture of the LQG core implemen-
tation and its entity in very high speed integrated cir-
cuits (VHSIC), hardware description language (VHDL)
are depicted in Fig. 2 and Program 4 respectively. Fig-
ure 2 illustrates the internal architecture of A3×3 block,
while a similar design approach is followed for Cα×3 and

K3×β
lqg blocks. In the present work, we used the MATLAB

HDL coder tool to automate and speed up the process of
translating the high level simulation model into an equiv-
alent register transfer level (RTL) HDL description. Due
to MATLAB HDL coder limitations in handling multi
dimension matrices, a detailed LQG core model using
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explicitly scalar buses (see Fig. 2 and Program 1) was
developed prior to HDL translation.

4.1 Quantization process

An algorithm in a high level system modelling envi-
ronment (such as MATLAB/Simulink) is represented in
the floating-point domain, where mostly all variables are
64–bit allowing all operations to be performed in high
precision format with large accuracy. In a digital VLSI
implementation this translates to an increased number of
flip-flops and combinational logic and inevitably results
on a design that requires a large silicon area on the FPGA
chip, large critical path that negatively affects speed, plus
increased power consumption.

To address the aforementioned problem, the algorithm
under implementation (LQG in this work) has first un-
dergone a conversion to the fixed-point domain and then
modelled using VHDL. In the fixed-point domain, a pair
of wordlength, WL, and quality fractional range, QF,
is considered for each parameter of the algorithm. As a
consequence as (WL,QF) is increased will give a smaller
Bit-Error Rate (BER) but larger silicon area, whereas
as (WL,QF) is reduced will result to increased BER and
smaller silicon area. Several simulations need to run to de-
cide on the number of bits for (WL,QF) and the dynamic
range of the parameters (MATLAB fixedpoint tool), in
order to maintain a desired precision which will not com-
promise the overall system performance (ie, destabilize
the control loop), and maintain a low silicon area.

The fixed-point range for a signed number ±a in a
2’s complement form is defined by the minimum and
maximum value range a signed integer number type of
Quantity Integer range (QI) bits can hold. The latter is

best expressed by the inequality, −2QI−1 ≤ a ≤ 2QI−1−1
and can be rewritten,

−2QI−1 ≤ a < 2QI−1, a ∈ Z . (5)

From (5) it can be easily shown that,

QI |amin
≥ log2(−a) + 1 if a < 0 ,

QI |amax
> log2(a) + 1 if a > 0 .

(6)

Since the positive constraint is the tighter one due to the
asymmetry of signed integer types about zero, the con-
straint for the required number of bits can be generalised
as follows,

QI > log2
(

max[|amin|, |amax|]
)

+1 . (7)

Since QI is an integer number of bits we can truncate
the result and add one to form an equation to compute
QI (that satisfies the constraint QI > log2 |a|) such as,

QI =
⌊

log2
(

max[|amin|, |amax|]
)

+2
⌋

. (8)

2Each slice contains 4 Look Up Tables (LUTs) and 8 Flip-Flops
(FFs).
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Assuming a resolution ε = 2−QF for the fractional part,
the qauantity fractional (QF ) range becomes, QF =

⌈log(ε−1)⌉ ; hence, the required wordlength WL , to suf-
ficiently represent a float number to a fixed point repre-
sentation, is given by the sum of QI and QF such that,

WL |Req≥ QI +QF (9)

or
−2QI−1 ≤ a < 2QI−1 − 2−QF |ε=2−QF . (10)

4.2 FPGA Implementation

The FIL presented in this work was implemented on a
Xilinx Virtex-6 ML605 development board. The ML605
board utilizes a Xilinx Virtex-6 device (XC6VLX240T-
1FFG1156) [15] in the 1156-pin fine-pitch Ball Grid Array

(BGA) package, featuring slices2 and special Digital Sig-
nal Processing (DSP) slices (DSP48A1). The LQG and
the peripheral cores were synthesized using Xilinx Syn-
thesis Tool (XST).

