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DISCOVERING BLOCK–STRUCTURED PARALLEL PROCESS
MODELS FROM CAUSALLY COMPLETE EVENT LOGS
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α -algorithm is suitable to discover a large class of workflow (WF) nets based on the behaviour recorded in event logs, with
the main limiting assumption that the event log is complete. Our research has been aimed at finding ways of discovering
business process models based on examples of traces, ie, logs of workflow actions that do not meet the requirement of
completeness. In this aim, we have modified the existing and introduced a new relation between activities recorded in the
event log, which has led to a partial correction of the process models discovering technique, including the α -algorithm. We

have also introduced the notion of causally complete logs, from which our modified algorithm can produce the same result
as the α -algorithm from complete logs. The effect of these modifications on the efficiency of the process model discovering is
mostly evident for business processes in which many activities can be performed in parallel. The application of the modified
method for discovering block-structured models of parallel business processes is presented in this paper.

K e y w o r d s: process mining, business process model discovery, block-structured parallel process models, complete log,
α -algorithm

1 INTRODUCTION

Understanding the behaviour of complex information
systems is of essential importance for the ability to per-
form their modification, maintenance and improvement.
The specification of the desired system behaviour is often
not fully in accordance with its real behaviour, but pro-
vides only an idealized or desirable view of the business
processes that are performed in the system. Fortunately,
many information systems have a possibility to record
their execution, and, in this way, to generate a trace
about events describing the real system behaviour. Pro-
cess mining (PM) techniques are based on the assumption
that there is a strong relationship between process mod-
els and the “reality” recorded in the event log in the form
of traces [1]. If the analysis of these traces can detect a
behavioural model of the system, then the model can be
reliably used for monitoring, maintenance and modifica-
tion of the system.

In process mining, an event log is used for the imple-
mentation of three techniques: discovering [1–3], confor-
mance and enhancement of the model [1]. The technique
of interest in our research is model discovering [1–3]. This
technique is used to construct models of business pro-
cesses based only on examples of behaviour exhibited by
the processes, ie, traces recorded in the event log. One of
the basic and best known algorithms for process model
discovering, based on records in a log, is the α -algorithm
[1–3]. From records in the event log, the α -algorithm au-
tomatically generates a process model that belongs to
a subclass of Petri nets [4], known as workflow (WF)
nets [5]. Besides a number of other limitations, one of

the basic limiting assumptions of this algorithm is that
the event log needs to be complete [2, 3]. The assump-
tion of completeness of the event log requires that in the
traces recorded in it, there are all direct dependency rela-
tions that may exist between the activities of the observed
business process.

The property of completeness of the log often implies
the necessity of having a large number of traces in the
log on which the “representative” model for the behaviour
seen in the log has to be constructed. Therefore, our chal-
lenge was to find logs with potentially much lower number
of traces, which may not be complete, but are sufficiently
valid so that, using the appropriate algorithm based on
the evidences recorded in such logs, a “representative”
model can be obtained.

To achieve this, we have partially modified the tech-
nique of process model discovering, and also the α -
algorithm itself by introducing the relation of indirect
precedence as another basic relation between the activi-
ties recorded in the event log. Our aim was to determine
how the existence of the relation of indirect precedence
affects detection of concurrency of actions, and how it
affects the efficiency of discovering the business process
model. The results have shown that, by a generalization of
the concurrency relation (with considering the relations of
indirect precedence between the activities recorded in the
event log), the concurrency relation, and therefore busi-
ness process models, can be obtained from smaller event
logs, which do not satisfy the condition of completeness
as specified in [1–3]. Event logs, from which process mod-
els can be produced, often can be quite poor considering
the number of traces that is necessary to obtain a valid
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model, but must have certain properties in order to ful-
fill requirements of causal completeness which we have
defined and presented in the paper.

This shows particularly good results in processes with
a lot of activities that can be performed in a mutually
independent order, ie, concurrently. In order to illustrate
the effects of using the proposed modified technique of
discovering process models and make it more noticeable,
the results of applying the modified PM technique for
discovering block-structured parallel business processes
model will be shown on sample processes.

It should be noted at the very beginning that our
assumptions and preconditions for process models (that
have to be block-structured parallel models), to which our
algorithm is applicable, may look as a serious restriction.
It really is for real-world process models in general. How-
ever, our solution still covers a respectably wide subclass
of process models and represents a first step in a more
ambitious attempt to solve the very serious problem of
log completeness. Although having a strong limitation,
we still deem that even a partial solution to such a se-
rious problem can be beneficial for future research and
is worth reporting. In our future research, we will try to
expand our work to other categories of processes.

In addition, the primary goal and vision of our research
has a slightly different and wider context: it examines the
possibility of interactive construction of block-structured
parallel business processes models by demonstration. The
idea is that the user performs possible scenarios of exe-
cuted activities of a business process and according to this
performance, the system can create the process model
(candidate model), which will be in accordance to all
demonstrated scenarios. The modified PM technique and
the algorithm presented in this paper helped us to ac-
complish these goals and ideas with parallel processes,
while the results and ways of realization of this wider
context will be presented in our future publications. Nev-
ertheless, at this stage, we would emphasize that the can-
didate model can be created interactively based on any
event log, which does not have to be complete, but the
final model can be created from the event log with causal
completeness properties, as defined in this paper.

The next section provides an overview of the exist-
ing literature from the area of interest for our work
and this paper. The third section gives some prelimi-
naries about WF-nets, α -algorithm, parallel processes
and block-structured parallel process models. The fourth
section describes the proposed modification of the PM
technique for business processes model discovering, con-
sidering the introduction of the relation of indirect prece-
dence/subsequence between activities. In addition, a par-

tial modification of the α -algorithm (the α|| -algorithm)
is proposed. In the fifth section, the notion of causally
complete logs is defined and the application of the
proposed modified PM technique for discovering block-
structured models of parallel business processes based on
these logs is presented. In the sixth section, the results
of the performed experimental analysis are presented and

discussed. The seventh section contains some conclusions
and guidelines for the future work and research.

2 RELATED WORK

The process mining idea is not a new one. One of the
earliest examples of usage of process mining in the context
of workflow management, based on workflow graphs, was
presented in [8]. Cook and Wolf have investigated similar
issues in the context of software engineering, looking in
particular sequential [9] and parallel behaviour of the pro-
cess [10]. Dealing with sequential processes, in [11] they
describe three methods for detection, one of which uses
a neural network, while the other one is entirely based
on the algorithmic approach, and the third one uses a
Markovian approach. In [10], the same authors extend
their work to concurrent processes where they propose
specific metrics to discover models out of event streams,
but they do not provide an approach to generate explicit
process models. Herbst also dealt with the issue of pro-
cess mining in the context of workflow management [11–
12] using an inductive approach, observing sequential [12]
and parallel models [11] separately. A notable difference
between his work and other approaches is that the same
task can appear multiple times in the workflow model, ie,
the approach allows for duplicate tasks. Schimm [13] has
developed a mining tool suitable for discovering hierar-
chically structured workflow processes.

