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DOMAIN ADAPTATION OF DEEP NEURAL
NETWORKS FOR AUTOMATIC SPEECH
RECOGNITION VIA WIRELESS SENSORS
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Wireless sensors are recent, portable, low-powered devices, designed to record and transmit observations of their envi-
ronment such as speech. To allow portability they are designed to have a small size and weight; this, however, along with
their low power consumption, usually means that they have only quite basic recording equipment (e.g. microphone) installed.
Recent speech technology applications typically require several dozen hours of audio recordings (nowadays even hundreds of
hours is common), which is usually not available as recorded material by such sensors. Since systems trained with studio-
level utterances tend to perform suboptimally for such recordings, a sensible idea is to adapt models which were trained
on existing, larger, noise-free corpora. In this study, we experimented with adapting Deep Neural Network-based acoustic
models trained on noise-free speech data to perform speech recognition on utterances recorded by wireless sensors. In the
end, we were able to achieve a 5% gain in terms of relative error reduction compared to training only on the sensor-recorded,

restricted utterance subset.
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1 INTRODUCTION

Wireless sensors and wireless sensor networks have
become increasingly popular recently. Their main appli-
cation is the monitoring of their environment like mo-
tion detection [1], measuring light and temperature [2]
and object localization [3,4]. They are also capable of
recording audio data [5], which calls for porting a number
of speech processing applications (eg automatic speech
recognition [6], speaker verification 7] and emotion recog-
nition [8,9]). However, these applications tend to be quite
sensitive to the recording conditions, which usually do not
match those created via wireless sensors. That is, while
standard audio databases are typically recorded in envi-
ronments having only a minimal amount of background
noise and using a decent microphone, utterances recorded
by wireless sensors often have a high level of background
noise, and the microphone installed on such sensors is
generally of mediocre or poor quality.

To overcome these problems, the most straightforward
approach is perhaps to collect an audio database recorded
by the wireless sensors which is large enough to train an
accurate model for the actual speech processing applica-
tion. However, since recording and annotating dozens of
hours of utterances is quite a tedious process, we should
look for a more sophisticated solution, especially if we
already have a large audio database that has been anno-
tated. Another idea might be to play a noise-free audio
dataset on some speaker, and record it via the sensors:
this way we could avoid the need for collecting ne audio

recordings, and, more importantly, the existing annota-
tion of the recordings could be used for the newly recorded
utterances (or they could be converted cheaply). Still, this
is not a quick and easy solution either.

A third option might be to train our model (classifica-
tion or regression method) on the noise-free database, and
adapt it to the acoustic conditions of the sensors. This ap-
proach has the advantage that, compared to the previous
approaches, only a fraction of sensor-recorded utterances
are required, and we can benefit from the large noise-free
audio database which could be used for acoustic model
training.

In this paper, we will focus on the adaptation of deep
neural networks (DNNs) trained as the acoustic units
for automatic speech recognition (ASR). For this, we re-
record a subset of a speech recognition database on the
wireless sensor, and experiment with three strategies for
constructing an acoustic model for sensor-based utter-
ances: DNN training on this subset, DNN model adapta-
tion, and joint training (training on both the noise-free
and the sensor-recorded utterances)

The structure of this paper is as follows. First, we de-
scribe the automatic speech recognition task. Next, we
turn to Deep Rectifier Networks, and describe the com-
mon techniques used for acoustic model adaptation. Then
we turn to the description of our experimental setup (eg
the properties of the wireless sensors used, our way of
evaluating the performance, and the database and feature
sets used). Lastly, we present and analyze our results, and
draw some conclusions.
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Fig. 1. The workflow of automatic speech recognition

2 AUTOMATIC SPEECH RECOGNITION

In automatic speech recognition we are given a sound
recording of the speech of a user (an utterance), and our
aim is to produce its written transcription. Although it
is undoubtedly a machine learning task, over the decades
researchers have developed dedicated tools for it, most
notably the hidden Markov model (HMM) [10]. This is
mainly because speech recognition is special in the sense
that it has to handle an input of a varying size, and the
output is not of fixed length. To overcome this, the input
is usually divided into small, equal-sized portions, but
the sequence of these samples still has to be processed
jointly in some way. In particular, each small portion of
the speech signal (frame) has to be identified as one of
the possible phonemes in the given language, and then
combined somehow into a probable phoneme sequence.

