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CONSTRUCTION OF ERROR CONTROL RUN
LENGTH LIMITED CODES EXPLOITING
SOME PARITY MATRIX PROPERTIES

Katarina Farkaéov*é ¥ Peter Far}k{aé ¥
— Eugen Ruzicky — Adao Silva

* . " kk
— Martin Rakus
kok ok

%k P .
— Atilio Gameiro

Error control codes (ECC) as well as translation codes (TC) are used today in many different systems such as computer
storages, communications systems and consumer electronic devices. ECC introduce redundancy into the encoded digital
sequence in order to decrease the number of errors at output of its decoder [1]. TC introduce redundancy, in order to
translate any digital sequence at the input of TC encoder to such output sequence, which fulfills constrains deduced from
practical requirements. It is possible to construct codes, which have both of these properties, so called Transcontrol codes
or their subclass error control run length limited (ECRLL) codes. In this manuscript a new approach to construction of
EC-RLL codes is presented. The new construction is based on some parity check matrix properties of a linear binary block

code from which the new EC-RLL code is obtained.
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1 INTRODUCTION

The motivation for the research of EC-RLL codes
could be traced back to late eighties of 20-th century when
more efficient line codes were needed for telecommunica-
tions systems. In [2] and [3] the authors proposed con-
struction, which exploited disparity for selection of code-
words of ECC in order to achieve DC free line codes.
Deeper analysis and explanation of this technique and
its connection with standard practice in line coding area
(namely selecting codewords from more dictionaries us-
ing running disparity) was published in [4]. In [5] and [6]
construction of EC-RLL trellis codes and general method
for single error correcting EC-RLL codes were presented
respectively. In [7] it was proposed to modify a linear
error control block code into Transcontrol code without
introduction of additional redundant symbols. Later in
[8] further possibilities how to construct EC-RLL codes
using modifiers based on properties of generator matrices
of ECC were found. (In this publication also the name
Transcontrol codes was used for the first time.) Later on
thanks to this technique Convolutional codes [9], Turbo-
codes [10] and [11], Extended Hamming codes [12], ex-
tended Golay code [13] and Reed-Muller codes [14] with
translation properties were found. Especially the industry
producing storage systems motivated and still motivate
the research of relatively complex EC-RLL codes based
on turbo codes and LDPC codes. This research is docu-
mented by numerous publications, for example [15] - [19].
It is not possible to give detailed overview of all results in

this area in this manuscript. The interested reader could
get more information from [20] or IET/IEEE electronic
database.

2 NEW TRANSCONTROL CODES

One known EC-RLL construction starts with selecting
an error control code or family of error control codes with
suitable generator matrices. Then modifiers are selected
and applied in cascade with the original encoder and
decoder, as illustrated in Fig. 1. The questions arises
which error control codes have to be used for starting the
construction and which modifiers are appropriate? The
answer is contained in the following properties presented
and proofed in [8]:

1. If the Hamming weight of all rows in generator ma-
trix Ggxy, is even, then all codewords of the correspond-
ing linear block code have even weight.

2. If all codewords of a linear block code have even
length and also even weight, then the inversion of an odd
number of symbols in all of them creates a new code in
which no codeword has symbols which are all equal to
zero or all equal to one.

The new approach is based on an idea how to rear-
range columns of systematic generating matrix Grx, =
[IkkakX(n,k)], where Ij«; is an identity matrix and
Py (n—r) 1s a parity matrix, in order to get a sub ma-
trix, which has all rows with even Hamming weight and
at the same time it will have an even number of columns.
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Fig. 1. 1 EC-RLL code obtained from an error control code using
modifier (scrambler)

It has to be mentioned, that this rearrangement is ap-
plicable only to some systematic matrices of linear block
codes. When this condition is satisfied the already known
technique of modifier could be used to get an EC-RLL
code as it is illustrated in Fig 1.

The rearrangement starts with the check whether the
Hamming weight of rows of parity matrix Py (n—p) is
even or odd. Let denote the components from GF(2) in
matrix Py (,—k) as follows

P11 P12 P1,(n—k)

P2,1 P22 P2,(n—k)
Prvin-r) = . . (1)

Pkl Dk,2 Pk, (n—k)

The results of these calculations could be presented as
elements of a column vector

T

w' = (wi, wr) for1<i<k

(2)
3)

After obtaining w ', we can check this vector and de-
cide how to perform the following step. There are several
options:

w2,

Wi = Pi1 +Pi2+ -+ Di(n—k)(mod 2).

