P DE GRUYTER

OPEN

G

Journal of ELECTRICAL ENGINEERING, VOL. 66, NO. 4, 2015, 185-193

AN EFFICIENT FUNCTIONAL TEST GENERATION METHOD
FOR PROCESSORS USING GENETIC ALGORITHMS

Jan Hudec — Elena Gramatova

The paper presents a new functional test generation method for processors testing based on genetic algorithms and
evolutionary strategies. The tests are generated over an instruction set architecture and a processor description. Such
functional tests belong to the software-oriented testing. Quality of the tests is evaluated by code coverage of the processor
description using simulation. The presented test generation method uses VHDL models of processors and the professional
simulator ModelSim. The rules, parameters and fitness functions were defined for various genetic algorithms used in automatic
test generation. Functionality and effectiveness were evaluated using the RISC type processor DP32.

Keywords: processor, testing, functional test, test generation, genetic algorithm, evolutionary strategy

1 INTRODUCTION

New technologies, higher chip complexity and increas-
ing clock frequencies give new challenges and issues for
testing complex digital systems integrated on a chip (SoC
— system on chip). Testing and design for testability of
SoCs play a prominent role not only in design and manu-
facture processes but also during their lifetime in applica-
tions. Processors are basic and the most complex elements
in SoCs therefore their testing needs continually new test
generation methods and test application techniques dur-
ing their verification, SoCs manufacture testing and re-
liable lifetime run. Traditional test techniques based on
sequential and structural automatic test pattern genera-
tion (ATPG) are too computational demanding for cir-
cuits owning the complexity of today’s processors [1]. In
this context, functional testing processors achieves “come
back” in research and practical cases targeted mainly to
development of the new functional test generation meth-
ods which can be efficiently automatized together with
test quality evaluation.

Recently, new approaches and the test generation
methods have been developed and published which are
based on self-testing and instruction set architecture
(ISA). The test generation methods, named software-
based self-testing (SBST) methods, have been developed
for processor models at register transfer level (RTL). Self-
testing means that the tests can be performed on a tested
processor without using an automatic test equipment
(ATE) and/or as additional tests to structural tests of
processors integrated in SoCs after their manufacturing.
Such self-tests can be used also during verification in a
design process of processors and SoCs with processors.
In addition, the functional tests can be applied any time

when the processor is in idle time during its or SoC life-
time if necessary. Software-based testing means that the
functional tests for a processor consists of various ordered
sequences of instructions from its ISA and selected data
memorized in registers. Such methods are especially at-
tractive when no structural information about processors
is available and they are independent on used technology.
It is their advantage that can be reused for the processors
implemented in another technology or in various SoC ap-
plications. Minimum or even no circuit modifications are
needed with SBST to run the test and it is performed
in normal operating mode. Moreover, once the test code
has been uploaded in the system, the test is completely
autonomous, and can be run at speed relying on a free
running clock provided eg by used ATE. Besides of fault
coverage other important aspects are needful to consider
as the code length, the test program run duration and
power consumption [1].

Different approaches and methods can be found in
literature for the functional test generation, addressing
various fault models and based on assorted techniques.
Several methods have been published for the SBST tests
generation [1-5] and some of them use genetic algorithms
(GAs) [6-9]. Quality of generated tests is solved over the
processor model using a hardware description language
(HDL), eg VHDL, Verilog and professional simulators or
fault simulators based on specified fault models. The sim-
plest ATPG approach is to use the professional simulators
with functionality of covered codes calculation, covered
registers during data transfer over the processor model. It
was experimentally evaluated that if a SBST test shows
high code coverage then also can achieve high and suf-
ficient coverage of stuck-at faults (stuck-at 0, stuck-at
1). The high code coverage means app. 90 % code cover-
age [8].

* Faculty of Informatics and Information Technologies of the Slovak University of Technology Ilkovicova 2, 842 16 Bratislava, Slovakia,

jan.hudec@stuba.sk, elena.gramatova@stuba.sk

DOI: 10.2478/jee-2015-0031, Print ISSN 1335-3632, On-line ISSN 1339-309X (© 2015 FEI STU

186 J. Hudec — E. Gramatova: AN EFFICIENT FUNCTIONAL TEST GENERATION METHOD FOR PROCESSORS USING GENETIC ...

The functional test consisting finite ordered sequences
of instructions is named as test program [9] or test mix
[10] (this term is used in the paper). Various methods
for automatic test mixes generation have been published
till now and the most of them are based on GAs with
one selected evolutionary strategy (ES) and randomly se-
lected the first population [6, 8]. Based on these results,
a new test generation method has been developed using
different types of GAs with specific first population and
possibilities to change ES according feedback quality of a
generated test mix. The main features of the new test gen-
eration method are adaptability, flexibility and lower time
consummation for finding optimal test mixes with ac-
cepted code coverage. Some rules and strategies have been
defined for the new method and its automatic implemen-
tation for developing an effective ATPG for processors.
The new method has been constructed for VHDL (very
high speed integrated circuits description language) mod-
els of processors and their ISA. A software environment
has been designed based on using simulator ModelSim
for code coverage calculation [11]. Experiments shown ef-
ficiency, flexibility and adaptability of the developed test
generation method with very good code coverage results
and short time consuming for test mixes generation in
comparison with published results.