After some signal processing and feature extraction
steps, we have to classify the individual frames, based on
the frame-level feature vectors calculated so far, into one
of the possible phonemes in the given language. This step
is called the phoneme classification task, and here general
machine learning methods could be used. Recall that we
perform speech recognition to get the transcript of the
whole utterance, so phoneme classification is only of use to
us if it can lead to high-precision transcriptions. Therefore
the frame-level results of phoneme classification have to
be combined, which is usually done via a HMM. For this
step, instead of the resulting classes (eg phonemes) for
each frame, their estimated likelihoods are considered; so
phoneme classification has the requirement that besides
achieving a good frame-level classification accuracy, we
also have to obtain precise class conditional probabilities.
(Due to this, this subtask is also often referred to as
phoneme posterior estimation.)

The steps outlined so far make up the acoustic model
of a speech recognizer, which describes the relation be-
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Fig. 2. The layout of a deep neural network (DNN) with four
hidden layers

tween the phoneme sequences and the speech signal. To
achieve state-of-the-art recognition accuracy scores, how-
ever, we usually have to incorporate some general knowl-
edge about the structure of the given human language [6];
this information is encoded by the separate language
model. Although language models could be constructed in
several ways (eg by applying context-free grammars [11]
or by relying on word similarity [12]), in practice the most
commonly used solution is n-grams. The concept of n-
grams is that the probability of the nth word depends
solely on the preceding n — 1 words, where the corre-
sponding probability values are estimated by using sta-
tistical methods on huge (textual) datasets. It is common
to employ bigrams (n = 2) and trigrams (n = 3); here
we will employ word trigrams in our experiments.

For the above reasons, usually Gaussian mixture mod-
els (GMM) [13] and artificial neural networks (ANN) [10]
were applied as acoustic models. Recently a variation of
ANN called deep neural networks (DNN) has emerged,
and it has now become the dominant solution for acous-
tic modeling in ASR. Next, we will describe DNNs in
more detail.

3 DEEP NEURAL NETWORKS

Since the invention of deep neural networks in 2006,
their role has become evermore important in the phoneme
classification subtask of speech recognition. Deep neural
networks differ from traditional artificial neural networks
in that besides the input and the output layers, the lat-
ter have only one or two hidden layers, while DNNs have
several (three or more) hidden layers. (See Fig. 2) The
efficient training of a deep network with several hidden
layers was not possible though, as the traditional back-
propagation method was unable to train the bottom lay-
ers. The reason for this is that with the standard sigmoid
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and tanh activation functions, the gradients in the lower
layers tend to be close to zero (“vanishing gradient ef-
fect”), hence the weights in those layers barely change
and cannot be trained.

All this changed when Hinton et al. invented the
method they called “DBN Pre-Training” [14]. This ef-
ficient unsupervised algorithm can be used for learning
the connection weights of a Deep Belief Network (DBN),
which consists of several layers of restricted Boltzmann
machines (RBMs). As the name implies, RBMs are a vari-
ant of Boltzmann machines, with the restriction that their
neurons must form a bipartite graph. They have an input
layer representing the features of the given task, a hid-
den layer which has to learn some representation of the
input, and each connection in an RBM must be between
a visible unit and a hidden unit.

Hinton et al showed that the weights resulting from
the unsupervised pre-training algorithm can be used to
initialize the weights of a deep, but otherwise standard,
feed-forward neural network. After this initialization step,
we can readily apply the backpropagation algorithm to
fine-tune the network weights by utilizing a supervised
criterion.

