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STORYTELLING VOICE CONVERSION: EVALUATION
EXPERIMENT USING GAUSSIAN MIXTURE MODELS
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∗∗
— Daniela Ďuračková
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In the development of the voice conversion and personification of the text-to-speech (TTS) systems, it is very necessary
to have feedback information about the users’ opinion on the resulting synthetic speech quality. Therefore, the main aim of
the experiments described in this paper was to find out whether the classifier based on Gaussian mixture models (GMM)
could be applied for evaluation of different storytelling voices created by transformation of the sentences generated by the
Czech and Slovak TTS system. We suppose that it is possible to combine this GMM-based statistical evaluation with the
classical one in the form of listening tests or it can replace them. The results obtained in this way were in good correlation
with the results of the conventional listening test, so they confirm practical usability of the developed GMM classifier. With
the help of the performed analysis, the optimal setting of the initial parameters and the structure of the input feature set
for recognition of the storytelling voices was finally determined.

K e y w o r d s: storytelling voice conversion, spectral and prosodic features of speech, evaluation of speech quality, GMM
classifier

1 INTRODUCTION

Storytelling speaking style may be used for narration

of stories for children [1, 2] or in special book reading soft-

ware for blind users [3]. Prosodic variations corresponding

to fairy tale speech can improve not only storytelling qual-

ity but naturalness as well [4]. Our previous research im-

provement of text-to-speech (TTS) synthesis was aimed

at storytelling speaking style in addition to its multi-

voice realization [5] and expression of emotional states

[6]. The achieved results of performed storytelling voice

transformation had shown existence of audible differences

between the basic sentences generated by the TTS system

and those modified by storytelling voice transformation,

however, not all cases of applied storytelling voices had

good naturalness [7]. For that reason, it is very neces-

sary for us to get feedback informati on about the users’

opinion on the resulting synthetic speech quality. Several

subjective and objective methods are used to verify the

quality of the produced synthetic speech [8, 9]. The most

often used subjective method is the listening test; among

the objective methods, the automatic speech recognition

system yielding the final evaluation in the form of a recog-

nition score can be used [10]. These recognition systems

are often based on neural networks [11], hidden Markov

models [12], or Gaussian mixture models (GMM) [13]. As

these statistical evaluation methods work automatically

(without any human interaction) and the achieved results

can be subsequently numerically compared, we decided to

use the GMM-based approach in our evaluation experi-

ment.

Motivation of this work was to verify that the qual-
ity of synthetic speech produced by a TTS system af-
ter applied storytelling voice conversion can be evalu-
ated by identification of the original storytelling voice
and whether the identification score depends on the used
method of speech modelling and production. Spectral fea-
tures like mel frequency cepstral coefficients together with
energy and prosodic parameters are most commonly used
in GMM speaker or speech recognition [13] as well as envi-
ronmental sound classification [14, 15]. However, because
of correspondence with applied storytelling voice transfor-
mation method [7], the speech features determined from
the spectral envelopes, as well as the supplementary spec-
tral parameters, and the prosodic parameters were used in
the described GMM identification. The performed exper-
iments were next oriented on analysis of the influence of
initial settings in the GMM creation and training phases
(number of used mixture components and processed iter-
ations) and different types of used speech features on cor-
rectness of the GMM identification. In addition, the com-
putational complexity (computing times) in dependence
on the number of used mixture components is analysed
in the paper.

2 SUBJECT AND METHOD

2.1 Applied Method for Storytelling Voice Con-

version

The storytelling voice conversion method is based on
spectral transformation and prosodic parameters modifi-
cation according to the prototype in a similar way as it
had been used for emotional style conversion [16]. More
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Fig. 1. Block diagram of post-processing application for storytelling speech conversion
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Fig. 2. Visualization of the non-linear frequency scale mapping
functions for different values of γ parameter used for spectral en-
velope transformation in correspondence to the transformed voice

type for fs = 16 kHz

Table 1. Summary results of mean significant frequencies ratios
between different storytelling voices and the TTS (for all vowels)

Teller:TTS Prince:TTS Witch:TTS Medul:TTS
mean ratio γ 1.0924 1.1146 1.2214 1.2026

detailed description of the applied cepstral analysis and
synthesis method can be found in [17], and the prepa-
ration process of storytelling voice prototypes is simi-
lar to the method of emotional style prototype creation
[7]. The storytelling voice conversion method was real-
ized as the post-processing operation on the speech ut-
terances produced by the TTS system — see the block
diagram in Fig. 1. The cepstral analysis of the proto-
type as well as the source sentences is performed with
segmentation in correlation with the used storytelling
voice (male / female), and speech signal processing is per-
formed in dependence on the determined type of voice-
ness (voiced/unvoiced segment). The developed conver-
sion method consists of the following steps.

