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DISCRETE–TIME INTEGRAL SLIDING MODE CONTROL
WITH DISTURBANCES COMPENSATION AND REDUCED
CHATTERING FOR PV GRID–CONNECTED INVERTER

Santolo Meo — Vincenzo Sorrentino
∗

In the paper a new discrete-time integral sliding mode control (DISMC) with disturbances compensation and reduced
chattering for grid-connected inverter is proposed for active and reactive power regulation. Differently by many SMC
proposed in literature that have a time-continuous formulation in spite have been implemented with digital processor, the
proposed DISMC is fully formulated in discrete-time, taking into account the effects introduced by a microprocessor-based
implementation. As will be demonstrated such approach consents to reduce the chattering about the sliding manifold within

a boundary layer of O(T2) thickness instead of O(T ) (being T the sampling period of the control algorithm). Moreover
it introduces a correction of the control vector which eliminates the influence of modeling error and external disturbances
improving stability and robustness of the controlled system. Constant converter switching frequency is achieved by using
space vector modulation, which eases the design of the ac harmonic filter. In the paper, after a detailed formalization of the
proposed control algorithm, several numerical and experimental results on a three-phase grid-connected inverter prototype
are shown, proving the effectiveness of the control strategy.
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1 INTRODUCTION

The PV market has grown over the past decade at a
remarkable rate and it is on the way to become in prospec-
tive a major source of power generation for the world [1].
At the same time the research on the topic has been more
and more increasing and the literature largely focused on
the discussion about power inverter topologies and their
control [2–7] and successively about smart-inverters [8–
10]. Traditionally, grid-inverters do not provide ancillary
services to the grid. Instead, main targets of the smart
inverter are to maximize PV array output power ensur-
ing highest possible efficiency and some ancillary services
like the reactive power and voltage control, loss compen-
sation, scheduling and dispatch, load following, system
protection and so on.

Among these services the control of reactive power is of
relevant importance and it can be easily given locally by
the inverter based on the requests transmitted in real time
by the network operator. Frequently the power converter
interface from the dc source to the grid consists of a cur-
rent controlled voltage source inverter (VSI). Classic con-
trol of grid-connected VSI is usually based on grid-voltage
or virtual-flux [11, 12] oriented vector control schemes.

The scheme decomposes the ac currents into the syn-
chronously rotating reference frame components. The
power flow control is then achieved by regulating the de-
composed converter currents. As current regulators are
commonly used hysteresis, linear PI, predictive current
control, state feedback current controller and so on [13–
16].

Also different variable structure control (VSC) system
have been proposed [17–19].

However these VSC controls neglect the effect of the
microprocessor-based implementation, treating the sys-
tem as if the control signals were available at every in-
stant. Instead, in digital control power applications the
control input is computed at discrete instants and ap-
plied to the system during the sampling interval. For this
reason, inevitably, a nonideal sliding regime will appear
having about the sliding manifold a chattering within a
boundary layer of O(T ) thickness.

Moreover, this approach does not assure generally any
convergence of the state trajectories onto the sliding man-
ifold and may result in an increasing amplitude chat-
ter of the state trajectories around the sliding manifold
which means instability [20, 21]. Consequently, an ade-
quate discrete-time formulation of sliding mode control
must be done. In order to overcome all the cited prob-
lems, in the paper a new discrete-time integral sliding
mode control (DISMC) with disturbances compensation
and reduced chattering for grid-connected inverter is pro-
posed for active and reactive power regulation.

As it will be demonstrated such approach consents to
reduce the chattering about the sliding manifold within
a boundary layer of O(T2) thickness instead of O(T ).

Moreover it introduces a correction of the control vec-
tor which eliminates the influence of modeling error and
external disturbances, improving stability and robustness
of the controlled system also during the reaching phase,
contrarily to the classic SMC that exhibits stability and
robustness against parameter, line, and load uncertain-
ties only after the occurrence of the sliding mode on the
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Fig. 2. Schema of the PVgrid-connected inverter

sliding manifold. In the paper the proposed control algo-
rithm is fully developed in a rotating d, q reference frame
synchronous with the angular frequency of the grid and it
is applied to control a grid-connected PV inverter in order
to maximize the electrical energy produced by PV arrays
and at the same time for using the grid-inverter as a re-
active power compensator. An MPPT developed by the
same Authors is adopted for tracking the maximum power
point of the renewable source. After a detailed formaliza-
tion of the proposed discrete-time ISMC some numerical
and experimental results on a three-phase grid-connected
inverter prototype are shown, proving the effectiveness
of the control strategy. Thanks to the proposed control
law the controlled system exhibits fast dynamic response,
strong robustness to modeling error and uncertainties and
good current harmonic rejection.