Although many researchers have dealt with the ideas
of process mining, the most comprehensive study is pre-
sented in the works of W.M.P. van der Aalst and his col-
laborators [1–6, 16, 18]. In [2, 3] a detailed description and
formalization of techniques for discovering processes from
workflow logs is presented, the α -algorithm for extract-
ing process models from such logs is defined, and a rep-
resentation of the model obtained in the form of a sound

WF-net is shown. An introduction to process mining and
an overview of existing techniques for discovering pro-
cesses, and the problems which have been encountered in
the application of the α -algorithm have been most fully
presented in [1]. An overview of best practices and chal-
lenges is presented in [14], which is the work of a group of
experts that was created in order to promote research, de-
velopment and understanding of process mining, as well
as its implementation and evolution.

To discover process models from traces recorded in
workflow logs, many techniques have been proposed
[2, 3, 8, 9, 15, 16]. Many of these techniques use Petri nets
in the process of discovering and presenting the discovered
process model. However, other very different approaches
are also used for the same purpose.

Although the original α -algorithm is able to discover a
large class of WF-nets, there are problems it cannot cope
with: incompleteness of the event log, rare behaviours,
complex routing constructions and others [1]. As a conse-
quence, there is a large number of algorithms that over-
come lacks of the basic α -algorithm [17]. Some of them
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are variants of the original α -algorithm, such as, for ex-
ample, the α+ algorithm [6] and α++ algorithm [18],
while others use a completely different approach, such
as: heuristic mining [9], genetic mining [16], fuzzy min-
ing [19], process mining from a basis of regions [15] or
flexible heuristics miner [7].

The α+ algorithm [6] is an improved variant of the
basic α -algorithm that can deal with problems related to
short loops ie, loops of length one and two.

The α++ algorithm [18] is a variant of α -algorithm
which can discover non-free-choice Petri nets, and to de-
tect an implicit dependency among the tasks. An implicit
dependency reflects indirect causal relationships between
tasks. α++ algorithm is able to discover the original pro-
cess model if the event log is complete and if there is no
noise.

The heuristic miner (HM) [9] is an algorithm that can
deal with noise and can be used to express the basic
behavior (ie, without all details and without exceptions),
which is recorded in the event log. The goal of the HM
algorithm is to extract a Causal net (C-net) in the event
log.

The flexible heuristics miner (FHM) [7] is an enhanced
version of the HM algorithm that represents a heuristic-
based algorithm for detecting relatively complete and un-
derstandable workflow models, even though there is some
noise in the event log. Process models in the FHM ap-
proach are C-nets and augmented C-nets .

The genetic algorithm [16] of discovering process mod-
els is a flexible and robust and it can deal with noise and
incompleteness of event logs, but it is not particularly
efficient for large models and event logs, where the pro-
cess of discovering can last pretty long. Causal matrices,
which are used for internal representation by the genetic
mining, support complex routing structures such as non-
free-choice constructs and invisible tasks.

The fuzzy mining [19] represents a new approach to
discovery of process models that overcomes the problem
of models overcrowded with details by using the concept
of a roadmap as a metaphor to visualize the resulting
models.

State-based regions [15] can be used to construct a
Petri net from a transition system, while language-based
regions can be used to construct a Petri net from a prefix-
closed language. Synthesis approaches using language-
based regions can be applied directly to event logs, but
to apply state-based regions, one first needs to create a
transition system [1]. Techniques based on regions have
problems with noise and incompleteness of event logs.
Therefore, they are practically suitable when combined
with heuristic techniques.

The inductive miner (IM) [21], aims to discover block-
structured process models that are sound and fitting to
the behavior represented in the event log. IM is an exam-
ple of an algorithm that discovers process trees and for
which rediscoverability has been proven. The algorithm
works by dividing the activities of the log over a num-
ber of branches, such that the log can be split according

to this division. IM partitions the activities, selects the
most important process construct, splits the log and re-
curses until a base case is encountered. There are differ-
ent IM variants, but generally they are divided into IM
for incomplete event logs and IM for infrequent behav-
ior. IM for incomplete event logs uses divide-and-conquer
approach, but replaces the activity partition step by an
optimisation problem. This IM variant introduces rela-
tions between activities, estimates probabilities of these
relations and searches for a partition of activities that is
optimal with respect to these probabilities.

The above mentioned algorithms and techniques have
overcome some of problems, but the problem of incom-
pleteness of logs, to the best of our knowledge, has not
been overcome. This fact still remains a challenge for fu-
ture research.

The subject of our research presented in this paper
is the problem of completeness of event logs [1]. Part of
this research was preliminarily announced in our previ-
ous paper [24], where we also dealt with logs that do
not meet the requirement of completeness. In that pa-
per, we briefly introduced our modified PM technique
and the algorithm and we have also defined two types
of logs, so called causally complete and weakly complete

logs . This paper is largely devoted to causally complete
logs. A more detailed presentation of our modified PM
technique and algorithm is given in this paper, with the
formal support of definitions, theorems and proofs. More-
over, the comparison of results obtained by applying our
algorithm with the results of other process mining algo-
rithms on causally complete logs was done. Finally, an-
other big difference from the paper [35] is that this paper
brings an extensive experimental analysis whose results
are presented in this paper. In this analysis, values of the
minimal sizes of complete logs and causally complete logs
are compared for 100 real examples of parallel business
processes. In this paper, plug-ins are also presented in
the existing ProM framework designed for the needs of
the experimental analysis.

3 PRELIMINARIES

In this section, we give some definitions of concepts
used throughout this paper. First, we introduce the pro-
cess modelling language (WF-nets) and its relevant con-
cepts. Then we give a very brief introduction to the classi-
cal α -algorithm. Finally, we introduce the notions of par-
allel process and block-structured parallel process models.
It is assumed that there is a known set of business process
activities denoted with A . The aim of the modelling pro-
cess is to determine which activities should be performed
and in which possible (partial) order. Activities can be
performed sequentially, concurrently or optionally, and
it is possible to repeat the execution of some activities
(loops).

