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MODULAR DESIGN OF FAST LEADING
ZEROS COUNTING CIRCUIT

Nebojsa Z. Milenkovi¢ — Vladimir V. Stankovié
— Miljana Lj. Mili¢

In modern computing technique, calculation of leading zeros in a data represented as strings of digits is used very often.
Those techniques require high speed of the circuit, as well as its fast design. In this paper we propose a design of such
a counter, which is applicable to data length of w = 45 bits, for 4 < 7 < 8. With this solution it is also possible to
process longer data, since the suggested technique offers a good modularity. This is very important, considering the current
technology scaling trends. In this paper, a delay behavior of the proposed circuit has also been investigated using equations
and VHDL simulation based worst-case delay estimation method. The results show a significant improvement of the circuit

speed, compared to the known solutions.
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1 INTRODUCTION

In computer technique, it is often necessary to count
the leading zeros or ones in a data represented as strings
of binary digits. Normalization of the significand in the
floating point arithmetic is maybe the most illustrative
example. These operations can also be used in the en-
coding of an anticipator for leading zeros in the floating
point arithmetic, as well as for some fixed point divid-
ing algorithms. Certain types of processors (such as the
MIPS family) have special instructions in their sets for
counting leading ones and leading zeros in integer data.

Detection of leading zeros and/or ones, or their count-
ing has been considered separately [1, 5, 6, 7] or in a
framework of leading zeros anticipation [2, 3, 4]. The so-
lution proposed here can make an improvement in two
ways. First, we obtain a network with lower number of
logic levels, and thus lower propagation time, and sec-
ond, the proposed solution allows efficient upscaling for
longer data using 32-bit counters as building modules.

2 LEADING ZEROS/ONES
COUNTER AND ITS SYNTHESIS

Number of leading zeros is defined as the number of
zero digits in the most significant positions of data, up to
the position in which the first one is present. Analogously,
leading ones are ones in the most significant positions of
data, up to the position in which the first zero appears.
These definitions may by presented in the forms of 0™ 1xx*
for m leading zeros, and 1"*0z* for m leading ones, where
x is either 0 or 1, the superscripts represent m instances
of the digit 0 or 1, and * represents zero or more in-
stances of the digit x. For example, in the binary datum

00001zzx ... xxx the count of leading zeros is four, and
in the datum 110zzx ...zzz the count of leading ones is
two.

We will consider 32 bit long data, but the solution that
we present is generally applicable to data length w = 45
bits, for 4 < j < 8. By simply copying the solution
(with minor modifications) as a building block of a larger
counting circuit, much longer data can be processed. Let
us first divide the 32 bit data X (31:0) to 4 bits nibbles.

X: 31+28 2724 23+20 19+16

ao,Zo a1,Z1 a2,Z2 a3,Z3
X:15+12 11+-8 7+4 3=+0
a4, Zy as, Zs ae, Zs ar, Zr

In this data the 31-st bit is the Most Significant Bit
(MSB) and the bit 0 is the Least Significant Bit (LSB).
The nibble that contains the MSB is nibble 0, while the
nibble that contains the LSB is nibble 7. Labels below
the nibbles, a;, 0 < i < 7, denote complements of logical
sums (NOR) of data bits in the ith nibble, and Z; denotes
the count of leading zeros in that nibble.

General expression for a; is

Qi = T31_4i T T31—(4i+1) T T31—(4i+2) T T31—(ai43) (1)

To simplify the notation of the bits labels in each
nibble, we introduce the index k = 31 — 4i,i = 0,... 7.
Having this in mind, by the transformation of (1) into
logic product of complements of data bits, we get

a; =Tk " Tk—1 - Tk—2 " Tk—3 (2)

In (1) and (2) when a; = 1, it means that all bits
in the ¢-th nibble are zeros, otherwise some of them are
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ones. The nibble with the smallest value ¢ with a; = 0
is the nibble in which the continuous string of leading
zeros terminates, followed by the first one. We will call
such a nibble a boundary nibble. If the ith nibble is a
boundary nibble, then, to count the leading zeros, the
following equations should be satisfied

3)

ap ay ...ai_lzl

(4)