(a) If n is even and w' has all coordinates equal to

1, than the original generating matrix Ggx, fulfills
the desired property (namely that all rows have even
weight and is even). In such a case no rearrangements
are needed and the modifier (denoted as m) could be
any vector of length n and having any odd Hamming
weight smaller than n.

If (n— k) is even and w' has all coordinates equal
to 0, than the original parity matrix Py ,—k) ful-
fills the desired property (namely that all rows have
even weight and n is even). In such a case no rear-
rangements are needed and the modifier could be any
vector with length and odd Hamming weight in (n—k)
coordinates corresponding to columns of Py (n—g) -

If (n—k) is odd and w' has odd Hamming weight
than it is necessary to rearrange the columns of iden-
tity matrix in such a way that they will together with
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Py (n—k) form a sub-matrix G’. Sub-matrix G’ has
all rows with even weight and number of columns (de-
noted as n’) is defined as: n’ = w(w ')+ (n— k). This
rearrangement is quite simple, namely the col-umns
from the identity sub-matrix with 1 in the same rows
as are the nonzero coordinates of w can be placed
immediately before or after or in between columns of
Py (n—r) - We will denote this new matrix M.

If (n—k) is even and w' has even Hamming weight
than it is necessary to rearrange the columns of iden-
tity matrix in such a way that they will together with
Py (n—k) form a matrix M with all rows with even
weight and even length. This rearrangement is quite
simple, namely the columns with 1 in the same rows
as are the nonzero coordinates in w have to be placed
immediately before or after or in between columns of
Py (n—k) - We will for simplicity say into matrix M .
In case when (n — k) is odd and w(w') is even
or (n — k) is even and at the same time w(w') is
odd, than the construction based on rearrangement of
columns of the identity matrix described in (a) to (d)
will fail. However, it is still possible to try to get the
desired properties of sub matrix G’. To do this it is
necessary to find some columns of Pj, (,—x), which
could be moved outside from G’ in such a way that
the remaining sub matrix of Py (n—r) (denoted as
P’) will together with its vector w(w’) have such a
properties that one of the cases (a) to (d) will hold.
If the (e) cannot be finished successfully than it is
still possible to try to find two or more sub matrices
in Py (n—k) which will fulfill the conditions (a) to
(d) either separately or in groups. The search for this
solution however will no more be as simple as in the
cases (a) to (d) and it would be recommended to use
computerized search.

It is possible that any of the attempts following the
approaches described in (a) to (f) will be successful.
In such a case, it can be concluded that the original
matrix Ggx, is not suitable for the proposed construc-
tion and some other generating matrix Gyx, has to be
chosen for the next attempt. The new candidate ma-
trix Gix, may have the same parameters [n, k, dmin|,
but generating a linear block code with different weight
spectrum then had the original matrix Gy, -

The RLL properties of the resulting code in case of
success will guarantee that there will be not a longer run
of identical symbols than [12].

3 ONE EC-RLL CODE CONSTRUCTED
USING THE NEW APPROACH

We can chose a [7, 4, 3] Hamming code, which has a
P matrix defined by as

(4)

O = =
—_ == O
—_ O = =



184 K. Farkasova — P. Farkas — M. Rakiis — E. Ruzicky — A. Silva — A. Gameiro. CONSTRUCTION OF ERROR CONTROL ...

and w' = (0100).

In other words, the parity check matrix Pyx3 has
3 columns (odd number) and w' has odd Hamming
weight. This is the case (¢) and it is necessary to rear-
range the order of columns in the identity matrix. By
closer observation, we can see that all rows of P have
even Hamming except second row. Therefore it is neces-
sary to change the order of columns in the identity ma-
trix in such a way that the column vector i; = (0100)
together with P43 will form

(5)

SO = O
O ==
— == O
_ O = =

This matrix has the desired properties because it has
even number of columns namely 4 and each row has even
Hamming weight. The modifier could be for example the
following vector m = (000000).

The resulting Transcontrol code will have code dis-
tance 3, therefore it will be able to correct up to 1 error
in a codeword and in any sequence of its codewords there
will be no longer run of identical symbols than 12.

5 CONCLUDING REMARK

In this manuscript a new approach for construction
of EC-RLL codes from linear block codes was presented.
The construction method was applied on one of the most
popular ECC, namely binary [7, 4, 3] Hamming code as
an example. From it a new EC-RLL code was obtained
with no longer run of identical symbols than 12.
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