The α -algorithm is able to discover a business process
model, represented as a Petri net [4] for a subclass of Petri
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Table 1. Tabular presentation of the defined relationships between
activities in a log

⌉a > b a > b

⌉b > a a#b a→ b

b > a b→ a a‖b

nets known as workflow nets (WF-nets) [5]. WF-net is a
Petri net with exactly one initial place, exactly one end-
ing place, and all nodes accessible from the initial place
(ie, when only the initial place is marked with a single
token). WF-net is a natural subclass of Petri nets, mak-
ing it suitable for modelling and analysing of operational
processes. The α -algorithm is a mining algorithm based
on the fact that for most of WF nets it holds that two
activities are connected with a transition if and only if
their causality can be detected from the event log [1].

3.1 The classical α-algorithm

The input for the α -algorithm is a simple event logL ,
as a multiset (a “bag”) of traces over a set of actions
A , ie, L ∈ B(A∗), where B(X) represents the set of
all multisets of elements of X , and A∗ is the set of all
finite (but unlimited) sequences (traces) of the elements
of A [2, 3]. Each trace corresponds to a single process
case. The elements of the set A are the activities that
correspond to transitions in the resulting Petri net, and
are denoted by lowercase letters (ie, a, b, c, · · · ∈ A), while
sets of activities are denoted by uppercase letters (ie,
A,B,C, · · · ⊆ A). Four log-based ordering relations that
aim to capture the relevant patterns in the log are defined
as follows [1–3].

Definition 1 (Log-based ordering relations). Let L be
an event log over A , ie, L ∈ B(A∗). Let a, b ∈ A . Then

• a >L b if and only if there is a trace
σ = 〈t1, t2, t3, . . . , tn〉 and i ∈ {1, . . . , n− 1} such that
σ ∈ L and ti = a and ti+1 = b ,

• a→L b if and only if a >L b and it is not b >L a ,

• a#Lb if and only if it is not a >L b and it is not
b >L a ,

• a‖Lb if and only if a >L b and b >L a .

For a particular logL , these relations can be repre-
sented with a matrix with columns and rows for all ac-
tions in A , and with each cell for (a, b) having one and
only one of the symbols > , → , ← , # or ‖ . (As it can be
easily shown [1–3], these relations are disjoint and cover-
ing, ie, partition the set A×A). Such a matrix is called
the footprint of the event log, whereby the relations be-
tween any two actions a, b ∈ T are defined in a manner
as presented in Table 1.

Based on these relations, the α -algorithm is described
by the following [1–3]

Definition 2 (α -algorithm). Let L be an event log over
T ⊆ A . α(L) is defined as follows.

(1) TL = {t ∈ T | (∃σ ∈ L) t ∈ σ} ,

(2) TI = {t ∈ T | (∃σ ∈ L) t = first(σ)} ,

(3) TO = {t ∈ T | (∃σ ∈ L) t = last(σ)} ,

(4) XL = {(A,B) | A ⊆ TL ∧ A 6= ∅ ∧ B ⊆ TL ∧ B 6=
∅∧(∀ a ∈ A)(∀ b ∈ B)(a→L b)∧(∀ a1, a2 ∈ A)(a1#La2)∧
(∀ b1, b2 ∈ B)(b1#Lb2)} ,

(5) YL = {(A,B) ∈ XL | (∀ (A′, B′) ∈ XL)(A ⊆
A′ ∧B ⊆ B′ ⇒ (A,B) = (A′, B′))} ,

(6) PL = {p(A,B) | (A,B) ∈ YL} ∪ {iL, oL} ,

(7) FL = {(a, p(A,B)) | (A,B) ∈ YL ∧ a ∈ A} ∪

{(p(A,B), b) | (A,B) ∈ YL ∧ b ∈ B} ∪ {(iL, t) | t ∈

TI} ∪ {(t, oL) | t ∈ TO} ,

(8) α(L) = (PL, TL, FL).

In Definition 2, first(σ) = t1 and last(σ) = tn , where
σ = 〈t1, t2, t3, . . . , tn〉 .

3.2 Parallel Processes and Block-Structured

Parallel Process Models

Concurrency of business processes assumes a potential
parallel execution of business activities within the execu-
tion of one process instance, or at least their (indepen-
dent) execution in an arbitrary order. Inferring relations
of parallelism from traces recorded in the event log is
one of the key elements of the process model discovering,
especially in the process with a large number of activi-
ties that can be performed concurrently. For example, if
there are m independent activities that can be performed
in parallel in a business process, the number of different
traces in the event log in which they can appear is m! . In
order to infer all relations of parallelism by using the α -
algorithm, it is necessary that there are at least m(m−1)
different traces in the log [1]. Although the number of
necessary traces in the event log, compared to the num-
ber of possible traces, is significantly decreased by using
the α -algorithm, it is still rather big. For the purpose of
illustration of the effect of our modified method on the
capability and efficiency of the process model discovering,
we shall define the particular class of business processes
to which our method is restricted at this stage, namely
parallel processes .

Definition 3 (Parallel process). Parallel process N‖ =

(P, T, F ) is a sound1 WF-net ie, N‖ ∈ W , where in each

possible execution of the process that ends with marking2

the exit place, each activity from the set ti ∈ T executes
exactly once (once and only once).

The requirement from Definition 3 that every activity
from ti ∈ T has to be performed, imposes that each
activity of a parallel business process has to appear in
each trace σ ∈ L . As a consequence of this, there are
no alternatives (optional branches) between activities of
parallel process, ie, the relation a1#La2 (whereby a1 6=
a2 ) does not exist. Due to this, in a parallel process,

1Soundness corresponds to liveness and safeness of the corre-
sponding short-circuited net [2, 3]. The set of all sound WF-nets is

denoted with W .
2The concept of marking is well known for Petri nets and precise

definitions can be found in [2, 3].
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Fig. 1. Example of a block-structured parallel process model corresponding to the process tree: → (a,∧(b,→ (f, g),→ (c,∧(d, e))), h)

activities perform either sequentially or in parallel, but
not optionally.

The restriction from Definition 3 that each activity
from ti ∈ T can be performed at most once, eliminates
the possibility of the appearance of iterations (loops, rep-
etitions) in the model of a parallel process.

A block-structured workflow net is a hierarchical work-
flow net that can be constructed from parts having a sin-
gle entry and a single exit point by the recursive appli-
cation of operators on the parts analogous to the con-
structs of structured programming, such as sequential,
optional, iterative, and parallel execution. A process tree
is a compact abstract representation of a block-structured
workflow net: a rooted tree in which leaves are labelled
with activities and all other nodes are labelled with op-
erators [21]. A process model is block-structured if splits
and joins are always paired into Single-Entry-Single-Exit
(SESE) fragments [25].

According to the definition of block-structured WF-
nets, block-structured process models and characteristics
of parallel processes given by the Definition 3, process
models we have dealt with make a subclass of block-
structured process models that we named block-structured

parallel process models . These are process models con-
structed from parts by the recursive application of only
two operators: the first, → , describing sequential com-
position, and the second, ∧ , describing parallel composi-
tion3.