The paper is organized as follows. The next section
presents a state of the art about functional testing pro-
cessors based on SBST principles. Section 3 describes the
new test generation method, defined rules and strategies
for using GAs with feedbacks and changing ESs, suitable
for automatic implementation. Effectiveness of automati-
cally generated test mixes has been evaluated by the code
coverage in experiments over a processor model in VHDL
and using the simulator ModelSim. Experimental results
over the DP32 processor model in VHDL and its ISA are
presented in Section 4 before conclusion.

2 RELATED WORK TO SBST METHODS

The key idea of SBST type of functional tests for
processors is to exploit on-chip programmable resources
to run normal programs that testing a processor itself.
The processor applies functional test programs — test
mixes using its native ISA with elimination of the need for
an additional test-specific hardware. Such test mixes are
applied at the processors actual operating frequency that
is advantage in comparison with ATE structural testing.

A test mix (test program) is a valid sequence of fi-
nite and ordered assembly instructions, that is fed to the
processor through its normal execution instruction mech-
anism (e the processor executes it like any other func-
tional program). The main goal of the test program is
to cover any possible design or production defects in the
developed or integrated processor in SoCs or embedded
systems.

The SBST features and advantages are [1]:

e Non-intrusiveness. SBST does not need any processor
modification and no extra power consumption is pro-
duced in comparison to the normal operation mode.

o At-speed testing. Test program application and re-
sponses collection are performed at the processors ac-
tual speed, which enables screening of delay faults that
are not observable at lower testing frequencies.

e No over-testing. SBST concentrates on the same cir-
cuitry used in the normal processor operations and
therefore avoids test overkill, and thus detection of
faults that would never manifest during the normal
processor operation. This leads to significant yield
gains and also shorting test time.

o [In-field testing. Self-test programs from manufacturing
testing can be reused in the field throughout product
lifetime which is very important in nowadays complex
applications.

Unfortunately, the SBST methods show some limita-
tions and disadvantages [4]:

e Some faults can modified the test program flow and
potentially can leaded to an endless execution, making
it difficult to take back the control of the system at the
end of the test.

e Some memory addresses are never accessible because
not reserved to the test procedure, therefore resulting
in a coverage loss.

e Size and execution time of the test could be prohibitive
in case of stringent real-time application requirement.

o IP (intellectual property) protection is not guaranteed,
since the test program may reveal details about the
processor core implementation.

Designers and test engineers have to decide where and
when the SBST test can be applied for processors based
on the mentioned advantages and disadvantages. Cur-
rently published SBST approaches and methods do not
necessarily aim to substitute other established functional
or structural testing approaches but rather to supple-
ment them by increasing test quality at low cost. Eval-
uation of generated test programs can be done at the
functional level using coverage metric over a processor
model using a professional simulator or a fault simulator
for stuck-at faults coverage at the structural level. The
principal scheme for SBST test programs generation us-
ing the structural fault simulator is shown in Fig. 1. A
test program is created from an instruction set library
and its quality is evaluated by fault simulation. If fault
coverage is low thus a new test program is generated. The
test program generation is ended if satisfactory coverage
is achieved for all test programs involved in a test for
the tested processor. The fault simulator can be replaced
by a logic simulator when only a code coverage metric is
calculated. The code coverage metric is defined as cover-
age of statements of used HDL description, or registers
in RTL processor description, branches, toggle dates etc.
The test programs generation also finish if code coverage

Journal of ELECTRICAL ENGINEERING 66, NO. 4, 2015

Instruction
library

Test Fault Processor
generator simulator model

Test
program

Fig. 1. Principal scheme for test programs generation

is satisfactory. Both types of test programs evaluation are
used in the published SBST test generation methods.

Achieving the test quality target requires a proper test
program generation phase which is the main focus of the
most SBST methods. Due to many test generation ap-
proaches and methods published in the literature, the re-
view of the previous works is mainly concentrated to the
methods based on GAs because they are turned out to
be the most effective in automatic realization. GAs are
optimization algorithms based on natural genetics and
selection mechanisms [1]. As an adaptive search tech-
nique, GAs have been used to find solutions to many NP-
complete problems and have been applied in many areas
as well as in test generation at the functional level. Each
of GAs uses a set of operators (selection-reproduction,
crossover, mutation) and an objective fitness function.
The fitness function is used for evaluation of each in-
dividual population before application of GA operators
for creation of a new population [4,7,9]. The fitness def-
inition depends on selected and used coverage metric in
SBST test methods based on GA.

One of the first automatized SBST test generation
method [12] is based on a system graph where nodes
represent registers and arcs showing data transfer and
they are evaluated by mnemo-code of instructions using
the node registers [13]. The method was applied to a RISC
(reduced instruction set computer) processor based on
knowledge of its ISA and defined functional fault model.
Evaluation of the proposed method was done over the
processor core DP32 (the 32-bit RISC type processor)
using an in-house developed structural fault simulator
and stuck-at fault coverage achieved 96 %.