“Discriminative pre-training” was proposed by Seide
et al [15] as an alternative to DBN pre-training. It is a
simple algorithm where we first train a network with one
hidden layer to full convergence using backpropagation;
then we replace the softmax output layer by another ran-
domly initialized hidden layer and a new softmax layer
on top, and we train the network again. This process is
repeated until we reach the desired number of hidden lay-
ers. This is very similar to the greedy layer-wise training
algorithm of Bengio et al [16], but differs in that Bengio
only updates the newly added hidden layers. Seide et al.
found that this method yields the best results if one per-
forms only a few iterations of backpropagation in the pre-
training phase (instead of training to full convergence)
with an unusually large learn rate. In their article, they
concluded that this simple training strategy performs just
as well as the much more complicated DBN pre-training
method described above [15].

In the next method it is not the training algorithm
that is slightly modified, but the neurons. Instead of the
usual sigmoid activation function, here we apply the rec-
tifier function max(0,z) for all hidden neurons [17] (see

Fig. 3). There are two main differences between the sig-
moid and the rectifier functions. One is that the output of
rectifier neurons does not saturate as their activity gets
higher. Glorot et al conjecture that this is very impor-
tant in explaining their good performance in deep nets:
because of this linearity, there is no vanishing gradient
effect [17]. The other difference is the hard saturation at
0 for negative activity values: because of this, only a sub-
set of neurons are active for a given input. One might
argue that this could harm optimization by blocking gra-
dient backpropagation, but the experimental results do
not support this view. It seems that the hard nonlinear-
ities do no harm so long as the gradient can propagate
along some path. In fact, some claim that this sparsity
of the hidden layers offers many advantages [17], such as
allowing the model to be more robust and less sensitive
to small changes (eg noise) present in the input features.

The principal advantage of deep rectifier nets is that
they can be trained with the standard backpropaga-
tion algorithm, without any pre-training. In our previ-
ous experiments on phoneme classification using several
databases, they were found to yield phone recognition
scores similar to those of sigmoid networks pre-trained
with the DBN algorithm [18, 19], but their training times
were much shorter. Therefore, in the experiments per-
formed in our study, we decided to just employ deep rec-
tifier neural networks.

4 ADAPTATION OF DNN ACOUSTIC MODELS

It is a well-known fact that DNN based acoustic mod-
els trained on clean speech perform very badly on speech
recorded in a different, noisy environment (eg [20,21]).
To make the DNNs more robust to noise two approaches
could be used, namely feature enhancement and model
adaptation.

Feature enhancement methods generally attempt to
reduce or remove the effects of the corrupting noise in the
audio signal by creating new features based on the noisy
ones, on which the unaltered acoustic model is evaluated.
Some techniques seek to find noise-resistant features [22],
while others try to remove the noise from the speech
data [23] or learn a transformation from the noisy speech
features to the clean one [24]. As these methods do not
modify the acoustic model, the computational cost of
these methods tends to be quite low; however, based on
the results of experiments, their potential is limited.

Model-domain methods use the inputs unaltered and
modify the DNN parameters to be more representative of
the observed speech [25]. To be able to adapt the DNN,
we need to record some noisy speech, which we can use
as training data. While model adaptation techniques typ-
ically achieve higher accuracy scores than enhancement
methods do, they usually require significantly larger noisy
datasets, and their computational cost is higher as well.

As for wireless sensors the amount of audio data is
substantial enough to allow model adaptation, hence we
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Fig. 4. The spectral representation of the same speech excerpt recorded by the TV tuner card (left) and by the wireless sensor (right)

opted for this technique. That is, we first trained a DNN
until it attained full convergence on clean speech data.
This network was then trained further using the dataset
recorded by the wireless sensors. Note that adaptation
methods usually focus on adapting to the actual speaker;
now we would like to retain speaker-independence, but
our recording conditions differ significantly from those of
the training database, so we will perform domain adap-
tation.