Figure 1 shows an example of a block-structured model
of a parallel business process, presented in a form of a
Petri net, which represents our running example in this
paper.

4 MODIFIED TECHNIQUE FOR

DISCOVERING PROCESS MODELS

In the basic α -algorithm, it is assumed that an event
logL is complete in terms of the relation >L . The as-
sumption about the completeness of the logL requires
that if a process model allows an activity b to be exe-
cuted immediately after an activity a , then the log must

contain at least one trace where b is really executed im-
mediately after a , ie a >L b must hold. In this case, b is
said to be directly (or immediately) following a in L [1–3].

Considering the fact that the existence of the relation
of direct subsequence in the event log affects the definition
of the relation of parallelism (a‖Lb if a >L b and b >L a)
[1–3], our aim was to examine how the existence of the
relation of indirect subsequence between activities affects
the inference of the relation of parallelism, and how it
reflects on the efficiency of discovering process models.

Each reduction in the number of traces in the event
log, which are necessary for inferring the relation of par-
allelism, is resulting in more efficient model discovering.
The efficiency in this context means that the method is
capable of discovering the original model from generally
much smaller event logs. Although this is not directly
related with time efficiency of the algorithm itself, it in-
directly certainly is, as the algorithm is based on the con-
struction of relations, while this construction is propor-
tional to the size of log, as it iterates through all traces
in the log. In this way, the restrictive assumption of the
α -algorithm about the event log completeness [2, 3] is re-
laxed. This is exactly what is achieved by our modifica-
tion of the PM technique for process models discovering,
as shown in the remaining parts of this paper.

4.1 Log-Based Ordering Relations in the Modi-

fied PM Technique

Our modification of the PM technique for discovering
process models introduces a new basic relation a ≫L b ,
which indicates that b indirectly follows a . This leads to
a significantly faster discovering of activities that can be
executed in parallel. The basic idea is simple: in order to
conclude that two activities a and b are independent, ie
concurrent, it is sufficient that the event log contains a
certain trace in which a directly or indirectly precedes
b , as well as some other trace in which b directly or
indirectly precedes a .

3The operator → used here for constructing structured nets

should not be confused with the symbol for causality relation used
elsewhere.

4P(A∗) is the powerset of A∗
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Table 2. The definition of the relations between activities in the
modified PM technique for discovering process models

⌉a > b, ⌉a > b, a > b, a > b,

⌉b≫ a b≫ a ⌉b≫ a b≫ a

⌉b > a, ⌉a≫ b a#b b⇒ a a→ b a ‖ b

⌉b > a, a≫ b a⇒ b a ‖ b N/A5 N/A

b > a, ⌉ a≫ b b→ a N/A b ‖ a N/A

b > a, a≫ b b ‖ a N/A N/A N/A

N/A is “not applicable”

The log-based relations that are used to indicate the
relevant patterns in the log in our modified technique of
detecting process models are defined by Definition 4.

Definition 4 (Log-based ordering relations, in the mod-
ified PM technique of discovering process models). Let L

be an event log over A , ie, L ∈ P(A∗)4. Let a, b ∈ A be
two activities. Then, by definition

• a >L b if and only if there is a trace
σ = 〈t1, t2, t3, . . . , tn〉 and i ∈ {1, . . . , n− 1} such that
σ ∈ L and ti = a and ti+1 = b ,

• a≫L b if and only if there is a trace
σ = 〈t1, t2, t3, . . . , tn〉 and there are i, j ∈ {1, . . . , n}
such that i+ 2 ≤ j , where σ ∈ L and ti = a , tj = b ,
and it is not that a >L b

• a →L b if and only if a >L b , and it is not b >L a ,
and it is not b≫L a ,

• a ⇒L b if and only if a ≫L b , and it is not b >L a ,
and it is not b≫L a ,

• a#Lb if and only if it is not a >L b , and it is not
b >L a , and it is not a≫L b , and it is not b≫L a ,

• a‖Lb if and only if a >L b and b >L a , or a >L b
and b ≫L a , or a ≫L b and b >L a , or a ≫L b and
b≫L a .

In a wide range of algorithms for process model dis-
covering, there are algorithms which use a certain kind
of a relation of indirect precedence [7, 18], but they are
different by meaning and usage from the relation of indi-
rect precedence introduced here. The difference between
our relation of indirect precedence and the relation x≫ y
given in the Definition 3 in the paper [18] is that our rela-
tion of indirect precedence is released from the condition
¬(tk ⊳L a or tk ⊲L a). In addition, within the α++

algorithm [18], the indirect dependency (so called im-

plicit dependency) between two activities imposes their
connection by a place in the Petri net (Definition 2 in
[18]), while in our conception, activities related with the
indirect precedence are not connected by a place in the
Petri net. The difference between the relation of indirect
precedence a ≫L b given in Definition 4 of this paper
and a ≫W b given in Definition 3 in [7] is in the fact
that a ≫W b is related by to loops of length two, while
in our modified PM techniques we do not deal with loops.
In Definition 3 in [7], the relation a >>>W b is also de-
fined, and it implies a direct or indirect dependency. Un-
like a >>>W b , our relation a≫L b is only indirect depen-
dency and it does not exist if there is a direct dependency
between a and b .

According to Definition 4 it holds

Property 1. Let L be an event log over T ⊆ A . For

any a, b ∈ T : a→L b , or b→L a , or a⇒L b , or b⇒L a ,
or a#Lb , or a‖Lb . In other words, the relations →L ,

→L
−1 , ⇒L , ⇒L

−1 , #L and ‖L are mutually exclusive

and partition T × T .

In order to verify this property, firstly the inverse of
relations will be defined: >L

−1 , ≫L
−1 and ⇒L

−1 , as
given for →L

−1 in [2, 3]:

→L
−1 is the inverse of relation →L , ie, →L

−1 =
{(y, x) ∈ T × T | x→L y} ,

>L
−1 is the inverse of relation >L , ie, >L

−1 =
{(y, x) ∈ T × T | x >L y} ,

≫L
−1 is the inverse of relation ≫L , ie, ≫L

−1 =
{(y, x) ∈ T × T | x≫L y} ,

⇒L
−1 is the inverse of relation ⇒L , ie, ⇒L

−1 =
{(y, x) ∈ T × T | x⇒L y} .

