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COMPARISON OF ALGORITHMS FOR FITTING A GAUSSIAN
FUNCTION USED IN TESTING SMART SENSORS

Elena Pastuchova — Michal Zakopcan

This article offers useful algorithms for estimating the parameters of the Gaussian curve fitted to observed data, gained
in testing of sensors. Fitting was realized using two algorithms Caruanas and Guos, which have been compared.
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1 INTRODUCTION

Contaminants in the environment are closely moni-
tored in different folders environment. The basic groups of
these substances include heavy metals. Among the most
harmful elements for humans and animals include: Cd,
Hg, Pb and Cr as well as Zn, As, Cu, Ni, etc, which are
in a little found in plants and soils, but by the accumu-
lation they become more toxic. Detection of heavy met-
als in the water industry is of great importance, because
their presence poses serious health risk. The presence and
quantity of contaminants are detected by constantly de-
veloping special sensors. In research of new technological
methods in the manufacturing process of smart sensors,
each material has different properties and thus is suitable
for employing in various spheres. Every new technology
of manufacturing of sensors or using a specially treated
material in the manufacture of sensors are needed to be
tested for finding characteristics of every sensor. In order
to determine the quality, accuracy or sensitivity of the
sensors, it is necessary to perform measurements in labo-
ratory conditions. Testing the sensors structures is carried
out by cyclic voltammetry and square wave voltammetry
subsequently. [1]. In the evaluation of characteristics of
sensors, it is necessary to process experimental data and
quantify the relationship between measured quantities. It
is optimal to find a mathematical model that describes
a set of data in a way that minimizes the difference be-
tween the model and the data, it means to find the best
curve fitting observed data points. By testing, the sensor
measures the voltage dependence of current from the elec-
trode intended to measure heavy metals. The presence of
heavy metals identifies significant increases in current at
a given voltage. Fig. 1 shows the waveform in the case of
zine, cadmium and lead.
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Fig. 1. Waveform in the case of zinc, cadmium and lead

This means that every peak on the graph represents
the maximum of a current at given voltage at which the
maximum metal detection is achieved. These peaks are
necessary optimally approximated. We tried to use the
fact that these peaks have Gaussian shape and we were
looking for an optimal approximation algorithm.

2 CARUANAS ALGORITHM

The Gaussian function is a function in the form

2
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o

The graph of Gaussian is a characteristic symmetric bell
curve, centered at the position x = p with A being the
height of the peak and ¢ determining the width of the
bell. The focus of this paper is on the problem how to
fit the observed data points by Gaussian function, which
were obtained by testing sensors, and how to identify the
parameters A, 4 and o precisely.
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The majority of Gaussian fit algorithm are based on
two approaches: the first approach includes non-linear
least-square optimization algorithm, the solution of such
is to employ an iterative procedure like Newton-Raphson
algorithm [2], the second approach is based on a fact that
the Gaussian function is the exponential of a quadratic
function. This function can be converted to a polynomial
function by using a logarithmic transformation. A simple
method of such conversion was proposed by Caruana et

al, [3].
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after adjustment, one has
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Modifying (3), we obtain a polynomial function

Inf (z) = a + bx + ca? (4)
where azlnA—%7 b:% and c:_#_

It is evident that (4) represents a parabola whose peak
position is the same as that of the Gaussian function
described in (1).

The error function is
S(z)=Inf(z) - (a+ bz + cz?) (5)

Using the method of least square deals to the following
linear system of equations
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where N is a number of observed data points and
the symbol ) represents the sum of indexed variables
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After solving this system we can obtain parameters of
the Gaussian function

(7,8)

and
b2
A=expla— 1) (9)
Caruanas algorithm is computationally efficient, since
it is noniterative. Main drawback of this algorithm is that
its accuracy decreases dramatically in case of the presence
of noise. Because this method uses the logarithm of data,
it is clear that error creates if the observed data contains
a zero value. To avoid these deficiencies we used Guos
model, [4].
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3 GUOS ALGHORITHM

In the case that there is an additive random noise 7
[4], the data, we observe, are not the ideal value f(z) but

(10)

Consequently, the error function is

S=Inf(z)— (a+bx+cx?) (11)

Expanding into Taylor series and omitting the high-order

terms we obtain

U
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and
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=~ is standard deviation of the noise.

where o

However the estimation using (13) is not accurate,
increasingly dependent on the observed data points with
low values rather than the big ones, and usually manual
intervention must be carried out for thresholding the data
in advance. It is therefore necessary to redefining the error
function, using (5), as

e = f(x) [In(f(z) +n) — (a+ bx + ca?)]

(14)
~ f(x) [lnf(a:) — (a+bx+ ch)} +n
Consequently
E(e%) = f2(@) (In f(z) —a—be — ca®)* + 02 (15)

Using method of least squares we achieve a linear system
of
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where § = f(z) .
Solving (16) we obtain a,b,c and subsequently the
Gaussian parameters in a similar manner as in part 2.
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Fig. 2. Voltammogram of experimental data (dotted line) fitted by
Caruanas algorithm
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Fig. 4. Voltammogram of experimental data using baseline correc-
tion fitted by Caruanas algorithm

4 APPLICATION TO
EXPERIMENTAL RESULTS

The parameters of Gaussian function are needed in
establishing the calibration curve which is necessary to
determine the detection limit. For estimation of these
parameters from observed data points we used Caruanas
algorithm. An example of this fitting is in Fig. 2, where
p=—0.7128,0 = 0.1331 and A =4.2173 x 107°.

Because the presence of noise, as in Fig. 2, it is ev-
ident we decided to apply Guos algorithm. To compare
algorithms of Caruana and Guo respectively, we use the
same sample of experimental data. Fitting by Guos al-
ghorithm we have received Gaussian curve in Fig. 3,
where 1 = —0.7254,0 = 0.1556 and A = 3.9264 x 1077

In order to determine the kind of heavy metal in con-
taminated water, we need know as accurately as possible
value of y and parameter A, which is important for spec-
ifying the concentration of this metal. For these reasons
we decide to correct these results. We took into consid-
eration that it is necessary to correct the baseline. Af-
ter using baseline correction and Caruanas alghorithm
we received the fitting results as seen in Fig. 4, where
p=—0.7339,0 = 0.1074 and A = 4.6497 x 1077
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Fig. 3. Voltammogram of experimental data (dotted line) fitted by
Guos algorithm
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Fig. 5. Voltammogram of experimental data using baseline correc-
tion fitted by Guos algorithm

Using baseline correction and Guos alghorithm we ob-
tained the fitting results as seen in Fig. 5, where where
pu=—0.7359,0 = 0.1509 and A = 3.6489 x 1077,

5 CONCLUSION

We tried to focus on fitting a one dimensional Gaus-
sian function in efforts to find optimal approximation al-
gorithm. For this purpose we have compared Caruanas
and Guos algorithms as the most appropriate methods.
By fitting we found some disadvantages of these meth-
ods. While Caruana’s algorithm fails to noisy data, its
accuracy decreases dramatically, Guos technique is much
less sensitive to random noise. In some samples, we had
to make a baseline correction to obtain the actually mea-
sured values. More visual comparison of these two meth-
ods is shown in Fig. 6, where it is clear that Guos al-
gorithm approximates the data more accurate. Following
experimental data and the calculation of the value of u,
heavy metal we identified in experiment was Cd. Both
methods fail when the measured values are extremely
sloping, which will be the subject of further research.
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Fig. 6. Voltammogram of experimental data using baseline correc-
tion fitted by Caruanas algorithm and Guos alghorithm ( Guo,s -
solid line, Caruanas - dashed line)
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