The other two test generation methods exploit a com-
bination of processor abstraction models, such as RTL
descriptions and ISA specifications. An ATPG environ-
ment has been developed consisting of a structural fault
simulator and various deterministic test generation algo-
rithms applied for the different modules of the proces-
sor. The resulting test programs were loop-based pieces
of code that deterministically provide the modules under
testing with a series of data inputs carefully selected. The
methods were based on analysis of data dependencies of
available SBST programs and general parameters of the

187

pipeline architecture and memory system with remark-
able results — 95 % stuck-at fault coverage for two RISC
processors with pipelined architectures: MiniMIPS and
OpenRISC 1200 [14].

Similar ideas are used in [15] for generating SBST tests
for multiprocessor cores integrated on a chip. The deter-
ministic method was optimized for SBST tests generation
on multiprocessor Sun OpenSPARC T1. The high level,
the component-oriented SBST method which achieved
a high stuck-at-fault coverage for an embedded RISC
Plasma/MIPS processor core was presented in [3]. The
method is based also on the deterministic algorithm with
knowledge of ISA and RTL description of the tested pro-
cessor. Easy detectable faults were detected by random
test generation and hard detectable faults were detected
by D-algorithm for all functional components. The total
obtained fault coverage was the highest fault coverage
among all works applied to Plasma/MIPS processor core
— 96 %.

The next methods for automatic test programs gen-
eration start with application of a selected GA and evo-
lutionary strategies where feedback information from a
linked simulator can have influence to creation of a new
population [6-9, 16]. New system and tool based on evo-
lutionary strategies [6-9], named pGP [16], is presented
and used for automatic test programs generation. This
evolutionary tool is composed of test generator, fault sim-
ulator, instruction library and processor model modules.
The idea is based on the next two actions. The first one
is targeted to random generation of a population consist-
ing p individual test programs. Then they are ordered
according the fitness defined by the used code coverage
metric. The new individuals for reproduction are achieved
by means of tournament selection. Such a way the \ new
individuals from the parents p are created and each in-
dividual is formed with configurable number of genetic
operators crossover and mutation. The second one is as-
sociated with use of the evolutionary strategy (u+ A) —
ES(+A). All new unique individuals are then evaluated,
and the population resulting from the union of old and
new individuals are sorted by decreasing fitness. Finally,
only the first A individuals are kept. The condition for
GA termination is the following: A target fitness value is
achieved by the best individual; no fitness increase is reg-
istered for the predefined number of generations; a max-
imum number of generations is reached.

In [6] the uGP system was used for automatic test
programs generation for 32-bit processor Leon2 with
SPARC VS8 architecture. The ModelSim simulator was
employed for simulating the design and calculating the
statement coverage. The developed instruction library for
the Leon2 contained about 500 syntactical descriptions of
the possible instructions and their operands. The adopted
validation metric was the RTL-instantiated (instantiated
means the calculation of the metric against the elaborated
design, rather than on source description) statement cov-
erage: the percentage of executed RTL statements to the

188 J. Hudec — E. Gramatova: AN EFFICIENT FUNCTIONAL TEST GENERATION METHOD FOR PROCESSORS USING GENETIC ...

total statements number in simulating of a given test pro-
gram execution. The used fitness function was the direct
measure of the test programs attained coverage. As a re-
sult, uGP devised a test program set attaining 100 %
statement coverage (experiments used neither floating
point unit nor coprocessor). Also the effect of targeting
different coverage metrics with respect to validation and
test was evaluated.

Another case study and results with GP have been
published in [7] and improved in [9]. The usability and
effectiveness of uGP were tested by the Intel i8051 pro-
cessor core. The experiments showed fault coverage up to
93.6 % where an in-house developed parallel fault simu-
lator FENICE was used as the external evaluator linked
to the uGP tool [16].

The case study with use of uGP and the DLX/pII
processor core is described in [8]; the professional simula-
tor ModelSim [11] was used as an external evaluator. The
code coverage with different metrics was used instead of
fault coverage. The goal of the experimental evaluation
was twofold: effectiveness validation of the test programs
completion and optimization with different coverage met-
rics with respect to the test programs generation. All ex-
perimental results reported on this processor core were
focused on reusing already developed test programs and
show effectiveness of the selected approach. The attained
results were all saturated high above 90 % in statement
and branch coverage and above 80 % in condition and
toggle coverage. The use of the proposed approach en-
abled to experimentally analyze the relationship of the
different code coverage metrics used in test program gen-
eration and code coverage figures. It can be used as a
heuristic indication for guiding the test generation suit-
able also for processors verification.