A top-down manner [16] has been followed for the
design process of the LQG controller (Fig. 4). The pro-
cess initiates with the model specifications and require-
ments, advances to a high level functional system model
(Simulink model) and continues on converting it to fixed-
point prior to FPGA implementation. Co-simulation of
the RTL model side-by-side with the fixed-point Simulink
model was performed using MATLAB’s HDL verifier and
Mentor’s Modelsim simulator in [17]. Moreover the im-
plemented system on the FPGA chip was compared in
real time using a cycle accurate Simulink model forming
a FIL setup.

5 RESULTS ANALYSIS

In this section, the results from the FIL used to vali-
date the sensor selection framework are analyzed. As ex-
plained in Section 3, the first step in the output selec-
tion process is to design the state vector Klqr . This is
based on three performance criteria: (i) closed-loop ver-

tical acceleration, z̈rms < 0.5m/s2 , (ii) excitation coil’s
current, irms < 2 A and (iii) best possible ride quality,

ie, min
(

z̈rms

)

.

Note that the analysis related to Figs. 5, 6, 7, 8, is per-
formed on the continuous-time [5] system to emphasize
the design expectation aspects prior to implementation.
This is not problematic as a sampling rate – for discreti-
sation – of 10 kHz is used, which is well above the typical
maglev loop bandwidth of < 20 Hz. The discrete time
LQG controller is listed in the Appendix.

5.1 LQR Controller

Although the emphasis of the paper is the HIL em-
bedded nature of the design, here we present some useful
details on the design of the controller. In particular, the
LQR controller is designed via the usual procedure of

minimising the cost function Jlqr =
∫ [

x⊤Qx+ u⊤Ru
]

with the tuning matrices setup via Bryson’s rule [3]. We
select LQR gains on the “best” (lowest value) ride quality
level using nominal parameters for the model. Then the
LQR design is assessed in terms of the robustness level
by allowing ±10% dynamic system parameter variation
from nominal values for the following parameters: mass
of vehicle (force follows trend), resistance and inductance,
initial condition of current, initial condition of flux. The
total combinations given the parameters is = 1125. Fig-
ure 5 illustrates the characteristic loci of the return ratio
and CL poles. It is clearly shown that the ideal robust
properties of LQR are not violated.

Figure 6 illustrates the magnitude spectrum of the
closed-loop: vertical acceleration and air-gap, respec-
tively, to żt . The typical ride quality criterion of < 5%g
RMS acceleration is not violated (note that deterministic
responses are discussed later in this section).

5.2 Kalman filter (KBE) in the closed loop

The KBE in the second step of the framework is used
to estimate the states, thus an optimized tuning of the
KBE is necessary to accurately estimate the states and
feed the LQR controller.

Table 1. Optimized sensor selection simulation results

id
Sensor Deterministic

ΩSet response

LQR response → X X

1 b X X

2 (zt − z) × ×

3 z̈ X X
4 i, b X X

5 i, z̈ X X
6 i, b, (zt − z) X X

7 i, b, z̈ X X

8 i, b, ż, z̈ X X
9 i, b, (zt − z), ż, z̈ X X

The optimization process shown that 24 out of 31 sen-
sor sets provided the same closed-loop response (including
the dynamic controller) compared to the closed-loop with
the ideal LQR (the design was on the nominal system).
Some of the corresponding results from the offline frame-
work are presented in Table 1. The first column is the
sensor set identification number (id), the second column
is the corresponding sensor set, and the next two columns
show whether the deterministic response of the EMS is
satisfied (X) or not (×). The Ω function in the last col-
umn similarly indicates whether all control constraints
described in Section 2.2 are fulfilled (X) or not (×). The
selection of the best sensor set is done based on Ω as
described in Section 3. From a close inspection on the ta-
ble, one can easily identify the best sensor set selection
ie, the one with the minimum number of sensor/s which
satisfies all control requirements is id:1. In this work, the
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Table 2. Design utilization summary: three sensors, iba (id:7); and
one sensor, b (id:1)

Logic utilization
Used

Available
Utilization

iba(id:7) b(id:1) iba(id:7) b(id:1)