It is well known (eg [24]) that the lower layers of a
deep neural network are responsible for low-level feature
extraction, while the higher layers perform more abstract
and more task-dependent functions. As in our case only
the acoustic conditions change, while the task remains
the same, it seems reasonable that it might be enough
to train just a few lower layers of the network instead of
adapting all the weights. This way, we might achieve the
same level of accuracy with faster training.

We will also test a method similar to the multicondi-
tion training (eg [20,26]) by mixing the clean and noisy
speech data together and training the acoustic DNN on
this joint dataset. This way, we may train a network to
perform well in both environments [26], and we will rate
this strategy by the accuracy score measured on the ut-
terances recorded via the wireless sensors.

5 EXPERIMENTAL SETUP

5.1 The Wireless Sensors Used

In our study we used Crossbow Iris sensor nodes
(motes) that have a 7.37 MHz processor with a RAM
of 8K bytes and a programmable flash memory of 128K
bytes. The microphone and other input peripherials are
located on a piece of hardware that can be attached to the
mote, on the so-called sensor board. We had Crossbow
MTS300 sensor boards, which, besides the microphone,
also contain light and temperature sensors.

5.2 The Method of Evaluation

To measure the performance of a method for a stan-
dard classification task, usually just the classification ac-
curacy is calculated as the ratio of correctly classified ex-
amples. If the classes are unbalanced, this method can be

extended to calculate the classification accuracy for each
class, and then we take the mean of these scores. This
approach could be followed with an isolated word rec-
ognizer, where word-level accuracy scores can be readily
determined as the number of exact word matches; how-
ever, measuring the performance of a continuous speech
recognition application is a bit more complicated, since
we would like to differentiate between a sentence which
contains only a small mistake and a completely misun-
derstood one.

In the case of sentence recognition the common method
is to calculate the word-level edit distance (or Levensh-
tein-distance) of the two word sequences (the reference
and the resultant); that is, we construct the resulting
sentence from the real transcript by using the following
operations: inserting and deleting words, and replacing
one word with another one. These operations have some
cost (in speech recognition the common values chosen are
7, 7 and 10, respectively), and then we pick an operation
set having the lowest cost. Now we can calculate the
accuracy metric as

N-S-D-1

Accuracy = N ,

(1)
where N is the total number of words in all the original
utterances, S is the number of substitutions, D is the
number of deletions and I is the number of insertions.
(Note that in theory this score can be negative, as there is
no theoretical upper bound for the number of insertions,
although this is so only for quite inefficient recognizer
configurations.)

5.3 The Database Used

The speech corpus of Hungarian broadcast news [18]
was collected from eight TV channels via a TV tuner card.
From the 28 hours of recordings, 22 hours are used as the
training set, on which the acoustic neural networks are
trained. Another 2 hours of recordings was assigned to the
development set (used for setting the meta-parameters of
a speech recognition system), and 4 hours to the test set
(used for final model evaluation). We built a trigram lan-
guage model from a corpus of about 50 million words
taken from the www.origo.hu news portal, using the lan-
guage modelling tools of HTK [27]. As Hungarian is an
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Table 1. The frame-level and word-level accuracy scores obtained
by the different training and domain adaptation strategies, for both
feature sets

Feature Method Frame Word
set Dev Dev Test

DNN Adaptation 62.3% 73.2% 73.0%
FBANK Joint training 60.8% 72.6% 71.5%
Random initialization 60.2% 71.9% 71.6%
DNN Adaptation 60.9% T72.8% 72.2%
MFCC Joint training 60.0% 71.9% 69.9%
Random initialization 59.0% 71.5% 70.9%

agglutinative language with a lot of word forms, we kept
only those words that occurred at least twice in the cor-
pus, reducing the recognition dictionary to about half a
million words. Afterwards, the pronunciations of these
words were obtained from the ‘Hungarian Pronunciation
Dictionary’ [28].