All SBST methods based on GAs generate test pro-
grams (test mixes) by one type of GAs and one used evo-
lutionary strategy ES(u + A). They start with a random
test mix as a started population in GA. Some of them use
feedbacks about quality of a generated test mix using a
processor simulator that is able to elaborate with the test
and returning code coverage or stuck-at fault coverage in
using the structural fault simulator. Obviously the main
drawback regarding these test generation methods is the
computational effort involved to generate a good test mix
in each population. The idea to create the first popula-
tion as best as possible and to use changing ES based on
feedback results have been motivation to develop a new
SBST generation method using different operators and
ES in GA application for finding an optimal set of test
programs (test mixes) with sufficient coverage for spec-
ified and used coverage metric at RTL. The new SBST
method is described in the next section and the exper-
imental results are presented over the DP32 processor
core [17] described in VHDL.

3 A NEW ADAPTIVE SBST METHOD

A new SBST method has been developed based on
mentioned aspects at the end of Section 2. The new test
generation method uses GAs together with changing var-
ious ES and VHDL processor models. Alternation of evo-
lutionary strategies is based on feedbacks from coverage
evaluation and specified parameters p and & (defined in
part 3.1). The code coverage is used as the coverage met-
ric over the VHDL processor models in dependence on
a linked digital simulator. Simulator ModelSim is con-
sidered in the method and experiments are presented in
section 4. Notation “test mix” is used in the developed
method instead of “test program” as a SBST test for a
processor. This term has been defined concurrently [10]
with other publications where “test program” was defined
with the same meaning. Terms test mix and the coverage
metric are defined in part 3.1 of this section.

3.1 Basic definitions and notation

Notation and terms used in the developed SBST test
generation method described in part 3.2 are defined be-
low.

DEFINITION 1. A test mix is valid dependent and finite
sequence of instructions from ISA of a tested processor
and defined operands.

DEFINITION 2. A SBST test is a valid meaningful se-
quence of generated test mixes.

DEFINITION 3. Diagnostic coverage of a test mix is code
coverage of a processor model in VHDL

DEFINITION 4. Code coverage is quality validation of a
test mix based on criteria: statement coverage, branch
coverage, condition coverage, toggle coverage.

Definitions and characterization of the code coverage
criteria are described in [8, 11]. Fitness function is defined
as a numeric value representing the code coverage.

DEFINITION 5. Fitness function (fitness) for one test mix
M; is defined by expression F; = wesj+wpb;+wec;+wit;
where 7 = 1,2,..., N, N is the number of test mixes,
then wyg, wy, we. and w; are the corresponding predefined
weights of statement, branch, condition, toggle coverages
and sj, bj, c¢;, t; are their coverages.

DEFINITION 6. The weights ws, wp, w., wy are values
from interval (0,1) and they have to satisfy condition
Ws + wp + we +wp = 1.

Two ES are involved in the method: ES(u + A\) de-
scribed in the previous section and ES(u, A). The main
difference of the second one is selection of new A indi-
viduals for the next generated population where the old
1 parents are not involved to the next population [18].
Therefore it should be useful to use both strategies and
also more parameters as lifetime of each population (k)
or probability of mutation (p). Using both strategies

Journal of ELECTRICAL ENGINEERING 66, NO. 4, 2015

with the mentioned parameters in the SBST method can
generate high quality test mixes in shorter time. They
also increase adaptability and flexibility of the SBST
method. Strategy ES(u,k,\,p) used in the developed
SBST method is the advanced and relatively latest ES
defined in [18]. It hasn’t been used in GAs practical ap-
plications and not in the existed SBST methods till now.

DEFINITION 7. Evolutionary strategy ES(u,k, A, p) is
based on pseudorandom selection of r individuals (r >
A > u) from p parents, executing of operations by ge-
netic operators, ordering the obtained individuals with
decreased fitness and selection of A individuals to the new
generated population with the best fitness in accordance
of selected value k (k> 1).

DEFINITION 8. Consider strategy ES(u, k, A, p) and a) if
k = 1, then strategy ES(u, A) is adjusted, b) if k£ = oo,
then strategy ES(p + A) is used.

DEFINITION 9. Diversity is a quantitative measure char-
acterized by existing population of individuals (test
mixes) and indicates how many different types of test
mixes are involved in population.

The diversity value is dependent on the number of indi-
viduals in the population and the evenness of individuals.

DEFINITION 10. Evenness is a quantitative measure of
type representations in existing population, which quan-
tifies how equal is the population of testing mixes numer-
ically.

The Shannon-Wiener index and/or standard deviation
[18] have been originally proposed and used for diversity
and evenness computation of fitness.

Based on the previous definitions some parameters
have to be specified and adjusted in the SBST test gen-
eration method. The major of them are:

e Number of generated populations (test mixes) or ter-
mination of test mixes generation based on defined di-
agnostic coverage.

e GA parameters: ES alternation, used operators, start-
ing population.

e Weights and code coverage specification for fitness
function.

The other parameters of the SBST method concern of
test mixes characteristics and requirements. The major
of them are:

e Test mix length depending of ISA complexity.

e Dependability of instructions sequence in a test mix.

e Operands in instructions, if needed have to be defined
randomly or targeted to faults in registers and data
transfers.