Slice Register 2410 2, 354 301, 440 1% 1%
Slice LUTs 4012 3777 150, 720 2% 2%
Occupied Slices 1402 1362 37, 680 3% 3%
Bonded IOBs 30 30 600 5% 5%
Block RAMB36E1 2 2 416 1% 1%
Block RAMB18E1 1 1 832 1% 1%
BUFG 5 4 32 15% 12%
DSP48E1s 73 69 768 9% 8%
MMCM ADVs 1 1 12 8% 8%

FIL was implemented for id:1 (single sensor), and is com-
pared with id:7 (three sensors). The LQG-type controller,
ie, incorporating the Kalman filter and the LQR gains,
implementation flow on the FPGA for other sensor set
combinations follows the same approach.

Here we considered the design of the Kalman filter
so as to provide the “best” estimates to the LQR con-
troller. Some information on the impact of introducing

the Kalman filter –in the closed-loop – on preliminary ro-
bustness performance (given the parameter variation con-

sidered from the LQR design section) is also presented. As
in the case of LQR only, we look into the stochastic ride

quality criterion. Figure 7 shows the (continuous-time)
magnitude spectrum of the closed-loop: vertical acceler-
ation and air-gap, respectively, to żt . Note that the KF

considered in this set of figures is based on id:7 sensor set.

Figure 8 shows the results on stochastic ride quality
under parameter variation (CL with KF+LQR). The typ-

ical criterion of < 5%g acceleration is not violated, with
90% of the samples being less than 3.9%g acceleration

level.

5.3 FPGA implementation for 2 sensor sets

The resources requirements and trial and error quan-
tization procedure are commented in this section. Table 2

show the logic utilization for the implemented integrated
system on the FPGA device, for three and one sensor.
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The implemented design mainly includes the LQG
core, ethernet medium access control (MAC) [18] and
the clock manager modules. The ethernet MAC core is
licensed as part of the Xilinx embedded development kit

(EDK). According to the device utilization report from
the Xilinx map (MAP) tool (see Table 3), the LQG core
module itself for id:7, occupies 265 slices, 113 slice regis-
ters, 884 slice LUTs, and 73 DSP cores (DSP48A1) and
similarly for id:1, 205 slices, 111 slice registers, 696 slice
LUTs, and 69 DSP48A1. A comparison of the utilized
FPGA resources between three sensors, iba (set id:7) and
one sensor, b (set id:1) LQG implementation scenarios,
is depicted in Fig. 9. It is easy to see that the overall
occupied area for set id:1 onto the FPGA chip is signifi-
cantly smaller when compared to what is required by set
id:7. The implemented design uses one mixed mode clock
manager (MMCM) module [19] that produces the differ-
ent clocks inside the FPGA chip. The placed and routed
FPGA designs (LQG and peripheral cores) for three and
one sensor implementations, achieve according to post-
place and route timing report a system clock operating
frequency of 34.364 ns or 29.1 MHz, and 32.819 ns or
30.5 MHz respectively. The aforementioned speeds were
obtained with the map and place and route effort set to
medium on Xilinx ISE 13.3.

5.4 Data analysis from FIL simulations

Figure 10 depicts the performance of the EMS us-
ing two sensor sets. One comprising a single sensor (set
id:1) and the other one having three sensors (set: id:7).
In particular, Fig. 10a compares the airgap deflection er-
ror from simulation-based continuous-time and FIL-based
discrete-time KBE with set id:1 (top) and set id:7 (bot-
tom). The performance of the EMS is within the required
performance objectives given in Section 2.2. The airgap
error magnitude between the simulation and FIL is in the
order of d-4 which is fairly small. The state estimation of
the LQG using set id:1 is shown in Fig. 10b. All three
states (i , ż and zt − z ) are accurately estimated using
one sensor (b), which has similar performance to the state
estimation achieved with more sensors added, ie, set id:7.
Hence, the EMS system can perform adequately, with re-
spect to the given requirement, with fewer sensors.
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6 CONCLUSIONS