The number of leading zeros can be found as a sum of
the values 4n and Z,,, where 0 < n < 7 is the ordinal
number of the boundary nibble with one or more ones,
and Zn is the number of terminal zeros in this boundary
nibble. For example, in the datum 0000 0000 0000 0011
1001 1111 0111 1000, nibbles with ordinal numbers 0+ 2
contain only zeros, while the nibble with ordinal number
3, beside 2 zeros also contains 2 ones. That is why the
nibble with ordinal number 3 is the boundary nibble,
with 2 terminal zeros, thence n = 3 and Z,, = 2, and
the number of leading zeros is m = 4n + Z,, = 14.

apai ... Gi—1-a; =1

The total number of leading zeros can be obtained
by concatenation (||) of the three bits of n and two bits
of Z,, since the values of n (in the range 0 + 7) are
multiplied by 4, while Z,, can have values in the range
0=3,s0 m=nl||Z,.

If we represent the binary value of n as logic functions
y2,Yy1, and yo we can get the following expressions

Q=ap-a1-a2-a3- a4 as-ag-ar

Y2 =ap-ai-az-as
Y1 =ag - a1 - (G2 + as + as - as)

(8)

Here @ = 0 signs that ys, y1, and yo are valid, otherwise
(Q = 1) they are undefined.

Yo =ao - (@1 +az-as) + (ag - az - as - (Gs + ag)

as

ZT_F;DtF;DO* -
= [ et

22}
as
as
as

Fig. 1. The BNE circuit
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We wanted to develop a logic network to implement
(5) to (8) with a minimal propagation delay. We used
NOT, NAND and NOR gates with a few additional GP
(AND-NOR) gates, where necessary. We omit the proper
expressions, for simplicity. The result is shown in Fig.
1, as the BNE (Boundary Nibble Encoder) circuit. The
outputs yo, y1 and yo directly represent the bits 4 + 2
of the leading zeros count. The flag Q = 1 indicates that
the leading zeros count is equal to the data length, in this
case, 32. Otherwise Q = 0.

We also need to implement 8 networks that will gener-
, a7, Z7. We named them the Nib-
ble Local Count (NLC) networks; one of them is shown

ate ag, Zg, a1, Z1, ...

in Fig. 2. Here Z; = {zi z{} is the binary representation
of the leading zeros number of the i-th nibble.

NLC;

Xk

Xk-1 a
X2 ) —
Xk-3

Fig. 2. The NLCi network

Finally, Fig. 3 depicts the complete block diagram of
the leading zeros counter. The bold line on the leading
zeros counters output represents grouping of the three
output lines from the BNE, which carry bits 4:2, and the
two output lines from the MUX, which carry bits 1:0,
thus defining five bits of the leading zeros count in the
range 0= 31. The output line @) from the BNE network,
indicates that, when equal to 1, all 32 data bits are zeros.
In that case, 4:0 bits of the counters output should be
ignored.

The proposed 32-bit leading zeros counter can be
adapted for smaller data length w =43, 4 < j < 8, for
example let w = 24 bits, 7 = 6 nibbles. First, we have to
ensure the correct response when the leading zeros count
is equal to the data length. To provide that Q = 1 we
must check whether the register X contains only zeroes
in the bit positions X (7 : 0). Then we have ag = ay =1,
which makes the networks NLC6 and NLC7 unnecessary,
and we can only apply ones to the BNEs inputs ag and
ar instead. Multiplexers should also be reduced consider-
ing their number of inputs (should now be 3 x 6/1 type
instead of 3 x 8/1 type). The BNE circuit does not need
any changes. Additionally, this circuit may be reduced
by removing unnecessary gates or gates inputs along the
paths from inputs ag and a7, toward its outputs.
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Fig. 3. Architecture of the leading zeros counter for 32-bit data

3 EXTENDING THE SOLUTION
FOR LONGER DATA

This solution can be extended to count leading zeros
in longer data, for example 64 bits, as follows. Let the
network from Fig. 3 with outputs Number of leading zeros
(0-31) and Q be one module with outputs NLZ (bits
4:0) and Q. We can simply connect two such modules,
as shown in Fig. 4, with two @ outputs: Qg (higher)
and @ (lower), as well as two NLZ outputs (NLZH and
NLZL). The signal Qm = 0 shows that data bits 63 to
32 contain not only zeros, and the count of leading zeros
in the range 0 + 31 is determined by O||NLZH. Here
0 is the most significant bit, and NLZH gives five lower
bits in the six bits count of leading zeros. When Qg =1
and @ = 0, the most significant 32 data bits are all
zeros, and the 32 lower data bits contain zeros and ones.
The number of leading zeros is in the range 32 + 63, and
is determined by 1||NLZL. Finally, for Qg = 1 and
Q1 =1 all data bits are zeros.