DEFINITION 11. Test mix length is the number of in-
structions involved in one test mix.

The order of instructions involved in a test mix has to
run in the specified order because its changing creates a
new test mix. Therefore the order has to be unique for
each test mix.

189

Both types of mentioned parameters have to be spec-
ified for SBST method application for each VHDL pro-
cessor model to receive an optimal test with highest code
coverage.

3.2 The SBST method description

The new strategies are defined for the presented SBST
generation method using GAs with the goal to increase
quality of generated test mixes and to find an optimal
test for processors in short time.

STRATEGY 1. Deterministic or pseudorandom genera-
tion of an initial started population (test mixes) with
higher code coverage can increase quality of the final func-
tional test consisting several test mixes.

STRATEGY 2. Application of the advanced ES in which
all the basic ESs can be combined with using different
methods of genetic operators for selection and combina-
tions of crossover and mutation can improve finding op-
timal final solution for test mixes and thus for functional
testing processors.

STRATEGY 3. The fitness function designed more sophis-
tically in GA contributes to better feedbacks in GA run.

The strategies are basis of the new adaptive SBST
generation method consisting of the next steps:
e Choosing an initial population (test mixes) by a se-
lected test generation method from the existed test
mix generation methods.

e Evaluation of each test mix using fitness function spec-
ified in Definition 5 with characteristics introduced by
Definition 6. Assemble ranking lattice in the order of
their ranking.

e Application of the ranking in selection of the parents
for the next generation of test mixes.

e Creation of next generated test mixes with adapta-
tion of GA parameters by applying appropriate ES
and a set of genetic operators (selection-reproduction,
crossover, mutation) or with combination of all of the
above.

e Application of the above criteria once again on the new
population of generated test mixes.

e Specification of stopping criteria (maximal number of
generations in population or demanded quality of the
code coverage).

The basic scheme of the new proposed SBST method is
shown in Fig. 2. The major and new developed blocks are
a) Generation of the initial population, b) Fitness evalua-
tion, ¢) Parameters adaptation. The fitness evaluation is
implemented according Definition 5, used operators are
known and therefore only the other two blocks are ex-
plained.

Generation of the initial population block is based on
selecting the started test mix as best as possible. The
specific technique has been developed for creation of a

190 J. Hudec — E. Gramatova: AN EFFICIENT FUNCTIONAL TEST GENERATION METHOD FOR PROCESSORS USING GENETIC ...

r
¢ Start 1 !
| .
1 1
Generation of ! !
. 1 . N 1 End
the initial i Fitness ° !
population of ' evaluation PhEmEE \
- 1
test mixes : adaptation !
| | |
1] :
1
' New. Selection '
M population ,
1 1
1 ‘ 1
| L |
T 1
: selection Crossover i
1 1
: 1 :
1
\ Mutation 1
1 1
l | |

Fig. 2. Basic scheme of the adaptive SBST method

started population based on instruction grouping. The
idea is to divide all instructions from ISA of a tested
processor into several groups according their characteris-
tics and features, eg instruction with one operand, branch
instructions, arithmetic operations, logic operations etc.
Then a test mix is created by adding one instruction from
each group according a specified test mix length. Each in-
struction has the same probability of its occurrence. The
other possibilities are to define instruction prioritization
or to use the random approach for instruction selection to
the started initial population. The best results for gener-
ating the started initial population were achieved by the
grouping method. The experimental results are demon-
strated on processor DP32 and are presented in Section 4.

Parameters adaptation block consists of changing ES,
operators in test mixes generation based on diversity and
evenness measures during application of one GA. It has
been proven [18] that ES(x + A) is very positive in selec-
tion of optimal solution and ES(u, A) is better in over-
coming of local extremes. According Definition 7 loosing
parents population can give positive influence to search-
ing progress of new individuals targeted to the best solu-
tion.

4 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

The proposed and described SBST method was imple-
mented in a new developed complex environment. The
implementation environment is based on the architecture
shown in Fig. 2, definitions and specifications introduced
in the previous sections and final arrangement in more
detail is displayed in Fig. 3.

The whole system for realizing the above mentioned
ideas is implemented in C# language in environment of
Microsoft Visual Studio with using of Microsoft .NET
framework on the platform Microsoft windows. The plat-
form provides the opportunity to use whatever program-
ming language for creating the next new modules of the
system with respect of universality and flexibility.