• Analysis of significant frequency positions, calculation
of mean ratios between different storytelling voices and
TTS.

• Evaluation of the mean values of the spectral flatness

measure (SFM) [18].

• Prosodic parameter analysis — determination of the

pitch frequency (F0), energy (En), and time duration

(DUR) contours from the original sentences.

• Cepstral analysis of source sentences generated by the

TTS system with basic prosody by rules.

• Linear time scale mapping from the original to the

target sentence prosodic contours applying the com-

pression or expansion of the virtual contours of VF0,

VEn, and VDUR.

• Building of the storytelling prototypes for modification

of prosodic parameters as the relative RVF0, RVEn,

and RVDUR contours.

• Resynthesis of the target sentences by the cepstral

speech model with transformed significant frequency

positions, and with applied modification of the SFM

values and prepared prosodic prototypes.

The stationary parts of vowels ‘a’, ‘e’, ‘i’, ‘o’, and ‘u’

for each of four storytelling voices and the TTS synthetic

voice were extracted from utterances in the same pho-

netic context. Subsequently, the analysis of positions of

the first six significant frequencies f1 ÷ f6 in the fre-

quency interval from 80 Hz to 5.5 kHz was carried out

on the spectral envelope obtained by inverse B-spline fil-

tering. From these results, the mean f1 ÷ f6 values for

all vowels and all voices were determined. In the next

step, the mean ratios γ of all these frequencies between

different voices and the TTS were calculated — see the

values in Table 1 and visualization of the used non-linear

frequency transformation functions in Fig. 2. The spec-

tral flatness measure values were determined only from

the voiced frames, and subsequently the SFM ratios be-

tween different voices and TTS were calculated. Each of

the storytelling voice prosodic prototypes consists of five

relative virtual contour files RVF0, VRDUR, and VREn

separately for voiced and unvoiced frames — see the mean

values in Tab. 2.
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Table 2. Mean values of SFM and prosodic parameter ratios in
dependence on the frames voiceness

Voice type/
F0

DUR (voiced/ En (voiced/ SFM

X:TTS ratio unvoiced) unvoiced) (voiced only)

Teller 1.05 1.02/0.91 0.99/0.85 1.6336

Prince 1.18 0.97/0.64 1.57/0.99 1.8577

Witch 0.88 1.94/1.75 2.15/2.17 1.8922

Medul 1.28 0.79/1.18 0.75/1.04 1.9883

2.2 Basic Description of the Used GMM Classi-

fication Method

The Gaussian mixture models [13] can be defined as a
linear combination (mixture) of multiple Gaussian proba-
bility distribution functions Pk(x) of the input data vec-
tor x

f(x) =

M
∑

k=1

αkPk(x) , (1)

where αk is the weighting parameter and M is the num-
ber of these functions with dimension d expressed as

Pk(x)=
1

√

(2π)ddet(
∑

k)
exp

(

−
(x−µk)

⊤
∑−1

(x−µk)

2

)

,

(2)
where

∑

k is the covariance matrix and µk is the vector
of mean values. For the GMM creation it is necessary to
determine

∑

k , µk , and αk from the input training data.

Using the expectation-maximization (EM) iteration algo-
rithm the maximum likelihood function of the GMM is
found. For control of the EM algorithm, the Ngmix pa-
rameter represents the number of used mixtures in each
of the GMM models, and the Niter corresponds to the
number of iteration steps. The iteration stops when the
difference between the previous and the current probabil-
ities fulfils the internal condition or the predetermined
maximum number of iterations is reached. The GMM
classifier returns the probability (so called score) that the

tested utterance belongs to the GMM model. The result-

ing score i∗ is given by the maximum overall likelihood

for the given class using the score(T, n) representing the

likelihood value of the GMM classifier for the models

trained for the current n-th class in the evaluation pro-

cess, and the input vector T of the features obtained from

the tested sentence. This relatively simple and robust ap-

proach cannot achieve the best recognition accuracy in

all cases. In our experiment the developed GMM-based

identification algorithm using the accumulated score was

used for final decision about the classified original story-

telling voice. The accumulated score can be expressed by

the relation

iACC = argmax
1≤n≤M

⋃P

p=1
(i∗(n, p) ≡ n) , (3)