x| 63 32| 31 0 |
Jv( 32 32
NLZy Ou NLZ, Qv
E Q
r Number of
leading
5 5 zeros (0-63)
5

Fig. 4. Block scheme of the leading zeros counter for 64-bit data

In the same way we can make a leading zeros counter
for 128 bit long data, using 4 modules, as shown in Fig. 5.

4 PERFORMANCE ANALYSIS

Considered as a building block of the existing proces-
sor microarchitecture, the proposed leading zeros counter
should meet a certain level of timing performances. In the
performance evaluation we have considered worst-cases of
time delays through all the paths of the counter. We chose
to implement the proposed circuits in a standard CMOS
technology from TSMC 65um Core Library [9].

To verify the logic function and the timing specifica-
tions of the logic circuit, logic simulators that consider
gate level descriptions are used. However, the delay of the
circuit obtained by a standard logic simulation process
depends on the applied input test vectors. Determining
maximal and minimal delays for all the paths in a combi-
national circuit, requires 2™ (n is the number of primary
inputs in a circuit) simulations using all possible combi-
nations of the input vectors. Therefore, the simple logic
simulation is not an efficient timing analysis solution.

Using the data from [9], we have performed a sim-
ulation based timing analysis [10, 11, 12] in VHDL by
Aldecs Active-HDL. In this analysis, a suitable extension
of the logic simulation process enables all the worst case
delays for all the paths in one digital circuit to be ob-
tained with only one run of the simulator. To achieve
high accuracy, specific gate delay modeling is necessary.
With this technique of early timing performance analysis,
circuit performance characterization can be made in the
first design phases, and thus early timing problems can
be prevented and corrected. Accurate path delays in the
circuit can be obtained in the final steps of the design pro-
cess, when the circuit delays are calculated or measured
after the synthesis of the layout. If such delays do not sat-
isfy the required timing performances, the circuit needs a
redesign. The very action is expected by the occurrence
of the timing problems. This encourages the timing per-
formance evaluation to be done in the early phases of the
circuit design.
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Fig. 5. Block scheme of the leading zeros counter for 128-bit data

On the other hand the aim of such an analysis is to
determine how much time might be needed to ensure that
the circuit response to any input vector would always oc-
cur within that time. It is usually impossible to establish
the strict worst-case circumstances. Instead, a scenario,
that is almost that bad, is assumed. When we analyze
a digital circuit by considering the maximal number of
gates on structural paths for instance, we can determine
the longest possible path through the circuit, even if an
exact stimulus that could sensitize this path is not pos-
sible. Even more, such an input or input vector may not
be real. Nevertheless, designers never give up analysis of
such false paths, since they can, although very rarely, be
activated by some event which is independent from the
stimulus. Those are the most important motives for pre-
ferring this timing performance evaluation method.

Though, in order to calculate four different worst case
delays for all the paths in one digital circuit, the gate
models must contain all four types of the delays. It means
that each gate in a circuit is characterized with four pa-
rameters: the minimal delay of the rising edge TPLH, the
maximal delay of the rising edge TPLH, the minimal de-
lay of the falling edge TPHL and the maximal delay of
the falling edge TPHL.

The obtained propagation times for all the paths in
the proposed leading zeros counting circuit are shown in
Table 1. From this table we can notice that the minimal
propagation times TPHL and TPLH for the six output
lines do not differ significantly (< 40 % for both of them).
The situation is opposite for the maximal values of TPHL
and TPLH times, where these times for 2 LSB outputs -
bit0 and bitl are 1.9 to 4.5 times larger than the proper
times for outputs y2, y1 and yo. This suggests that the
multiplexers in the path for forming the bit0 and bit1 sig-
nals are critical components considering their influence on
the propagation times along the paths. Better implemen-
tation of the multiplexer, such as a pass-transistors logic,

can significantly reduce both maximal TPHL and TPLH
times.