2 DESCRIPTION OF THE
CONTROLLED SYSTEM

The considered controlled system is shown in Fig. 1.
Its main parts are the power plant and the controller

block. The power plant is composed by the PV arrays,
the capacitors bank, the current controlled three phase
VSI inverter, the filter inductance, the three-phase step-
up transformer and current and voltage sensors on the
DC link and on the grid. In the following the main com-
ponents of the power plant will be depicted.

2.1 The PV Array Characterization

A full characterization of the PV output voltage (like
function of the load request, of the irradiance and of the
temperature) has been experimentally carried out. Then
the experimental data have been interpolated with the
well known following mathematical model of PV array

V =
Akθ

q
ln

I − Iph − Isat

Isat
− rsI . (1)

PV array consists of Ns cells in series formed the panel
and of Np panels in parallel according to the rated power
required.

The output voltage and current can be given by

Vdc = Ns(V − rsI) , Idc = NpI . (2,3)

2.2 Dynamic Model of the Voltage Source In-
verter

Referring to Fig. 2, the Kirchhoff voltage law applied
to each phase yields (to simplify the analysis here, the
transformer is neglected and only the filter inductance is
considered)

Vdcsk − Lf
dik
dt

− (RL +Rs)ik − vg,k − VNO = 0 , (4)

where k = 1, 2, 3.
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Having assumed that the system is symmetrical and
balanced, the application of the currents Kirchhoff law at
node N gives

VNO = −
Vdc

3

3
∑

n=1

sn . (5)

Substituting (5) in (4) it yields the following system
of three differential equations

Lf
dik
dt

= Vdc

(

sk −
1

3

3
∑

n=1

sn

)

−Rik − vg,k , (6)

where R = (RL +Rs).

Now the following complex vectors (space vectors)
shall be defined

i =
2

3

3
∑

k=1

ike
j 2π

3
(k−1) , u =

2

3
Vdc

3
∑

k=1

ske
j 2π

3
(k−1) ,

vg =
2

3

3
∑

k=1

vg,ke
j 2π

3
(k−1)

(7)

Multiplying both sides of (6) by 2
3e

j 2π
3
(k−1) and sum-

ming over k = 1, 2, 3 one gets the following vectorial
differential equation

Lf
di

dt
= u−Ri − vg . (8)

These space vectors are referred to a stationary ref-
erence frame. We can transform (8) from this stationary
frame to a d–q synchronous frame rotating at the angular
frequency ω of the grid voltages and having the d-axis
aligned with the vg space vector. In such reference frame
by separating the real and imaginary parts, (8) becomes

Lf
did
dt

= ud −Rid − vg,d + Lfωiq ,

Lf
diq
dt

= uq −Riq − vg,q − Lfωid .

(9)

3 CONTROL DESIGN

The controller block is composed by the MPPT con-
trol algorithm, by the integral sliding mode controller and
the grid interface (Fig. 1). In the following the main com-
ponents of the control system will be depicted.

3.1 The Adopted MPPT Algorithm

The input to the control strategy are the d, q compo-
nents i∗d and i∗q of the desired grid currents. The adopted

MPPT algorithm controls the maximization of the input
power and gives the values of the reference current i∗d in
the synchronous reference-frame. The used MPPT is an
improved version of the classic P&O.

The improvement of the P&O algorithm has been ob-
tained adjusting the perturbation width (∆V) in function

of the temperature. So, the dynamic response, when work-
ing conditions are far from the Maximum Power Point,
can be improved without losing stability in the proximity
of the Maximum.

It is well known that the voltage at which the power
of a photovoltaic panel becomes maximum is almost in-
dependent on the solar irradiation but it is strongly de-
pendent on the operating temperature.

For this reason the same author has proposed to adapt
the perturbation width according to the temperature
variations. In order to achieve this aim, a temperature
modelling of the photovoltaic arrays has been used. The
MPPT algorithm will not be treated in the following. A
detailed description of such algorithm can be found in
[22]. The reference component i∗q is computed according

to the desired reactive power. For the calculation of these
references the maximum apparent power of the three-
phase inverter is also considered.