We re-recorded a smaller subset of this database using
our wireless sensors: about 5 hours of the training, about 1
hour of the development set and about 2 hours of the test
set. (We will refer to this subset as the restricted set.) Due
to the quite different recording hardware, the two ver-
sions differed significantly: while the original utterances
had a sampling rate of 16000 Hz, this value for the ut-
terances recorded via the wireless sensors was 8861 Hz.
Furthermore, the characteristics of the two microphones
were also very different. Figure 4 shows the spectrum of
an utterance recorded by the tuner card (left) and by the
wireless sensor (right). It is clear that the higher frequen-
cies were not captured by the wireless sensor (indicated
by the blank region at the top) due to the lower sam-
pling rate; furthermore, this spectrogram appears more
distorted, and there is a constant buzz which is displayed
as a continuous horizontal line. Here, we will refer to this
re-recorded data subset as the sensor-recorded set.

5.4 Experimental Setup

We tested two feature sets, namely 40 mel filter bank
energies (“FBANK”) and 12 mel-frequency spectral co-
efficients (“MFCC”, [6]), along with energy, and their
first and second order derivatives. Decoding and evalu-
ation was performed by applying a modified version of
HTK [27]. We employed our custom neural network im-
plementation, which achieved outstanding results earlier
on several datasets (eg [29,30]). Following preliminary
tests, we opted for five hidden layers, each one contain-
ing 1000 rectified neurons, and we applied the softmax
activation function in the output layer. As weight regu-
larization, we employed the L2 normalization technique.

The recognition accuracy score of an ASR system can
be improved if we use different models for the same phone
pronounced in a different context. These context-depen-
dent models are called triphones (or context-dependent
states, CD-states), and their application in ASR is stan-
dard practice nowadays. We constructed the set of CD
states by using the Kullback-Leibler divergence-based

state tying method proposed in [31]. The final set con-
tained 1843 CD states.

6 RESULTS

We tested three approaches for carrying out ASR
on the sensor-recorded utterances: training only on the
sensor-recorded (restricted) utterance set (as here we
train on this subset after randomly initializing the weights
of the DNN, we call this strategy random initialization),
training on the utterances of both the full clean train-
ing set and the sensor-recorded one (joint training), and
training on the full clean utterance set and then adapt-
ing the DNN acoustic model on the sensor-recorded set
(DNN adaptation).

Table 1 shows the accuracy scores obtained by using
both feature sets with these strategies. (The best values
are underlined.) It can be seen that, for both feature sets,
DNN adaptation resulted in the highest word-level accu-
racy score among the three tested strategies. Using the
FBANK feature set, although the 73.2% score is only
slightly above the 72.6% score obtained by the joint
training strategy, it is far above that got via training only
the restricted subset recorded by the sensors (71.9 %),
resulting in a roughly 5% improvement in terms of Rel-
ative Error Reduction (RER). On the more important
test set, the improvements are more significant as the lat-
ter two approaches perform pretty similarly (71.5% and
71.6 %, joint training and random initialization, respec-
tively), while the 73.0 % achieved by DNN adaptation is
significantly higher than these values (over 5% RER). At
the frame-level, the DNN adaptation strategy is also more
successful than the other two tested methods. (Note that,
although both noise-free and sensor-recorded utterances
were present in the development set of the joint training
strategy, we just list the scores measured on the latter
utterances.)

The results got by using the MFCC feature set display
similar trends as we found by training on the FBANK fea-
ture set: the accuracy scores achieved by the DNN adap-
tation strategy are higher than those of the random ini-
tialization and joint training ones. However, the values
are generally lower by 1-2 %, due to the well-known fact
that neural networks tend to perform better on raw fea-
tures such as FBANK than on traditional spectral ones
such as MFCC.