Since the circuit in Fig. 4 from [7] represents one of the
latest and currently fastest solutions for counting leading
zeros, we have compared its version extended for 32 bit
data with our solution, using the same implementation
technology. By simulating this solution under the same
conditions as ours, we have derived results presented in
Table 2. Significant differences between the minimal and
maximal propagation times for both TPHL and TPLH
can be noticed from Tables 1 and 2.

Table 1. Worst case propagation times for the output lines of the
circuit in Fig. 3

TPHL (HS) TPLH (HS)
bit0 0.125-+-0.408 0.155--0.398
bitl 0.125-+-0.408 0.147--0.393
yo  0.084-+-0.177 0.101--0.207
y1  0.076--0.211 0.139--0.191
y2  0.079--0.090 0.159--0.195
Q 0.111+-0.143 0.162+0.256

Table 2. Worst case propagation times for the output lines of the

circuit in Fig. 4, from [7]

TPHL (ns) TPLH (HS)
Zo 0.273+0.310 0.172+0.197
Z1 0.230+0.502 0.153+0.414
Z> 0.231+0.428 0.154-+0.379
Zs 0.228+-0.366 0.150+0.344
Zy 0.229+0.312 0.151+0.309
V. 0.228+0.252 0.150+0.163

The reason for this lies in the significant difference
of the propagation times between the different inputs of
the same gate. This kind of delay estimation sometimes
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Table 3. Comparison of the propagation times for both circuits,
expressed as percentage delay decrease for all delay types and all

paths

Tpur Tpur Tprm TrrLu
min max min max

() () (%) (%)
bitOvs Zo -54.21 31.61 -9.88 102.03
bitlvs Z; -45.65 -18.73 -3.92 -5.07
yovs Zo -63.64 -58.64 -34.42 -45.38
yivsZs -66.67 -42.35 -7.33 -44.48
y2vsZy -65.50 -71.15 5.30 -36.89
QusV  -51.32 -43.25 8.00 57.06

makes the propagation time of the longest path to be
several times greater than the time for the shortest path
in the circuit. As such, the obtained propagation times
are the absolute theoretical minimal and maximal prop-
agation times in the circuit. These are the results of the
timing analysis of all the paths in the circuit from the
topological point of view, and not the timing analysis of
the paths that we want the data to go through. Obviously,
the real propagation times will be somewhere within the
obtained ranges. Comparison of the maximal values for
both TPHL and TPLH in Tables 1 and 2 shows that the
proposed solution has smaller propagation times, espe-
cially for the higher weight counters bits. This fact makes
the proposed solution especially suitable in the shift reg-
ister control during the results normalization in floating
point operations. Also, if we compare these two solutions
considering the total maximal delay for all the outputs,
our solution is better for both Tpgy, (0.408 vs 0.502) and
Trru (0.398 VS 0.414).

Table 3 shows improvements of the worst-case de-
lays of our solution. Here we have used the formula
((Tps—Ts7)/Ts7) %100 (in %), where PS stands for pro-
posed solution and S7 for solution from [7]. This formula
basically calculates decreases in the delay of our solu-
tion compared to the solution from [7], which means that
the minus sign actually denotes an improvement. The re-
sults are rather good, since -50% practically means twice
faster, -67% three times faster etc, while +100% means
twice slower (ie the first solution is twice faster). Simi-
lar results in the delay analysis were obtained using the
timing evaluation based on Logical effort theory [8].

At the end, it should also be mentioned that the pro-
posed technique for counting zeros uses about 10% less
number of basic logic gates for the same operation which
consequently leads to less area occupation in the inte-
grated circuit.

5 CONCLUSION

A design methodology for a leading zeros counter is
presented in this paper. The proposed design represents
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a basic module for 32-bit data, while the used methodol-
ogy is also easily applicable to a design of leading zeros
counter for data length of 4j bits, for 4 < 5 < 8. By
adding simple logic to multiple copies of the basic mod-
ule, we can easily process longer data, like 64 bit, 128 bit,
or more.

Major advantage of this leading zeros counter are
smaller delays along the circuit paths comparing to the
similar circuits, for the 0.65 pm technology, which makes
it faster and more reliable in time. Another improve-
ment of the proposed solution is a relatively smaller hard-
ware requirement. To implement the circuit blocks (NLCi,
BNE, MUX), basic logic gates are used. This methodol-
ogy also enables a simple implementation of the circuit
modules to achieve upscaling for longer data, with small
delay increase.
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