where i∗(n, p) represents the resulting score for the cur-

rent p-th window, P is the number of windows in the

sentence, and the union operator represents the occur-

rence rate of the n-th class. Practical realization of the

described identification algorithm resulted in an experi-

mental one-level structure of the GMM classifier for clas-

sification of the original storytelling voice as shown in the

block diagram in Fig. 3. The original storytelling voice

identification block uses the GMM models that were cre-

ated and trained on the data of the feature vectors ob-

tained from the original sentences with different story-

telling voices performed by actors. This proposed identi-

fier architecture expects that input feature vectors from

the tested sentences with the transformed storytelling

voices are processed along with the feature vectors from

the sentences resynthesized in a neutral style by the TTS

system (for comparison). The obtained individual values

of score(T, n) are further used for calculation of the accu-

mulated score iACC and depending on the used discrimi-

nation level the M output classes of original storytelling

voices are finally determined.
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Fig. 3. Block diagram of the developed GMM-based classifier for identification of the original storytelling voice from converted synthetic
speech produced by the TTS system
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2.3 Determination of Speech Spectral Features

and Prosodic Parameters

The speech signal analysis is performed in the follow-
ing way: in the first step the fundamental frequency F0
is determined from the input sentence after segmenta-
tion and weighting. The obtained F0 contour is subse-
quently used for determination of the supra-segmental
parameters describing the microintonation component of
speech melody. As the next operation, the smoothed spec-
tral envelope and the power spectral density (PSD) are
computed from the speech frames. These basic parame-
ters are used for further processing — determination of
supra-segmental features, basic and supplementary spec-
tral properties. The obtained values are subsequently pro-
cessed statistically to determine representative values for

the feature vectors with the length Nfeat used in the
GMM classifier — see block diagram in Fig. 4.

Spectral features of speech can be determined in the
course of cepstral analysis. To eliminate the frames with
very low energy of the analysed speech signal, the energy
contour is calculated from the first cepstral coefficient
c0 [17] and the frames in the beginning and at the end
of the sentences with the energy lower than the threshold
Enmin are removed — see the demonstration example
in Fig. 5. After this limitation, the rest frames are used
for processing — computing of the smoothed spectral
envelope, the PSD values, and other spectral properties
determination.

Cepstral coefficients {cn} obtained during the cep-
stral analysis bring information about spectral proper-
ties of the human vocal tract [17]. It means that these
coefficients can be directly used in the feature vector
for GMM classification. The basic spectral properties de-
scribe the shape of the spectrum obtained from the anal-
ysed speech segment. They include the first two formant
frequencies F1 , F2 , and their ratios (F1/F2) together
with the spectral centroid (SC) representing an average
frequency weighted by the values of the normalized en-
ergy of each frequency component in the spectrum, and
the spectral decrease (tilt). The estimation of the for-
mant frequencies and their bandwidths can be determined
directly from the linear prediction coding (LPC) poly-
nomial complex roots corresponding to the poles of the
LPC transfer function using the Newton-Raphson or the
Bairstow algorithm [19].

The cepstral speech analysis can be further used for de-
termination of the complementary spectral features [20]
including the spectral entropy (SE) as a measure of spec-
tral distribution quantifying a degree of randomness of
spectral probability density represented by normalized
frequency components of the spectrum, the SFM which
can be calculated as a ratio of the geometric and the
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Fig. 5. Pre-processing of the analysed speech signal: the input sentence generated by the TTS system (fs = 16 kHz, frame length = 24 ms)
together with F0 contour (left), En contour calculated from the first cepstral coefficient c0 , the determined threshold Enmin = 0.02,

and eliminated beginning and ending parts (right)
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arithmetic mean values of the power spectrum and was
also used for the storytelling voices transformation, and
harmonics-to-noise ratio (HNR) providing an indication

of the overall periodicity of the speech signal by the en-
ergy ratio between periodic and aperiodic components in
the signal [21].

Variations in the pitch and energy contours can also
be used for indication of supra-segmental changes in the
speech signal [22]. For this reason, the F0 is used for de-

termination of the supra-segmental parameters describing
the microintonation component of speech melody. The
differential contour F0DIFF can be obtained by subtrac-
tion of mean F0 values and linear trends (including the
zero crossings F0ZCR ). Further parameters represent mi-

crovariations of F0 (jitter) and the variability of the peak-
to-peak amplitude (shimmer).