All inputs/outputs, except for the evaluating the in-
dividuals, are performed using XML format. The use of
XML for all input and output operations allows the use
of standard tools, such as browsers, for inspection of the
constraint and data library, the populations and config-
uration options. The VHDL language is used for tested
processor description and professional simulator Model-
Sim from Mentor Graphics is integrated to the system

VHDL model of
a tested processor

\/
Specifications
Generation of - constraints
first population parameters
// ISA library
) - TEST MIX L
Simulator GENERATION
Model Sim® \ Data library for
L operands
Test mix evaluation
and adaption of GA
parameters \ User
+ interactivity
Text mix /
selection

Fig. 3. Implementation environment for SBST test generation

Journal of ELECTRICAL ENGINEERING 66, NO. 4, 2015

Table 1. Fitness of initial population with 3 methods for processor
DP32

Test mix Test mix Test mix
Methods |length 10 length 20 length 30
(%) (%) (%)
random 28.6 31.0 38.1
priority 31.5 35.2 49.6
grouping | 43.7 52.4 64.3
Coverage (fitness) (%)
60
Random G;ouping
40
20
Test mix Test mix Test mix
length 10 length 20 length 30

Fig. 4. Experimental results for starting population

for simulation. Block “Test mix generation” is the major
block and a hard core of the system with open interface
for other extensions. This block realize generation test
mixes according ISA library, VHDL processor model and
database of operands using specified parameters, alterna-
tion of ES described in the previous section. The system is
flexible to other extensions, adaptable to various ES with
the goal to generate final test with the best test mixes in
optimal length and with sufficient VHDL code coverage.
Experimental works confirmed expectance of the devel-
oped SBST method and they are described in the next
paragraph.

In the following the description of the DP32 processor
core [17] will be outlined, which is used as a case study in
our experiments. DP32 is a RISC type 32-bit processor
core with simple instruction set with 20 types of instruc-
tions with the length of 32 or 64 bits that are frequently
used in programs. It is based on ISA architecture and is
a typical representative of ARM (Advanced RISC Ma-
chine) processor architecture. The processor core is de-
scribed as a synthesizable VHDL model for academic and
research purposes. Specification and architecture of DP32
is open, portable, non-proprietary and scalable to embed-
ded processors, all sharing the same core (non-privileged)
instruction set. It can be implemented in programmable
logic such as FPGA or as soft IP cores.

DP32 consists of 32-bit address and date bus, 256 gen-
eral purpose registers (R0-R255) addressable by software,

191

a program counter (PC), and a condition code register
(CC). The memory accessible to the DP32 consists of 32-
bit words, addressed by a 32-bit word address. Instruc-
tions are all multiples of 32-bit words, and are stored in
this memory.

The obtained experimental results of choosing the
grouping method for automatic generation of initial
population of test mixes are in more details presented
in [19, 20].

The values of initial population fitness obtained with
using 3 methods of initial population generation (random,

priority, grouping) for the DP32 processor core are spec-
ified in Table 1.

All simulation code coverages (statement coverage for
fitness evaluation was used) were obtained with using
each method as average values from 10 experiments, the
length of test mix was 10, 20 and 30 instructions. It is vis-
ible that the higher values and results with the grouping
method achieved as is compared in Fig. 4.

Starting from the initial population of test mixes the
fitness function can be calculated for each test mix in this
population. The definition of fitness is based on Defini-
tion 5 in Section 3.1 and affords the opportunity to se-
lect sufficient universal formulation for the specific needs
of the tested processor. Then GA with genetic operators
(reproduction, mutation, crossover) is performed on the
first population of testing mixes, and with reference to
the fitness value of each mix. The parents for the next
population of test mixes are chosen with changing param-
eters and stated ES. Some constraints such as elitism of
individuals with changing parameter k in ES(u, k, \,p),
tournament and roulette selection are also applicable. If
the feedback values in the GA progress indicate the small
value of diversity or high value of evenness then alterna-
tion of parameters in GA have to be adopted. Thus con-
tinual adaptation of input parameters k (lifetime of test
mix/elitism) and p (probability of mutation) and thus
the selection methods (roulette, tournament, ...) are
applied until the higher fitness values of generated test
mixes are achieved [21]. This procedure is repeating until
the best code coverage of test mixes or the maximal num-
ber of populations (generations) is achieved. There is a
lot of craftsmanship in definition and assessment of fitness
function and the GA parameters. In the presented SBST
method there is combination of various constraints and
code coverage for estimating the parameters of the eval-
uation fitness function: statement coverage, branch cov-
erage, condition coverage and toggle coverage. The evo-
lutionary scheme in used GA is very comprehensive and
is based on changing advanced strategy ES(u, k, A, p).

The achieved results of testing the DP32 processor core
with using 10 different test mixes of length 30 is shown
in Fig. 5. In this arrangement, the adaptive feedback
loop and evolution method based on GA is used. The
constraints, test options and basic parameters for initial
setting the test mix generation process are reported in
Table 2.

192 J. Hudec — E. Gramatova: AN EFFICIENT FUNCTIONAL TEST GENERATION METHOD FOR PROCESSORS USING GENETIC ...

Coverage, fitness (%)

120
100 4
7 10 %
—= T—
80 N D
o Test - 1
O’
60// = 2
5
407
20
0

Generation

Fig. 5. Code coverage in particular generations of 10 test mixes

Table 2. Initial parameters for the automatic test generation ex-

periment
Parameters Parameter value
Number of instructions in test mix 30
Number of individuals in generation 10
Number of generations 20
Method for initial population grouping
Selection method (initial) tournament
Method GA GA with feedback
Parameter p (initial mutation) 0,1
Parameter k 0
Elitizmus 1

Code coverage metric statement coverage

The automatic generating process produced steady
state in code coverage value/fitness by about from 16
generation of test mixes and the final achieved coverage
was 95.67 %. The achieved code coverage is sufficient for
functional test for processor in comparison with published
results till now. Other experiments over this processor
shown effectiveness of the proposed SBST method and
using new ES with variation based on parameter k and p
is very useful in test mixes generation.