Accordingly, the defined relations can be presented in
the following forms:

→L=
(

>L \(>L
−1 ∪≫L

−1)
)

,

→L
−1 =

(

>L
−1 \ (>L ∪ ≫L)

)

,

⇒L=
(

≫L \(>L
−1∪ ≫ L

−1)
)

,

⇒L
−1 =

(

≫L
−1 \ (>L ∪ ≫L)

)

,

#L = (T × T ) \ (>L ∪>L
−1∪ ≫L ∪ ≫L

−1),

‖L =
(

(>L ∩>L
−1) ∪ (>L ∩≫L

−1) ∪ (>L
−1∩ ≫L)

∪(≫L ∩ ≫L
−1)

)

, due to that the result is

T × T =→L ∪ →L
−1 ∪⇒L ∪⇒L

−1 ∪#L ∪ ‖L .

The defined relations can be represented with a ma-
trix, which represents a footprint of the event log, where
the relations between any two activities a, b ∈ T , in the
modified PM technique for discovering process models,
are defined as it is presented in Table 2. Due to mutually
exclusive relations, as given in Property 1, there is only
one relation defined in Table 2 in any field of the foot-
print, as it will be shown later for the running example.

4.2 α‖ -algorithm

Since the α -algorithm is based on the relations #L

and →L [1–3], the loss of the relation #L between dif-
ferent activities will lead to changes in the α -algorithm
and its application to the discovering of a parallel pro-
cess model. These changes are introduced by the following
lemmas.

Lemma 1. In parallel processes there are no relations

a1#La2 or b1#Lb2 which are defined in the step (4) of

the α -algorithm, where a1 6= a2 and b1 6= b2 .

P r o o f . Condition of Definition 3 that each activity
from the set ti ∈ T executes exactly once requires that
in each trace of a log there are both a and b for each
a, b ∈ T , due to which there has to be either a >L b
or a ≫L b or b >L a or b ≫L a , which according to
Definition 4 requires that a#Lb does not hold.
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Lemma 2. For parallel processes

XL = {(A,B) | A ⊆ TL∧A 6= ∅∧B ⊆ TL∧B 6= ∅∧(∀ a ∈
A)(∀ b ∈ B)(a→L b)} .

P r o o f . In the α -algorithm [1–3] the step (4) is:
XL = {(A,B) | A ⊆ TL∧A 6= ∅∧B ⊆ TL∧B 6= ∅∧(∀ a ∈
A)(∀ b ∈ B)(a→L b)∧(∀ a1, a2 ∈ A)(a1#La2)∧(∀ b1, b2 ∈
B)(b1#Lb2)} . Since, regarding to Lemma 1, there are no
a1#La2 or b1#Lb2 , the elements defined on the basis of
these relations are lost in the expression for XL .

Lemma 3. For parallel processes YL = XL .

P r o o f . In the α -algorithm the step (5) is: YL =
{(A,B) ∈ XL | (∀ (A

′, B′) ∈ XL)(A ⊆ A′ ∧ B ⊆ B′ ⇒
(A,B) = (A′, B′))} , where (A′, B′) ∈ XL can be a non-
maximal pair (obtained on the basis of relation a→L b),
or a maximal pair (obtained on the basis of relations
a1#La2 and/or b1#Lb2). (A,B) ∈ YL are maximal pairs
extracted from XL . Since in parallel processes there are
not a1#La2 or b1#Lb2 , only pairs (A

′, B′) remain, which
are obtained on the basis of the relation (a →L b), and
which are, that way, maximal pairs, ie, (A,B). However,
since A = A′ and B = B′ , then ((A,B) ∈ YL) =
((A′, B′) ∈ XL) too, ie, then YL = XL .

Since in parallel processes (according to Lemma 3)
YL = XL , the algorithm for these processes has one step
less than the α -algorithm. This modified α -algorithm

will be denoted with α‖(L), where “‖ ” reflects the fact
that the algorithm targets parallel business processes.
Regarding to the previously introduced and presented

modifications, the α‖ -algorithm can be described with
the following definition.

Definition 5 (α‖ -algorithm). Let L be an event log

over T ⊆ A . α‖(L) is defined as follows:

(1) TL = {t ∈ T | (∃σ ∈ L)t ∈ σ} ,

(2) TI = {t ∈ T | (∃σ ∈ L)t = first(σ)} ,

(3) TO = {t ∈ T | (∃σ ∈ L)t = last(σ)} ,

(4) XL = {(A,B) | A ⊆ TL ∧ A 6= ∅ ∧ B ⊆ TL ∧ B 6=
∅ ∧ (∀ a ∈ A)(∀ b ∈ B)(a→L b)} ,

(5) PL = {p(A,B) | (A,B) ∈ XL} ∪ {iL, oL} ,

(6) FL = {(a, p(A,B)) | (A,B) ∈ XL ∧ a ∈ A} ∪

{(p(A,B), b) | (A,B) ∈ XL ∧ b ∈ B} ∪ {(iL, t) | t ∈

TI} ∪ {(t, oL) | t ∈ TO} ,

(7) α‖(L) = (PL, TL, FL).

In Definition 5, first(σ) = t1 and last(σ) = tn , where
σ = {t1, t2, t3, . . . , tn} .

The application of the α‖(L) algorithm for discovering
block-structured models of parallel processes is described
by the following definition.

Definition 6 (Ability to rediscover a parallel process

model). Let N‖ = (P, T, F ) be a parallel process, and

let α‖(L) be the mining algorithm which maps logs of

N‖ onto sound WF-net, ie, α‖ : P(T ∗) → W . If for

any complete logL of N‖ , the α‖ -algorithm returns N‖

(modulo renaming of places), then the α‖ -algorithm is

able to rediscover N‖ .

5 APPLYING THE MODIFIED TECHNIQUE

FOR DISCOVERING BLOCK–STRUCTURED

PARALLEL PROCESS MODELS FROM

CAUSALLY COMPLETE EVENT LOGS

A necessary condition for discovering the original net-

work by the α -algorithm is that the log on which the

algorithm is applied needs to be complete, where the con-

dition of completeness is based on the relation >L [1–3].

The condition of completeness in our modified PM tech-

nique for model discovering is related to the causality re-

lation →L , and accordingly a new type of completeness,

causal completeness, is defined in this section.

5.1 Causally Complete Event Logs

For a particular process model to be discovered, there

may be a large (in general, an unlimited) number of differ-

ent complete logs. However, all these complete logs have

the same footprint, ie, the same causality relation. We

call this relation the basic causality relation. On the other

hand, there may exist other logs for the same process

model that are not complete, but which have the same

footprint, ie, the same causality relation obtained from

those logs. We are focused on investigating such logs,

which we refer to as causally complete logs. Obviously,

the idea is to find causally complete logs that may be,

in general, much smaller than fully complete logs (in the

terminology of the original α -algorithm).