When the PV system is not working at full power
the three-phase inverter can also be working as reactive
power compensator. Obviously the grid injected reactive
power is limited by the maximum apparent power of the
inverter.

3.2 The Grid Interface

The grid interface provides the synchronization with
the grid voltages by means of a classical Phase-Locked-
Loop (PLL). The output of this block is necessary for
the Park’s transformation of the grid-voltages and of the
grid-currents.

3.3 Integral Sliding Mode Control (ISMC)

The system of differential Equations (9) can be written
in matrix form as follows (in balanced condition vg,q is
null)





did
dt
diq
dt



 = A

[

id
iq

]

+ B

[

ud

uq

]

+ c (10)

A =

[

− R
Lf

ω

−ω − R
Lf

]

, B =

[

1
Lf

0

0 1
Lf

]

, (11)

c =
[−vg,d

Lf
,
−vg,q

Lf

]⊤

(12)

x1 = id(t)− i∗d(t) , x2 = iq(t)− i∗q(t) , (13)

x =
[

x1 x2

]⊤
(14)

The system of differential (10) can be re-writing with
respect to the vector x giving

ẋ = Ax + Bu+D (15)

D = c + A
[

i∗d , i
∗
q

]⊤
. (16)
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In (15) for taking into account modeling error and ex-
ternal disturbances (unbalanced conditions, voltage har-
monics, sag and so on) we will consider the vector z de-
pending on the time. z is assumed a smooth and bounded
vector representing matched disturbances. It is unknown
and will be estimated as depicted in the following. In this
way the system (15) becomes

x = Ax + Bu+ f (t), f (t) = D+ z(t) . (17,18)

The discrete-time formalization of the model (15), as-
suming zero-order hold on the control vector u can be
given by

xk+1 = Adxk + Bduk + dk, (19)

where

Ad = eATs , Bd =

∫ Ts

0

eAλ
Bdλ ,

dk =

∫ Ts

0

eAλ
f
(

(k + 1)Ts − λ
)

dλ

(20)

aK = a(kTs), for k = 1, 2, 3 . . . (21)

Firstly the objective of the SMC is to design a sliding
manifold Σ so that the state trajectories of the system
have the desired dynamic behavior. In particular the slid-
ing manifold is generally defined as

Σ =
{

xk : σk = σ(xk) = 0
}

. (22)

Considering the control vector u ∈ ℜm , the sliding
manifold Σ represents the intersection of m switching
planes σk,i , where σk,i = {xk : σi(xk) = 0} , being σi

the i -th row of the matrix σk .

Now the problem is to find a switching vectorial func-
tion σk so that the motion of the dynamical system when
confined on Σ is stable. Secondly, the problem is to find
a variable structure control law so that, in finite time,
the states are forced onto (sliding manifold reaching con-
dition) and subsequently remain (convergence condition)
on the sliding manifold Σ [23]. In classical DSMC the
switching function σk is defined as

σk = Kxk . (23)

In our case as switching function we adopt the propor-
tional-integral functions with the errors among the d, q

components of the reference grid-currents and the actual
ones. In other words let us define the switching function

σk = Kxk +HTs

k−1
∑

ρ=0

xρ (24)

where K and H are m×m matrices that will be chosen
as depicted in the following.

The introduction of an integral action to the classical
SMC has been adopted for overcoming the main draw-
back of the sliding mode control. As it is known the slid-
ing mode control exhibits stability and robustness against

parameter, line, and load uncertainties only after the oc-
currence of the sliding mode on the sliding manifold. On
the contrary the Integral sliding mode consents to over-
come this problem. Indeed with ISMC, the system tra-
jectory always starts from the sliding surface.

Accordingly, the reaching phase is eliminated and ro-
bustness in the whole state space is obtained [23, 24].

Motion in sliding mode implies that

σk+1 = 0 , k = 0, 1, 2, 3, . . . (25)

Substituting (24) into (25) yields

σk+1 = Kxk+1+HTs

k
∑

ρ=0

xk = σk+K(xk+1−xk)+HTsxk

(26)

xk+1 =
(

I−K
−1

HTs

)

xk . (27)

Equation (27) describes the system dynamic on the
switching manifold. As can be noted the convergence ve-
locity is independent of the system parameters, depending
only on the matrices K and H . Next step is to design the
control law for the sliding-mode controller.