5 CONCLUSION

Functional test generation is a long-standing open
problem, which is an important problem to be solved for
design verification, manufacturing testing and periodic
testing processors during their lifetime as well. One key
to develop a practical functional test generation approach
is to avoid the exponential growth of the test generation
complexity in terms of the growth with respect to the de-
sign size. The SBST approaches and achieved results over
them till now have showed that such functional tests for
various processors reached significant level of maturity.
They are used not only in academic designs but also in
practical SoC and embedded system applications. Many
of these SBST research efforts are expected to be inten-
sified on the present and in near future. Application of

GAs and evolutionary strategies are representative basis
for SBST methods.

The paper has presented contribution to use different
operators applied in GAs and varying evolutionary strate-
gies involving also the latest in SBST methods with feed-
backs. The main achieved result is the new adaptive and
flexible test generation method for verification and testing
processors and its automatic implementation. Test pro-
grams for processors based on ISA can be generated au-
tomatically in shorter time in comparison with the SBST
methods where only one ES and random first population
are used. Functionality and effectiveness of the new im-
plemented SBST method have been tested on the DP32
processor.

Next research works will be concentrated on other
experiments and possible modifications of the presented
test generation SBST method, if necessary.

Acknowledgements

This work has been supported by Slovak National Re-
search Grant Agency under project no. VEGA 1/1008/12
Optimization of low-power design of digital and mixed in-
tegrated systems, project no. VEGA 1/0616/14 Methods
for the design and verification of digital systems with low
power consumption using formal specification languages
and project no. VEGA 1/0649/09 Security and reliabil-
ity in distributed computer systems and mobile computer
networks.

REFERENCES

[1] BERNARDI, P.—GROSSO, M.-——SANCHEZ, E.—REORDA,
M. S.: Software-Based Self-Test of Embedded Microproces-
sors, In: Design and Test Technology for Dependable Sys-
tems-on-Chip, Chapter 15 (R. Ubar, J. Raik, H. T. Vierhaus,
eds.), Information Science Reference, IGI Global, Herschey, New
York, 2011, pp. 339-359.

PSARAKIS, M.—GIZOPOULOS, D.—SANCHEZ, E.—REOR-

DA, M. S.: Microprocessor Software-Based Self-Testing, IEEE

Design & Test of Computers 27, No. 3 (May/June 2010), 4-19.

KABIRI, P. S.—NAVABI, Z.: Effective RT-Level Software-Ba-

sed Self-Testing of Embedded Processor Cores, In: 2012 IEEE

15" International Symposium on Design and Diagnostics of

Electronic Circuits & Systems, DDECS 2012, Tallinn, Estonia,

April 18-20, 2012, pp. 209-212.

[4] BERNARDI, P.—CIGANDA, L. M.—SANCHEZ, E.—SONZA
REORDA, M.: MIHST: a Hardware technique for Embedded
Microprocessor Functional On/line Self-Test, IEEE Transactions
on Computers PP No. 99 (2013), 1-12.

[5] SCHOLZEL, M.—KOAL, T.—RODER, S.—VIERHAUS, H.
T.: Towards an Automatic Generation of Diagnosis in Field
SBST for Processor Components, In: 14" IEEE Latin- American
Test Workshop, Cordoba, Argentina, April 3-5, 2013, pp. 1-6.

[6] CORNO, F.—SANCHEZ, E.—SONZA REORDA, M.—SQUIL-

LERO, G.: Automatic Test Program Generation: A Case Study,

IEEE Design & Test of Computers 21 No. 2 (Mar/Apr 2004),

102-109.

BERNARDI, P..—SANCHEZ, E.—SCHILLACI, M.—SQUIL-

LERO, G—SONZA REORDA, M.: An Evolutionary Method-

ology to Enhance Processor Software-Based Diagnosis, In: Pro-

ceedings of 2006 IEEE Congress on Evolutionary Computation,

Vancouver BC, July 16-21, 2006, pp. 859-864.

)

S

[7

Journal of ELECTRICAL ENGINEERING 66, NO. 4, 2015

[8] SANCHEZ, E—SONZA REORDA, M.—SQUILLERO, G.: Ef-
ficient Techniques for Automatic Verification-Oriented Test Set
Optimization, Int. Journal of Parallel Programming 34 No. 1
(Mar 2006), 93-109, Springer.

SANCHEZ, E.—SCHILLACI, M.—SQUILLERO, G.—SONZA
REORDA, M.: An Enhanced Technique for the Automatic Gen-
eration of Effective Diagnosis-Oriented Test Programs for Pro-
cessor, In: Proc. of Design, Automation & Test in Europe Con-
ference & Exhibition 2007, DATE 07, Nice Acropolis, France,
April 16-20, 2007, pp. 1-6.