Definition 7 (The basic causality relation). Let N =

(P, T, F ) be a sound WF-net, ie, N ∈ W , and let L be a

complete workflow log of N . →B
N is the basic causality

relation of network N iff →B
N =→L .

Considering the so defined basic causality relation, a

causally complete log is defined as follows.

Definition 8 (The causally complete log). Let N =

(P, T, F ) be a sound WF-net, ie, N ∈ W , and let →B
N

be the basic causality relation of N . Lc is a causally

complete workflow log of N iff

1) →Lc=→B
N , and

2) for any t ∈ T there is σ ∈ Lc such that t ∈ σ .

Based on such a defined logLc , one can obtain the

original network of a parallel business process, so the

following definition holds.

Definition 9 (Ability to rediscover a parallel process

model from Lc ). Let N‖ = (P, T, F ) be a parallel pro-

cess, and let α‖(L) be a mining algorithm which maps

logs of N‖ onto a sound WF-net, ie, α‖ : P(T ∗) →

W . If for any causally complete logLc of N‖ , α‖ -

algorithm returns N‖ (modulo renaming of places), then

α‖ -algorithm is able to rediscover N‖ .
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Table 3. Footprint of the event logL

a b c d e f g h

a # → → ⇒ ⇒ → ⇒ ⇒

b ← # ‖ ‖ ‖ ‖ ‖ →

c ← ‖ # → → ‖ ‖ ⇒

d ⇐ ‖ ← # ‖ ‖ ‖ →

e ⇐ ‖ ← ‖ # ‖ ‖ →

f ← ‖ ‖ ‖ ‖ # → ⇒

g ⇐ ‖ ‖ ‖ ‖ ← # →

h ⇐ ← ⇐ ← ← ⇐ ← #

5.2 An example of the α‖ -algorithm application

Having the same causal relationship as its basis for op-

eration, the modified PM technique and the α‖ -algorithm
can rediscover the network from any log in which →L=
→B

N , ie, from any causally complete log, as the example
that follows will illustrate.

Let us observe a parallel process model shown in Fig. 1,
and a logL obtained after several executions of the pro-
cess. Only different traces, without stating the number of
their appearances, are presented in the event log. This is
due to the fact that the frequency of trace appearances is
irrelevant for our consideration.

L =
[

〈a, b, c, d, e, f, g, h〉, 〈a, f, g, b, c, e, d, h〉,

〈a, c, d, e, f, g, b, h〉, 〈a, b, f, g, c, d, e, h〉
]

.

The basic causality relation for this example is

→B
N = {(a, b), (a, c), (a, f), (b, h), (c, d), (c, e),

(d, h), (e, h), (f, g), (g, h)} .

The log-based ordering relations for this example are:

>L= {(a, b), (a, c), (a, f), (b, c), (b, f), (b, h), (c, d), (c, e),

(d, e), (d, h), (e, d), (e, f), (e, h), (f, g), (g, b), (g, c), (g, h)} ,

≫L= {(a, d), (a, e), (a, g), (a, h), (b, d), (b, e), (b, g), (c, b),

(c, f), (c, g), (c, h), (d, b), (d, f), (d, g), (e, b),

(e, g), (f, b), (f, c), (f, d), (f, e), (f, h), (g, d), (g, e)} ,

‖L = {(b, c), (c, b), (b, d), (d, b), (b, e), (e, b), (b, f), (f, b),

(b, g), (g, b), (c, f), (f, c), (c, g), (g, c), (d, e), (e, d),

(d, f), (f, d), (d, g), (g, d), (e, f), (f, e), (e, g), (g, e)} ,

→L= {(a, b), (a, c), (a, f), (b, h), (c, d), (c, e), (d, h),

(e, h), (f, g), (g, h)} ,

⇒L= {(a, d), (a, e), (a, g), (a, h), (c, h), (f, h)} ,

#L={(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (g, g), (h, h)}.

From the footprint shown in Table 3, it can be seen
that the causality relation of L is

→L= {(a, b), (a, c), (a, f), (b, h), (c, d), (c, e), (d, h),

(e, h), (f, g), (g, h)} .

It can be observed that the causality relation of L is equal
to the basic causality relation, ie, →L= →B

N , which
makes the logL causally complete.

By applying the α‖ -algorithm to the given logL , we
obtain

(1) TL = {a, b, c, d, e, f, g, h} ,

(2) TI = {a} ,

(3) TO = {h} ,

(4) XL = {({a}, {b}), ({a}, {c}), ({a}, {f}),
({b}, {h}), ({c}, {d}), ({c}, {e}), ({d}, {h}), ({e}, {h}),
({f}, {g}), ({g}, {h})} ,

(5) PL = {p({a},{b}), p({a},{c}), p({a},{f}), p({b},{h}) ,
p({c},{d}), p({c},{e}), p({d},{h}), p({e},{h}), p({f},{g}) ,

p({g},{h}), iL, oL} ,

(6) FL = {(a, p({a},{b})), (p({a},{b}), b), (a, p({a},{c})),

(p({a},{c}), c), (a, p({a},{f})), (p({a},{f}), f), (b, p({b},{h})),

(p({b},{h}), h), (c, p({c},{d})), (p({c},{d}), d), (c, p({c},{e})),

(p({c},{e}), e), (d, p({d},{h})), (p({d},{h}), h), (e, p({e},{h})),

(p({e},{h}), h), (f, p({f},{g})), (p({f},{g}), g), (g, p({g},{h})),

(p({g},{h}), h), (iL, a), (h, oL)} ,

(7) α‖(L) = (PL, TL, FL).

For the need of discovering original networks of block-
structured parallel business processes by the modified PM

method and the α‖ -algorithm based on causally com-

plete logs, we have developed a plug-in α‖ -algorithm for
the existing ProM framework [20]. The program code of
the plug-in is located in a separate, new package, al-

pha parallel algorithm and is located at address [22].

At the same address there is a program code of the

α‖ -algorithm - helper plug-in, which is given in a separate
package alpha parallel algorithm basic causal relation.
The mentioned plug-in is created for the purpose of ex-
traction of basic causal relations from a complete event
log.

It should be noted that this utility of extracting the

basic causality relation is not used by the α‖ -algorithm.
As it has been explained, the point is that our algorithm
is guaranteed to discover the original process model if
the input log is causally complete, just as the original α -
algorithm is guaranteed to restore the original model if
the log is fully complete; on the opposite, none of these
algorithms can guarantee that the obtained model is the
original one if the log is not causally or fully complete,
respectively. The plug-in is just an independent, helper
utility that can be used during experimentation to check
whether the given log is causally complete or not, for the
given known process model. Of course, in the process of
process discovery, the model is unknown.