The fact that DNN adaptation outperformed the ran-
dom initialization strategy, in our opinion indicates that
by first training on a larger speech corpus recorded under
different acoustic conditions, then adapting to the acous-
tic specialities of the wireless sensor, we can efficiently
make use of the more training instances present in the
noise-free database.

Although the DNN acoustic models trained via this
joint strategy can be expected to perform well under both
conditions, they are suboptimal on each of them. If it is
unlikely that we have to handle both kinds of utterances
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Fig. 5. The accuracy scores obtained as a function of the number
of layers adapted, using the FBANK feature set

Table 2. The frame-level and word-level accuracy scores obtained
by the different training and domain adaptation strategies, using
the FBANK feature set

Method Layers Frame Word
Dev  Dev Test

% % %

1 57.6 724 70.3

2 619 734 71.6

DNN Adaptation 3 6L.7 7140 729
4 62.0 143 727

5 623 1734 728

All 623 173.2 73.0

with the same acoustic model, it is best to adapt the
acoustic deep neural networks.

6.1 Partial DNN Adaptation

As it is known that the hidden layers of a Deep Neural
Network perform different functions within the same task,
it may happen that we do not need to adapt all of them
for optimal performance, or even that we can get better
results by adapting only a subset of the layers. To this
end, we also experimented with following this strategy.
As now we perform domain adaptation, it was logical to
adapt only the lower layers; we did this using both feature
sets (FBANK and MFCC).

Tables 2 and 3 show the accuracy scores obtained this
way; the best values and the ones within a 0.3% thresh-
old are underlined. (Note that we had five hidden layers,
which, together with the input and output layers results
in seven layers overall, leading to six layer-layer connec-
tions to adapt.) We can see that to maximize the frame-
level accuracy it is best to adapt all layers; this is logical,
though, as we perform DNN training (and adaptation) on
the level of frames. Surprisingly, word-level accuracy on
the development set is optimal when we adapt the connec-
tions only by the fourth hidden layers, but this does not
hold for the test set, where the training of further layers
is required for optimal performance. Examining figures 5
and 6 we may deduce that at least the first three lay-
ers have to be adapted to get close-to-optimal accuracy
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Fig. 6. The accuracy scores obtained as a function of the number
of layers adapted, using the MFCC feature set

Table 3. The frame-level and word-level accuracy scores obtained
by the different training and domain adaptation strategies, using
the MFCC feature set

Method Layers Frame Word
Dev  Dev Test

% % %

1 55.9 69.7 67.8

2 59.0 71.8 67.8

DNN Adaptation 3 602 730 711
4 60.8 73.1 71.7

5 609 73.1 724

All 609 728 172.2

scores. When relying on the FBANK feature set, adjust-
ing the weights between the further layers yielded only a
slight or no improvement over this score, while when we
used the MFCC feature vectors, optimality on the test
set was achieved by adapting all connections except the
ones between the last hidden layer and the output layer.

7 CONCLUSIONS

Wireless sensors are low-powered devices designed to
monitor their environment. In this study we examined
ASR performance on utterances recorded via wireless sen-
sors. Due to the small microphone installed on these de-
vices, the sound quality of utterances recorded by such
sensors differs significantly from that of the larger au-
dio databases usually used for acoustic DNN training,
typically recorded in sound-proof environments and with
high-quality microphones. As it is quite expensive to
record a large speech database on wireless sensors, it
is sensible to make use of these larger speech corpora
even when we seek to carry out speech recognition using
such sensors. To this end, besides training on a database
subset recorded by the wireless sensors, we tested two
ways of making use of a noise-free, larger audio corpus:
joint training on both corpora in parallel, and training
the acoustic Deep Neural Network on this larger, clean
dataset, and then adapting it to the acoustic conditions
of the one recorded via the sensors. In the end we found
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that joint training was not significantly better than train-
ing on the sensor-recorded, noisy database subset, while
DNN adaptation turned out to perform significantly bet-
ter. By following this strategy, we were able to achieve a
5% improvement in terms of relative error reduction.
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