HUDEC, J.: VLSI System Test Design: The Methods, Prob-
lems and Experience in Microprocessor Testing Using AFTG,
In: Proc. of 16" Int. Conference Information Technology In-
terfaces ITI94 (V.Ceric, V.H.Dobric, eds.), Zagreb University
Computing Centre, Pula, June 14-17, 1994, pp. 191-193.
ModelSim SE Command Reference Manual. Mentor Graphics
Corp. 2009. http://www.supportnet.mentor.com/
support/documentation/se/pdf_6.5/modelsim_se_ref.pdf, 2009.
BELKIN, V. V..—.SHARSHUNOV, S. G.: ISA Based Functional
Test Generation with Application to Self-Test of RISC Proces-
sors, In: Proceedings of the 9*® IEEE Workshop on Design &
Diagnostics of Electronic Circuits & Systems (DDECS 2006),
Prague, Czech Republic, Apr 18-21, 2006, pp. 73-74.
THATTE, S. M.—ABRAHAM, J. A.: A Methodology for Func-
tional Level Testing of Microprocessors, In: Proc. 82 Interna-
tional Symposium on Fault-tolerant Computing, Toulouse, 1978,
pp- 90-95.

GIZOPOULOS, D.—PSARAKIS, M.—HATZIMIHAIL, M.—
MANIATAKOS, M.—PASCHALIS, A.—RAGHUNATHAN,
A.—RAVI, S.: Systematic Software-Based Self-Test for Pipe-
lined Processors, IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 16 No. 11 (2008), 1441-1453.
APOSTOLAKIS, A.—PSARAKIS, M.—GIZOPOULOS, D.—
PASCHALIS, A.—PARULKAR, I.: Exploiting Thread-Level
Parallelism in Functional Self-Testing of CMT Processors, In:
Proc. of 14th IEEE European Test Symposium ETS 2009,
Seville, Spain, 2009, pp. 33-38.

SQUILLERO, G.: MicroGP — An Evolutionary Assembly Pro-
gram Generator, Genetic Programming and Evolvable Machines
6 No. 3 (2005), 247-263, Springer, New York.

ASHENDEN, P. J.: The VHDL Cookbook, Department of
Computer Science, University of Adelaide, Australia, 1990.
SCHWEFEL, H. P.—BACK, T.: Evolution Strategies, In Ge-
netic Algorithms in Engineering and Computer Science (Périaux
J. and Winter, G., eds.), John Wiley & Sons Ltd, Chichester,
1995.

9

[15]

[16]

[17]

[18]

193

[19] HUDEC, J.: Some Results in Automatic Functional Test Design
for Processors, In: Emerging Trends in Computing, Informatics,
Systems Sciences, and Engineering (Sobh, T, Elleithy, K., eds.),
Lecture Notes in Electrical Engineering, vol. 151, Springer Sci-
ence+Business Media B.V., New York, 2013, pp. 965-972.
HUDEC, J.: An Efficient Technique for Processor Automatic
Functional Test Generation based on Evolutionary Strategies,
In: Proceedings of the 33" International Conference on Infor-
mation Technology Interfaces ITI (V. Luzar-Stiffler, ed.), UCC
Zagreb & IEEE CP, Cavtat/Dubrovnik, Croatia, June, 27-30,
2011, pp. 527-532.

HUDEC, J.: Processor Functional Test Generation — Some
Results with using of Genetic Algorithms, In: Proceedings of the
2nd Eastern European Regional Conference on the Engineering
of Computer Based Systems (ECBS-EERC 2011), Bratislava,
Slovakia, Sep, 5-6, 2011 (V. Vranié¢, ed.), IEEE Computer Press,
Los Alamitos: IEEE Computer Society, pp. 159-160.

Received 16 September 2014

Jan Hudec received master study diploma and PhD de-
gree at the Slovak University of Technology in Bratislava. He
is assistant professor and lecturer at the Faculty of Informatics
and Information Technologies Slovak University of Technology
in Bratislava and is interested in communications technologies,
digital system design, and architecture of computer systems.
His research activities cover the digital system design, test-
ing and reliability of logical circuits and processors. He has
been author and co-author of more than thirty publications
in journals and international conferences.

Elena Gramatova is an associate professor at the Faculty
of Informatics and Information Technologies Slovak Univer-
sity of Technology in Bratislava, responsible for courses and
research focused to design for testability and dependability of
digital systems. She obtained PhD degree in Technical Cyber-
netics in 1984. She has leaded national projects and partic-
ipated in seven European framework projects. She has been
PC member of conferences as ETS, DDECS, BEC, DSD, FPL,
ATS and co-author of 80 peer-reviewed scientific journal and
conference papers with more than 70 citations. She is member
of the golden core IEEE Computer Society and ETTTC. In
year 2007 she received Meritorious awards from IEEE Com-
puter Society based on DDECS activities.

