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COMPRESSED SENSING OF COMPLEX
SINUSOIDS OFF THE GRID

Cheng Ping “— Shi Liu " — Zhao Jiaqun ™

To solve off-grid problem in compressed sensing, a new reconstruction algorithm for complex sinusoids is proposed. The
compressed sensing reconstruction problem is transformed into a joint optimized problem. Based on coordinate descent
approach and linear estimator, a new iteration algorithm is proposed. The results of experiments verify the effectiveness of

the proposed method.
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1 INTRODUCTION

Compressed sensing (CS) has received much attention
in wide application recently. As complex sinusoids signal
model is widely used in application, research of CS for
complex sinusoids is very important. However parameter
discretization brings off-gird problem in compressed sens-
ing, which makes its performance degrade significantly. In
2011, Y. Chi studied the sensitivity of Basis Pursuit (BP)
algorithm to off the grid, and pointed out it needs more
consideration in application [1]. D. H. Chae proposed that
building up CS basis element more finely can reduce the
effect of off-grid [2]. However, the method needs more re-
construction time and more measurements. To decrease
the computational complexity, the grid can be refined
only around the regions where sources are present [3]. For
widely separated objects, A.F. Jiang proposed a method
based on band exclusion and local optimization [4]. Under
some special conditions, the methods proposed in [5, 6]
can be used. M. F. Duarte has proposed spectral com-
pressed sensing (SCS) to solve off-grid problem [7]. L. Hu
proposed a method based on basis refinement for complex
sinusoids [8], which has better performance than SCS.
As the computational cost is very high, L. Hu then de-
veloped a fast and accurate reconstruction algorithm [9],
which applies a liner approximation to the true unknown
dictionary. G. Tang has investigated compressed sensing
off the gird and proposed an atomic norm minimization
approach [10]. But it is provided that the frequencies are
well separated. In this paper, a novel compressed sens-
ing reconstruction algorithm for complex sinusoids is pro-
posed, which selects dictionary adaptively according sig-
nal and can eliminate off-grid problem. Compared with
the existing methods, the proposed algorithm has several
advantages. The first advantage is that it is very simple
and has low computational cost. The second advantage

is that it does not require that the frequencies are well
separated. The third advantage is that it can achieve high
reconstruction accuracy.

2 THE PROPOSED METHOD

Supposing signal x,, can be modeled as a superposi-
tion of K complex sinusoids

K
Ty =Y sie I n=01,... ,N-1 (1)
=1

where f; € [0,1) is the ¢-th component normalized fre-
quency and s; € C' is the corresponding complex ampli-

tude. Let f = [f1, f2,..-,fx]", s = [51,32,...,‘51(]—'—,
A(f) = [b(f1)b(f2)...b(fk)] and b(f;) = [e 9270,

. . T
ei2mfil o e—i2nfi (N_l)} , (1) can be expressed as

= A(f)s. (2)

In compressed sensing, supposing ¢ is measurement ma-
trix of size M x N ,measurement y can be expressed as

y=0r+e¢ (3)

where y=[yo,y1,...,ynm—1]' and e=]eq, e, .. 1"

is noise.

EM-1

As frequency components of x are not known, a pre-
defined Fourier dictionary is adopted in compressed sens-
ing. For an arbitrary frequency grid f = [f1, fo2,..., fp] €
[0,1)F (where P is the number of grids), the correspond-
ing Fourier dictionary is D(f) = [b(f1) b(f2) ... b(fp)].
When there exist off-grid frequencies, the performance of
CS degrades greatly, which is called off-grid problem.

College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, People’s Republic of China,
chengping1219@126.com * College of Science, Hohai University, Nanjing 211100, Republic of China, jqzhao_03@163.com

DOI: 10.2478/jee-2015-0039, Print ISSN 1335-3632, On-line ISSN 1339-309X (© 2015 FEI STU



Journal of ELECTRICAL ENGINEERING 66, NO. 4, 2015

If a frequency grid fs = [fs1, fs2,.-., fsp| contains
all component frequencies of x, there is no off-grid prob-
lem. Let D(fg) be the Fourier dictionary corresponding
to fs and a be a vector of sparse representation coeffi-
cients of x with respect to D(fs), ie © = D(fs)a. The
measurement model (3) can be reformulated as

y=®D(fs)a+e¢. (4)

Thus, the problem to reconstruct z is to recover fg
and a from y based on the model given in (4), which is
to minimize the following cost function

J(a, f) = ly = @D(fal; + Alall?, 0<p<1. (5)

To get the joint minimization, a coordinate descent
approach can be employed, which optimizes dictionary
parameters and sparse coefficients alternately

§4 = argminlly — @D(£)a [+ Ao 7

. ) (6)
= argminl|y — 2D(f,)a

4 argully — 8Dl el O

where t is the number of iterations.
(t)

However when there is mismatch between fs

fs, there is big error in a® . In the above iteration, the
t+1)

and

estimation of fs( is based on a(t), and then the esti-
mation of a(t*1) is based on fs(tﬂ). Therefore the above
iteration can not guarantee convergence to fs and a.