Depending on the type of the feature, the resulting
values are calculated either from voiced frames of the
analyzed utterance or from both voiced and unvoiced
frames. The pitch period L recalculated from the F0

values is used for preliminary classification of voicing of
the frames. If the value L 6= 0, the processed speech frame
is determined as voiced, in the case of L = 0 the frame
is marked as unvoiced.

3 EXPERIMENTS AND RESULTS

For evaluation of applied storytelling speech conver-

sion the listening test called Determination of storytelling

speech type had been processed in 2008 [7]. In this test,
eighteen listeners (10 Slovaks and 8 Czechs, 13 men and
5 women) had chosen the storytelling speech type from

“Teller”, “Prince”, “Witch”, or “Cannot be recognized”.
The received results of this subjective evaluation ap-
proach in the form of a confusion matrix are presented
in Fig. 6. The main goal of our experiment was to make
a comparison with the results obtained by an objective

approach based on the GMM classifier.

Teller Prince Witch

Classified (%)

Teller

20

40

60

80

100

Prince

Witch
Not recogn.

Fig. 6. 2D representation of the confusion matrix of perceptual
result of the Determination of storytelling speech type listening

tests performed in 2008 [7]

The original storytelling speech corpus used for GMM
models creation, training, and testing consists of 65 sen-
tences from the storyWitch’s Garden containing four sto-
rytelling voices called “Teller”, “Prince”, “Witch”, and
“Medulienka” (a girl who likes a honey very much) per-
formed by a professional actor. Sentences with time du-
ration from 2.2 to 15.5 seconds were resampled from 44.1
to 16 kHz with an anti-aliasing filter. This speech mate-
rial was compared with the synthetic speech generated
by the Czech and Slovak TTS system based on the di-
phone inventory with cepstral description realized as the
speech engine for MS SAPI 5 standard [7, 16]. Synthesis
parameters were set as follows: male voice, fs = 16 kHz,
F0basic = 110 Hz, speech rate = 130%. The testing cor-
pus was created with the help of the above-mentioned
TTS system. It consists of 200 sentences altogether in
the Slovak language (with the average time duration of
3.54 seconds) — every evaluation set contains one basic
sentence (for comparison with its sound before applica-
tion of storytelling speech conversion) and four represen-
tative sentences for each of four storytelling speech types
(it means sixteen sentences with converted storytelling
speech). The performed experiment with GMM recogni-
tion of applied transformation of the storytelling voices,
the analysis and comparison was aimed at investigation
of

• influence of the initial parameter during the GMM cre-
ation on the resulting identification score: the number
of applied mixtures of the Gaussian probability density
functions Ngmix = {4, 8, 16, 32, 64, 128, 256} — see
the summarized mean values in the bar-graph and the
detailed basic statistical parameters in the box-plot in
Fig. 7,

• influence of the used number of training iterations
on the GMM classification accuracy for Niter =
{10, 50, 100, 500, 1000, 1500} is demonstrated in the
graphical form in Fig. 8,

• influence of different types of speech parameters used
in the three sets P0-P2 of the input feature vectors
— see the results for all four types of transformed
storytelling voices in the numerical form presented by
the Table 4 accompanied with the bar graphs in Fig. 9,

• comparison of obtained results of the original story-
telling voice recognition from sentences with the pure
TTS synthesis (using the cepstral source-filter model)
and sentences with applied storytelling voice transfor-
mation — see the 3D representation of the confusion
matrices in Fig. 10,

• comparison of computational complexity: CPU times
for the GMM creation and training phases as well as
mean values of the GMM classification accuracy for
different number of used mixtures; summarized for all
four types of transformed storytelling voices presented
by Table 5.

The length of the input feature vector Nfeat = 16
was experimentally chosen in correspondence with the ob-
tained results of previous research [23, 24]. These feature
sets contain the features determined from the spectral
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Fig. 7. Influence of the number of used mixtures on the GMM recognition accuracy; bar-graph of the mean values (left), box-plot of the
basic statistical parameters (right)
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envelopes, as well as the supplementary spectral parame-

ters, and the prosodic parameters as described in Table 3.

