Electrically Active Defects In Solar Cells Based On Amorphous Silicon/Crystalline Silicon Heterojunction After Irradiation By Heavy Xe Ions

Open access


The contribution is focused on the diagnostics of structures with a heterojunction between amorphous and crystalline silicon prepared by HIT (Heterojunction with an Intrinsic Thin layer) technology. The samples were irradiated by Xe ions with energy 167 MeV and doses from 5 × 108 cm−2 to 5 × 1010 cm−2. Radiation defects induced in the bulk of Si and at the hydrogenated amorphous silicon and crystalline silicon (a-Si:H/c-Si) interface were identified by Deep Level Transient Spectroscopy (DLTS). Radiation induced A-centre traps, boron vacancy traps and different types of divacancies with a high value of activation energy were observed. With an increased fluence of heavy ions the nature and density of the radiation induced defects was changed.

[1] TANAKA, M.—TAGUCHI, M.—MATSUYAMA, T.—SAWADA, T.—TSUDA, S. H.—NAKANO, S. H.—HANAFUSA, H.—KUWANO, Y. : Development of New a-Si/c-Si Hetero-junction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer), Jpn. J. Appl. Phys. 31 No. 11 (1992), 3518–3522.

[2] TERAKAVA, A.—ASAUMI, H. T.—KOBAYASHI, S.—TSUNOMURA, Y.—YAGIURA, T.—TAGUCHI, M.—YOSHIMINE, Y.—SAKATA, H.—MARUYAMA, E.—TANAKA, M. : High Efficiency HIT TM Solar Cells and Effects of Open Circuit Voltage on Temperature Coefficients, Proceedings of the 15th PVSEC, Shanghai, 2005, pp. 661–663.

[3] MIKOLÁŠEK, M.—NEMEC, M.—VOJS, M.—JAKABOVIČ, J.—ŘEHÁČEK, V.—ZHANG, D.—ZEMAN, M.—HARMATHA, L. : Electrical Transport Mechanisms in Amorphous/Crystalline Silicon Heterojunction: Impact of Passivation Layer Thickness, Thin Solid Films 558 No. 7s (2014), 315–319.

[4] SCHULZE, T. F.—KORTE, L.—CONRAD, E.—SCHMIDT, M.—RECH, B. : Electrical TransportMechanisms in a-Si:H/c-Si Heterojunction Solar Cells, J. Appl. Phys. 107 No. 023711 (2010), 1–3.

[5] ZEMAN, M.—DONG, Z. : Heterojunction Silicon Based Solar Cells, Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cell, Springer, Berlin, Heidelberg, 2012, pp. 13–43.

[6] HARMATHA, L.—MIKOLÁŠEK, M.— NEMEC, M.—JANÍČEK, F.—HRUBČÍN, L.—SKURATOV, V. A.: Electrical Properties of Solar Cells with a Heterojunction of Amorphous and Crystalline Silicon Irradiated by Heavy Xenon Ions, J. Electr. Engineering 65 No. 7s (2014), 30–33.

[7] FANG, R.—VELO, Y. G.—CHEN, W.—HOLBERT, K. E.— KOZICKI, M. N.—BARNABY, H.—YU, S. : Total Ionizing Dose Effect of γ-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory, Appl. Phys. Letters 104 No. 12 (2014), 183507.

[8] MIKOLÁŠEK, M.—STUCHLÍKOVÁ, L’.—HARMATHA, L.—VINCZE, A.—NEMEC, M.—RACKO, J.—BREZA, J. : Capacitance Study of Carrier Inversion at the Amorphous/Crystalline Silicon Heterojunction Passivated by Different Thicknesses of i-layer, Appl. Surface Science 312 (2014), 152–156.

[9] AURET, F. D. : Considerations for Capacitance DLTS Measurements using a lock-in amplifier, Rev. Sci. Instrum 57 (1986), 1597.

[10] LONDOS, C. A. : Capacitance Transient Studies of aMetastable Defect in Silicon, Phys. Rev B34 (1986), 1310.

[11] UWE, R.—ABOU-RAS, D.—KIRCHARTZ, T. : Advanced Characterization Techniques for Thin Film Solar Cells, John Wiley & Sons, Berlin, Heidelberg, 2011, pp. 13–43.

Journal of Electrical Engineering

The Journal of Slovak University of Technology

Journal Information

IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 76 6
PDF Downloads 72 54 5