In [11], the result of CS is improved by providing more
accurate amplitude and phase estimates using linear esti-
mator. Inspired by this idea, a novel compressed sensing
reconstruction algorithm is proposed, which has the fol-
lowing steps:

(1) Initial frequency estimation: Let t = 1. A con-
ventional compressed sensing algorithm (such as BP, FO-
CUSS [12], or Matching Pursuit) is used to get initial
frequency location fs(l) and sparse representation coef-
ficients a(®). Adaptive gird refinement can be used here
[3]. As some of frequencies are off the grid, the amplitude
estimation is not correct.

(2) Amplitude estimation: Only selecting the columns
corresponding to K local maximum of the nonzero el-
ements of a*~1) the matrix <I>D( S@) of size M x P
is scaled down to much slimmer matrix R of size M x
K. Thus the original underdetermined problem becomes
overdetermined [11]

y=Ry+e (8)

where v is complex amplitude for the K frequency com-
ponents of a® |
The amplitude ~ is finally found by [11]

v = (R¥R)'RHy (9)
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where R denotes conjugate transpose of R.

Then a® can be obtained: values in local maximum
locations are set by + and other values are set by zeros.

t+1) is obtained

(3) Accurate frequency estimation: fs(
based on (6).

(4) Accurate amplitude estimation: Let t =t + 1. Do
step (2) to get accurate complex amplitude estimation
a® .

(5) Repeat step (3) and (4) until estimation accuracy
is satisfied.

In the above algorithm, step (2) supplies more accurate
complex amplitude for CS by using linear estimator. So
only executing step (1) and step (2), the estimation per-
formance can also be improved. A method which consists
of step (1) and step (2) is called Modi-CS in the following.
Step (3) ~ (5) is a modified coordinate descent approach,
which can improve the estimation performance further.

3 EXPERIMENTAL RESULTS
AND DISCUSSION

Numerical experiments are done to verify the effective-
ness of the proposed method. In the experiments, signal
x with length N = 320 contains K = 5 complex sinu-
soids. Their normalized frequencies and amplitudes are
distributed randomly over [0, 1) and the complex unit cir-
cle respectively. Measurement matrix @ is random Gauss
matrix, and a length M = 64 measurement is obtained
according (3). The measurement noise level is measured
by “peak signal-to-noise ratio” (PSNR), which is defined
as PSNR = 1010g10(1/02), where 02 denotes the vari-
ance of the measurement noise. The PSNR is varied from
5dB to 45 dB. For each PSNR, 100 independent trials
are executed. Reconstruction accuracy is measured by the
“reconstruction signal-to-noise ratio” (RSNR), which is
defined as

RSNR = 201og;o ([l]2/ll= — #>) (10)
where Z is the estimate of x. Average RSNRs of different
PSNR levels are shown in Fig. 1 for CS, Modi-CS and the
proposed method. Here FOCUSS is used as a CS method
and it is used in step (1) in Modi-CS and the proposed
method.

It can be seen that the proposed method always out-
performs the other two methods whenever the PSNR is
high or small. As the frequencies are randomly selected,
for any predefined Fourier dictionary, there are off-grid
frequencies. So the performance of CS degrades signifi-
cantly. As the proposed method can solve off-grid prob-
lem, its performance is much better. Furthermore, for the
proposed method, the signal reconstruction accuracy and
the noise level are approximately linear, which indicates
the proposed method is robust to the noise in the mea-
surements.

A wide range of numerical experiments demonstrated
that the proposed algorithm can reconstruct signals with
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Fig. 1. Averaged RSNRs versus the measurement noise level

closely-space component frequencies. Although we take
complex sinusoids as the preferred application, the pro-
posed algorithm is applicable to other signals.

4 CONCLUSION

To solve off-grid problem in compressed sensing of
complex sinusoids, a novel reconstruction method is pro-
posed. Compressed sensing problem is recast as a joint
minimization problem. A novel iterative algorithm is pro-
posed to get the joint minimization. The effectiveness of
the method is verified by experiments.

In some applications, such as DOA estimation, ISAR
(inverse synthetic aperture radar) imaging and tomo-
graphic SAR, high-quality compressed sensing recon-
struction is needed. However compressed sensing can not
supply high quality reconstruction in presence of off-grid.
The proposed method has supplied a simple and effective
method to eliminate off-grid problem in compressed sens-
ing. The algorithm does not require that the frequencies
are widely separated. It not only can be used for complex
sinusoids but also can be used for other signals.
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