The table shows the structure of the three different fea-

ture sets P0-P2 that were used in detailed analysis of

influence on the GMM recognition accuracy. They com-

prise the basic spectral features, the higher-order statistic

parameters (skewness, kurtosis) of the first four cepstral

coefficients, the first two formant positions and values of

their ratios. In the case of the supplementary spectral

features, the first and the second-order statistics — mean

values and standard deviations (std) — were used as the

representative values in the feature vectors for GMM clas-

sification. For implementation of the prosodic speech pa-

rameters the basic statistical types (median, range of val-

ues, std, and/or relative maximum and minimum) were

used in the feature vectors.

For all presented comparison results holds that if not

defined otherwise, the used parameter setting in tables

or figure captions was: the feature set P0; Ngmix = 32,

Niter = 500. The obtained results are presented for vi-

sual comparison using the graphical form (the confusion

matrices and/or the bar graphs of the identification ac-

curacy in (%)) as well as numerical matching of the mean
values stored in tables. The GMM identification accuracy

was calculated from XA sentences with correctly identi-

fied original storytelling voice and the total number NU

of the tested sentences as (XA/NU )
∗100%. The values in

the confusion matrices were calculated in a similar way.

Table 3. Structure of the feature sets used for GMM identification

Feature set Feature type Statistical value Nfeat

P0 {HNR, spect. decrease, SC, SFM, SE, F0DIFF , jitter, shimmer} {min, rel. max, mean, median, std} 16

P1
{F1, F2, F1/F2 , spect. decrease, HNR, SFM, SE, {rel.max, mean, median, std, 16

F0DIFF , jitter, shimmer} skewness, kurtosis}

P2
{c1, - c4, spect. decrease, centroid, flatness, SE, F0DIFF , {mean, median, std, skewness} 16

jitter, shimmer}
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Fig. 9. Influence of the used feature set on the GMM recognition
accuracy; results for all four types of transformed voices

Table 4. Basic statistical values of the GMM recognition accuracy
in (%) documenting influence of the used type of the feature vectors

P0-P2; results for all four types of transformed voices

Value/feature set P0 P1 P2

Minimum 60.0 13.3 26.7
Maximum 93.3 100 100
Mean 73.3 63.3 66.7
Std 14.4 37.1 31.3

In the tasks of the overall evaluation for all four voices
(results shown in graphs of confusion matrices in Fig. 10)
the tested files are stored in a common directory and the
same method of classification accuracy calculation was
applied as described above.

As regards the developed GMM-based classifier, the
simple diagonal covariance matrix of mixture models was
applied in this identification experiment. The basic func-
tions from the Ian T. Nabney “Netlab” pattern analysis
toolbox [25] were used for creation of the GMM mod-
els, data training, and classification. For determination
of the spectral features and the prosodic parameters of
the synthesized as well as the original speech, the func-
tions from Matlab ver. 2010b environment with the help
of “Signal Processing Toolbox” and “Statistics Toolbox”
were applied. The computational complexity for two algo-
rithmic phases (the first one consisting of model creation
and training, and the second one containing classifica-
tion) was tested using the obtained mean CPU times on
the PC with the processor Intel(R) i3-2120 at 3.30 GHz,
8 GB RAM, and Windows 7 professional OS.

4 DISCUSSION AND CONCLUSION

The performed experiments have confirmed that the
proposed GMM-based evaluation method is practically
usable for recognition of different storytelling voices that
were transformed from the sentences generated by the
Czech and Slovak TTS system producing the synthetic
speech using the diphone speech inventory, the source-
filter speech model, and with the neutral (flat) prosody

generation by the rules [5, 7, 16]. It is also in correlation

with previous findings that the quality of synthetic speech

produced by a TTS system can be evaluated by the GMM

classifier and the identification accuracy depends on the

used method of speech modelling and synthetic speech

production [26]. In addition, unlike the subjective evalu-

ation approaches based on the listening tests, the objec-

tive evaluation methods can work automatically without

human interaction and the obtained results can be nu-

merically judged.

The secondary aim of our experiments — to find the

suboptimal setting of the initial GMM training param-

eters and the structure of the input feature set for the

storytelling voice recognition - was also fulfilled success-

fully. It is well known that higher number of Gaussian

mixtures can increase the recognition accuracy [27]. For

this reason, we perform an analysis of influence of the

used number of GMM mixtures the interval from 4 to 256

mixtures. The comparison of obtained results shows that

a relatively maximum of the summarized mean recogni-

tion accuracy was observed for all four transformed voices

together: 85% for the best case of Ngmix = 32 in com-
parison with 62% accuracy for the minimum number of

4 mixtures as shown in Fig. 7. Therefore, 32 Gaussian

mixtures were subsequently applied in the identification

process. On the other hand, a choice of the number of

iterations has not great influence, so the optimum value

Niter = 500 was chosen for use in next experiments.