Figure 2 shows the N‖ network obtained by applying

the α‖ -algorithm over logL and using the plug-in α‖ -

algorithm.
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Fig. 2. WF-net N‖ = α‖(L)
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Fig. 3. The result of the application of Alpha Miner to the causally complete logL

It can be noticed that the network N‖ = α‖(L) in
Fig. 2 is equal to the original network in Figure 1, al-
though it is obtained from a causally complete log which
is not complete and which is smaller than the complete
log, as it will be shown later in this paper.

5.3 Comparison of the α|| -algorithm with other

algorithms

It can be seen from the above said that we deal with
the problem of completeness which originates from the
original α -algorithm and is present in all other its modi-
fications or other algorithms for discovering process mod-
els. As other algorithms resulted mainly in the attempt
to overcome some other problems, but not the problem of
completeness, and as our algorithm was created by a mod-
ification of the basic α -algorithm, we thought it would be
most appropriate to compare it with the α -algorithm in
the first place.

As for computational complexity, considering the fact
that our modified method has one more basic relation
(≫) in comparison with the α -algorithm, the extraction
of the needed relations could imply greater complexity.
However, given that the time needed to build relations
is directly proportionally to the size of the event log
and that causally complete logs are smaller than com-
plete logs, establishing of relations by our method can be

reached faster. In addition, the α|| -algorithm is based on
a small number of relations (no relation # between differ-
ent activities) and has one step less than the α -algorithm,
which contributes to its simplicity.

In order to evaluate the potential and effectiveness of
our algorithm, we have applied several other algorithms
to the same sample logL given above and checked their
ability to rediscover the original model. The sample logL
is not complete, because there are missing elements in
the relation >L : b > d , b > e , b > g , c > b , c > f ,
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Table 4. The number of activities per example

Number Number
of activities of examples

5 3
6 16
7 21
8 13
9 14
10 10
11 4
12 3
13 6
14 3
15 4
16 2
17 1

Average number
of activities per Total

example

8.97 100

Table 5. The number of branches per example

Number Number
of branches of examples

6 4
7 20
8 22
9 17
10 5
11 5
12 7
13 3
14 7
15 4
16 1
17 2
18 2
23 1

Average number
of branches per Total

example

9.74 100

c > g , d > b , d > f , d > g , e > b , e > g , f > b ,
f > c , f > d , f > e , g > d and g > e , which could be
potentially performed on the basis of the process model

given in Fig. 1, and the resulting WF-net N‖ .

When the original α -algorithm is applied on this
causally complete logL , the model showed in Fig. 3 is
obtained. Due to the lack of relations: b > d , b > e ,
b > g , c > b , d > b , e > b and f > b , Alpha Miner
was unable to detect that the activity b is parallel to the
activities c, d, e, f and g . Due to the lack of relations:
f > c , f > d , f > e , c > f and d > f , Alpha Miner
was unable to detect that the activity f is parallel to the
activities c, d and e . Due to the lack of relations: c > g ,
d > g , e > g , g > d and g > e , Alpha Miner was unable
to detect that the activity g is parallel to the activities
c, d and e . For these reasons, the model obtained by Al-

pha Miner is so complex and different from the original
network.

The Appendix of this paper presents the results of the
application of the available plug-ins for several other al-
gorithms on the same given causally complete logL : Al-
pha++ Miner, Heuristics Miner, Fuzzy Miner, Genetic
Miner, ILP Miner, Mine transition system and Inductive
Miner, and can be found as technical report at the ad-
dress [22]. As it can be seen from Appendix, neither of
the selected algorithms have succeeded to rediscover the
original model from the given causally complete log. On
the contrary, in most cases, the rediscovered models were
rather complex and very far from the original model. We
also give our opinion about the reasons of the inability to
rediscover the original model for these algorithms.

6 EXPERIMENTAL ANALYSIS

Our experimental analysis was performed on real ex-
amples, where the size of minimal complete and minimal
causally complete logs were compared. In order to achieve
this within the existing ProM framework [20], another

plug-in has been developed α‖ -algorithm – minimal logs

from complete log which, from the given complete log ex-
tracts complete and causally complete logs with minimal
possible number of traces, comparing their size. The pro-
gram code of the plug-in is located in a separate, new
package,
α parallel algorithm minimal logs from complete log,
and is located at address [22].

6.1 Characteristics of analysed examples

The experimental analysis was performed on a sample
of 100 real examples obtained by arbitrary manual search
of the Internet and selecting publicly available models of
business processes, which fulfill our conditions of block-
structured models of parallel processes5. The considered
examples with their .xes files complete and causally com-
plete logs can be found at the address given in [22].

In Tables 4 and 5 some characteristics that reflect the
network structure and size of the analysed examples are
given. Table 4 shows the number of examples having a
certain number of activities in the network, and the aver-
age number of activities per example. Table 5 shows the
number of examples having a certain number of branches
in the network, and the average number of branches per
example.

6.2 Analysis results

Table 6 presents results of the performed comparative
analysis of the minimal size of complete and causally
complete logs, needed for discovering original networks
of the considered examples.

5The models were found by searching the Web for the keywords:

block-structured parallel process, parallel business process, activity

diagram, BPMN diagrams etc.
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Table 6. Results of the comparative analysis of the minimal size
of complete and causally complete logs

Number of traces in logs Minimal causally

Number Minimal Minimal causally complete log less
of complete complete than minimal

examples log size log size complete log by

1 2 2 0.00%
12 3 2 33.33%
13 4 2 50.00%
41 4 3 25.00%
5 5 2 60.00%
4 5 3 40.00%
4 5 4 20.00%
3 6 2 66.67%
3 6 3 50.00%
1 6 5 16.67%
3 7 3 57.14%
3 8 4 50.00%
1 9 2 77.78%
2 9 4 55.56%
2 10 3 70.00%
1 10 5 50.00%
1 11 3 72.73%

Total On average less by

100 37.55%

The performed experimental analysis has shown that
the size of causally complete logs from which the original
networks of the observed parallel business processes can
be discovered are lower, or (in the worst but rare case)
equal to the size of complete logs.

From Table 6 it can be seen that in 99 examples (from
the examined 100 examples), the size of the minimal
causally complete logs are less than the size of minimal
complete logs by an average of 37.55%, while in only one
example their values are equal.

In order to confirm that the hypothesis that the
size of causally complete logs is less than the size of
complete logs is statistically relevant, we have applied
the Wilcoxon-Mann-Whitney rank-sum nonparametric
test [34] on the results from Table 6.