A semi-practical modeling and validation of an em-

bedded control system for sensor optimization on a EMS

plant using the FIL concept was presented. A high-level

MATLAB/Simulink environment used to model the phys-

ical process and the LQG controller implemented on an

FPGA. A model-based design approach has been followed

for the FIL implementation using a fusion of system mod-

eling and hardware/software co-design. Robustness issues

on the LQR and designed LQG (i.e., Kalman-Filter and

LQR) as well as the effect of fixed-point quantization was

analyzed early in the design process. In the quantization

case the wordlength was optimized to yield a smaller im-

plementation. System level test benches were used with

HDL co-simulation to verify the HDL implementation,

and also FIL simulation to significantly accelerate the sys-

tem validation. Without loss of generality, we compared

FIL results for the LQG implementation of two sensor

sets (id:1 and id:7). It was shown that the LQG imple-

mentation in FIL is successful in spite of the complex

quantization procedure.In addition it was shown that the

FIL approach greatly reduces simulation time when com-

pared to the software-based model counterpart. Current

work studies design architecture of LQG with dynamic

switching of the gains given the sensor set provision.

Table 3. Design utilization summary: three sensors, iba (id:7), and

one sensor, b (id:1)

(a) id:7

Module (iba) Slices Slice reg. LUTs DSP48E1

LQG 0/265 0/113 0/884 0/73

KBE 49/221 77/77 170/717 1/50
Ad 67/67 0/0 221/221 27/27

Cd 30/30 0/0 99/99 14/14
Kd

lqg 75/75 0/0 227/227 8/8

LQR 44/44 36/36 167/167 23/23

(b) id:1

Module (b) Slices Slice reg. LUTs DSP48E1

LQG 0/205 0/111 0/696 0/69

KBE 41/161 75/75 143/529 1/46
Ad 69/69 0/0 220/220 27/27

Cd 12/12 0/0 30/30 6/6
Kd

lqg 39/39 0/0 136/136 12/12

LQR 44/44 36/36 167/167 23/23

N o t e . This paper is an extended version of earlier

work presented by the authors in [20]. In particular, the

authors extend their previous work by in-depth investi-

gation of robustness, both in the design stage and expec-

tations as well as in the robustness of the quantization

(which works appropriately in both “worst” and “best”

ride quality case choices).

Appendix A. EMS State space matrices (sym-
bolic parameters)

A =









− Rc

Lc+
KbNcAp

Go

−
KbNcApIo

G2
o

(

Lc+
KbNcAp

Go

) 0

−2Kf
Io

MsG2
o

0 2Kf
I2

o

MsG3
o

0 −1 0









, (11)

Buc
=

[

1

Lc+
KbNcAp

Go

0 0
]⊤

, (12)

Bżt =
[

KbNcApIo

G2
o

(

Lc+
KbNcAp

Go

) 0 1
]⊤

. (13)

While the output matrix C , for the different output mea-
surements as mentioned in the main body of the paper, is
formed by the relevant raw combination(s) from the state
and input matrices accordingly.

Appendix B. LQG controller state-space ma-
trices numerical results (relating to
sensor sets, id:1 and id:7)

Ad=





9.99× 10−1 −6.34× 10−2 4.15× 10−3

1.96× 10−4 1.00 −1.30× 10−1

−9.80× 10−9−1.00× 10−4 1.00



 , (14)

Bd
uc
=[ 4.76× 10−5 4.67× 10−9 −1.55× 10−13 ]

⊤
, (15)

Bd
żt
=[ 6.34× 10−2 −3.12× 10−7 1.00 ]

⊤
, (16)

Kd
lqg=





3.56× 10−1 −57.0 −2.82
−3.11× 10−6 1.49× 10−3 7.40× 10−5

5.61× 10−4 −9.00× 10−2−4.45× 10−3



, (17)

Cd =





1.00 0 0
0.10 0 −66.6
1.96 0 −1.30× 103



 , (18)

Kd
lqg=[−1.61× 102 3.61× 10−3 −2.54× 10−1]

⊤
, (19)

Cd = [ 0.10 0 −66.6 ]⊤. (20)
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