The right choice of the input feature set has a signif-

icant influence on the achieved GMM identification ac-

curacy: the best results are obtained in the case of the

set P0 which represents a mix of supra-segmental, basic,

and supplementary spectral features. This analysis also

shows that some types of speech features are not suitable

for this identification task; it holds especially for the fea-

tures based on formant frequencies and their bandwidths

— see the worst results for the set P2 which was affected

mainly in the case of the “Teller” voice. On the other

hand, the type of the used representative value is not

critical.

The main recognition experiment confirms that the

obtained recognition accuracy corresponds to the degree

of the voice transformation. Detailed analysis of obtained

values per storytelling voices shows that the best results

are achieved for the voices of “Witch” and “Medul” that

had been converted with greater changes of spectral prop-

erties (modification of formant positions — practically

similar to male → female voice conversion [5]) as well as

the prosodic parameters (energy and duration modifica-

tion) — see the bar-graph in Fig. 9 and the confusion

matrix in Fig. 10. The results obtained in this way are in

good correspondence with the values given by the clas-

sical listening test approach applied in the framework of

our previous experiments [7] as is documented by com-

parison with the confusion matrix in Fig. 6. Although we

expected even distribution in all four output classes when
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Fig. 10. 3-D representation of confusion matrices of the GMM recognition: sentences with applied storytelling voice transformation (left),
from sentences with the pure TTS synthesis (right)

Table 5. Comparison of the computational complexity (CPU time in (s)) for different number of used mixtures; summarized for all
transformed storytelling voices

Phase/Ngmix 4 8 16 32 64 128 256

Creation and training* 7.3 10.5 16.3 30.9 61.7 124.6 266.2

Identification** 0.60 (25.2) 0.61 (27.8) 0.64 (27.2) 0.70 (27.4) 0.83 (33.4) 0.98 (39.9) 1.33 (50.9)

Total time 7.80 10.51 16.84 31.60 62.53 125.58 267.53

*) Summary values for all transformed storytelling voices (4 models).

**) Mean values per sentence including the standard deviation values in [ms] (in parentheses).

using the pure output of the TTS system, the GMM iden-

tification of sentences without storytelling voice conver-

sion gives the classification “Teller” for all voices — see

the confusion matrix in Fig. 10. In principle this result is

correct: in this case there were only minimal changes in

spectral and prosodic parameters of the original TTS.

From the final analysis of the computation complexity

follows that use of the maximum number of 256 mix-

tures increases the CPU time more than 8 times when

compared with 32 mixtures (and approximately 36 times

higher CPU time than for 4 mixtures) especially in the

GMM creation and training phase as documented by the

values in Table 5. Therefore, use of 32 mixtures seems

to be the best choice: in comparison with the minimum

number of 4 mixtures it causes increase in the mean CPU

time only four times, which is acceptable. Moreover, the

maximum value of Ngmix = 256 does not bring the best

results of the recognition accuracy.

Increase of the GMM identification accuracy can be

expected if the full covariance matrix or the probabilistic

PCA (Principal Component Analysis) [28] is used for

GMM model creation, training, and employment in the

classification process. Further, we will try to use these

methods for GMM identification although at the expense

of higher computational complexity. Finally we plan to

perform a larger comparison using the higher number of

storytelling voices as well as testing the sentences from

stories in other languages (English, German, Italian, etc.).
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202 J. Přibil — A. Přibilová — D. Ďuračková: STORYTELLING VOICE CONVERSION: EVALUATION EXPERIMENT USING . . .

Conference Electronic Speech Signal Processing ESSP 05 joined
with the 15th Czech-German Workshop Speech Processing (Vch,

R., ed.), 2005, pp. 402–408.

[6] PŘIBILOVÁ, A.—PŘIBIL, J. : Spectrum Modification for
Emotional Speech Synthesis, In: Multimodal Signals: Cognitive
and Algorithmic Issues (Esposito, A., Hussain, A., Marinaro,

M., Martone, R., eds.), LNAI 5398, Springer-Verlag Berlin Hei-
delberg, 2009, pp. 232–241.
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