If we denote: X = size of minimal causally complete
logs, and Y = size of minimal complete logs, it is needed

to test the null hypothesis that distributions of these two
marks (labels) are equal, ie, H0 : FX = FY , against the
alternative hypothesis H1 : “The size of minimal causally
complete logs X is less than the size of minimal complete
logs Y ”. The corresponding critical area C in this case
is:

H0 H1 C

FX = FY X is less than Y z0 ≤ −z0.5−α

Applying the Wilcoxon-Mann-Whitney test on the ob-
tained experimental analysis results, the following values
are obtained:

n1 = 99; n2 = 99; n = n1 + n2 = 198; V = 240;
E(V ) = n1n2/2 = 4900.5; D(V ) = E(V )(n + 1)/6 =

162533.25; z0 = (V − E(V ))/[D(V )]1/2 = −11.56.

For the level of significance α = 0.05, the critical area
of this test is C = (−∞,−1.645]. Since the realized value
of the test statistic z0 belongs to the critical area C ,
the null hypothesis H0 is rejected in favour of alternative
hypothesis H1 . In other words, for the level of significance
α = 0.05, it can be concluded that the claim that the size
of minimal causally complete logs is less than the size of
minimal complete logs is statistically significant.

Observing the structure of networks in the considered
examples, the experimental analysis has shown that the
size of the log, from which the original networks can be
discovered, depends on the number of parallel branches in
the network, as well as on the total number of activities
in mutually parallel branches.

In Table 7 the results of the performed experimental
analysis are presented, in which considered examples are
grouped according to the total number of activities in
parallel branches and the number of parallel branches in
the network. Considering such groups of examples, sizes
minimal complete logs and minimal causally complete
logs are presented, as well as the difference between them,
and the difference between the total number of activities
in parallel branches and the number of parallel branches
in the network.
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Table 7. The influence of the number of parallel branches in the
network and the total number of activities in each parallel branch

on the log size

Number
of Na Nb Na −Nb Nmcl Nmccl Nmcl −Nmccl

examples

1 2 2 0 2 2 0
12 3 2 1 3 2 1
39 3 3 0 4 3 1
11 4 2 2 4 2 2
6 4 3 1 4 3 1
2 4 3 1 5 3 2
1 4 3 1 6 3 3
3 4 4 0 5 4 1
4 5 2 3 5 2 3
1 5 3 2 5 2 3
2 5 3 2 5 3 2
1 5 3 2 5 4 1
1 5 5 0 6 5 1
3 6 2 4 6 2 4
2 6 3 3 6 3 3
1 6 3 3 7 3 4
1 6 4 2 8 4 4
2 7 3 4 7 3 4
1 7 4 3 8 4 4
1 8 2 6 9 2 7
1 8 3 5 10 3 7
1 8 4 4 9 4 5
1 9 4 5 9 4 5
1 9 5 4 10 5 5
1 10 3 7 11 3 8

Here and In Figs. 4–6, the following notations are used:
Na – the total number of activities in parallel branches
Nb – the number of parallel branches in the network
Nmcl – the number of traces in minimal complete logs
Nmccl – the number of traces in minimal causally

complete logs

In Fig. 4 the influence of the total number of activ-

ities in parallel branches (Na ) on the number of traces

in minimal complete logs (Nmcl ) and on the number of

traces in minimal causally complete logs (Nmccl ) is pre-

sented. From Fig. 4 (and from Tab. 7) it can be seen that

the size of minimal complete logs is proportional to the

total number of activities in mutually parallel branches.

It can also be seen that the number of activities in paral-

lel branches does not affect the size of minimal causally

complete logs.

In Fig. 5 the influence of the number of parallel

branches in the network (Nb ) on the number of traces

in minimal complete logs (Nmcl ) and on the number of

traces in minimal causally complete logs (Nmccl ) is pre-

sented. From Fig. 5 (and from Tab. 7) it can be seen that

the size of minimal causally complete logs is proportional

to the number of parallel branches in the network. It can

also be seen that the number of parallel branches in the

network does not affect the size of minimal complete logs.

In Fig. 6 the relation between difference the total num-

ber of activities in parallel branches and the number of

parallel branches in the network (Na −Nb ) is presented,

as well as the difference the number of traces in mini-

mal complete logs and the number of traces in minimal

causally complete logs (Nmcl−Nmccl ). From Fig. 6 (and

from Tab. 7) it can be seen that the difference between

the size of the minimal complete logs and the size of the

minimal causally complete logs, expressed in the number

of traces, is proportional to the difference between the

total number of activities in parallel branches and the

number of parallel branches in the network.

7 CONCLUSION

The results presented in this paper address concurrent

processes without loops or optional branches. The exam-

ples show that with our modification of the discovering

technique, we are able to reduce the problem of complete-

ness of logs in parallel processes that occurs in the ba-

sic α -algorithm. That way, we can improve the efficiency

of obtaining a block-structured process model, with the

meaning that our algorithm can guarantee the discovery

of the original model from significantly smaller logs, sat-

isfying a restricted precondition of causal completeness

(instead of full completeness).

Preliminary results presented in [24] suggest the possi-

bility that by applying the presented modified technique,

parallel process models can be discovered from logs whose

size are even less than the size of causally complete logs.

Our future work will be focused on investigating logs with

the smallest possible number of records from which the

block-structured model of parallel process can be discov-

ered, as well as on conditions that these logs have to fulfill.

Our assumptions and preconditions for process mod-

els (that have to be block-structured parallel models),

to which our algorithm is applicable, may look as a se-

rious restriction. However, our solution still covers a re-

spectably wide subclass of process models and represents

a first step in a more ambitious attempt to solve the very

serious problem of log completeness. In our future re-

search, we will try to expand our work to other categories

of processes.
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THER, C. W.—MANS, R. S.—ALVESDEMEDEIROS, A.
K.—ROZINAT, A.—RUBIN, V.—SONG, M.—VERBEEK, H.
M. W.—WEIJTERS, A. J. M. M. : ProM 4.0: Comprehensive
Support for Real Process Analysis,, In Kleijn, J. and Yakovlev,
A. editors, Application and Theory of Petri Nets and Other
Models of Concurrency (ICATPN 2007), 4546 of Lecture Notes
in Computer Science (2007),, 484-494, Springer-Verlag, Berlin.

[21] LEEMANS, S. J. J.—FAHLAND, D.—AALSTVANDER, W.
M. P. : Discovering Block-structured Process Models from In-
complete Event Logs, In Ciardo, G. and Kindler, E. editors, Ap-
plications and Theory of Petri Nets 2014, l8489 of Lecture Notes
in Computer Science (2014),, 91-110, Springer-Verlag, Berlin.

[22] https://drive.google.com/open?id=0B7gNCSuMP3pKNEdN
V0I0SUhHUjA.

[23] POPOVIC, C. B. : Mathematical Statistics, Faculty of Sciences
and Mathematics, University of Nǐs (2009), (in Serbian).
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