The control vector is structured as follows

uk = ueq,k + us,k . (28)

Following the equivalent control method [23], we choice
the so-called discrete-time equivalent control ueq,k as the
solution of (25). Substituting (26) and (19) in (25) and
solving with respect to uk yields

ueq,k = −(KBd)
−1

[

(KAd+TsH−K)xk+Kdk+σk

]

. (29)

Ideally, ueq,k is a solution to the discrete-time sliding
mode control because it maintains the state on the slid-
ing manifold at each sampling instant. In addition, it is
not a switching type of control law; hence, no chattering
phenomenon would occur if only ueq,k is employed.

Thanks to the application of the control vector ueq,k

the state vector starting from the initial point x0 reaches
theoretically in one sampling time the sliding manifold.

Unfortunately, such result in practice is not possible
for three main problems:

1) the implementation of (29) would require the a priori
knowledge of the disturbance vector dk ;

2) parametric uncertainties and exogenous perturbations
can influence the modelling giving poor robustness to
the control;

3) ueq,k may exceed the available control resources tend-
ing to the infinity if the initial state is far from Σ or
if the sampling period is small.

In order to the first problem, with some continuity
assumption on the disturbances, dk can be estimated by
its previous value dk−1 [25]. Let

d̂k = dk−1 = x − Adxk−1 − Bduk−1 . (30)
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Equation (29) becomes

ueq,k = −(KBd)
−1

[

(KAd + TsH)xk + σk+

−K(Adxk−1 + Bduk−1

]

. (31)

The switching control vector us,k is therefore neces-
sary to complete the reachability condition and to reduce
the reaching time giving robustness to the control, avoid-
ing the second problem. Such vector is generally chosen
as

us,k = −(KBd)
−1 [E sign(σk)] (32)

sign(σk) = [sign(σk(1, 1)) , sign(σk(2, 1))]
⊤

(33)

(E is a constant matrix with all non-negative elements).

Moreover it is necessary to take into account also the
effective limits u0 of the control (avoiding the third cited
problem) imposing

‖uk‖ ≤ u0 ,
∥

∥(KB)−1
∥

∥

∥

∥[(KAd + TsH−K)xk +Kd̂k]
∥

∥ < u0

(34)

(being ‖uk‖ =
(

u
⊤
k uk)

1/2 ) otherwise, the control re-
sources are insufficient to stabilize the system.

For this reason the final variable structure control law
will be

~uk =

{

ueq,k + us,k for ‖ueq,k + us,k‖ ≤ u0 ,

u0
uk

‖uk‖
for ‖ueq,k + us,k‖ > u0 .

(35)

To guarantee the global stability of the sliding-mode
control system is equivalent to guarantee sliding manifold
reaching condition and the convergence condition.

Many literatures have been developed to deal with
the problem of designing stable sliding manifold for
continuous-time systems; on the contrary, the literature
dealing with the problem of designing stable sliding man-
ifold for discrete-time SMC is not wide.

Unfortunately, the sliding mode and reaching condi-
tion of the discrete VSC systems are different by those
for continuous VSC systems. Generally, according to Lya-
punov’s theory, in the case of continuous-time systems,
for example a sufficient condition so that the control sys-
tem is stable and the system states can convergence to
the sliding mode surface in the whole phase space is the
verification of the following inequality:

σ
⊤
σ̇ < 0 . (36)

A continuous counterpart of the inequality (26) by
means of simple equivalence obtained substituting the
time-derivative by the forward difference is

σk(σk+1 − σk) < 0 . (37)

This condition, differently by the case of continous-
time systems, is necessary but not sufficient for the exis-
tence of a discrete-time sliding motion [21]. Generally this
condition does not assure any convergence of the state
trajectories onto the sliding manifold and may result in
an increasing amplitude chatter of the state trajectories
around the sliding manifold which means instability [20].

A necessary and sufficient condition can be imposed
assuring both sliding motion and convergence onto the
sliding manifold. This condition may be stated as

‖σk+1‖ < ‖σk‖ . (38)

The proposed variable structure control law satisfies
banally the condition (38) in the case that ‖ueq,k‖ ≤ u0 .

To prove the condition (38) we will consider the case
‖ueq,k‖ > u0 . Substituting (19), (28), (29) and (32) in
(26) and taking into account (34), yields

σk+1 =
[

(KAd + TsH−K)xk +Kd̂k + σk

]

(

1−
u0

‖uk‖

)

− E sign(σk)
u0

‖uk‖
. (39)

Thus

‖σk+1‖ ≤ ‖σk‖+ ‖[(KAd + TsH−K)xk +Kd̂k]‖

−
u0

‖(KB)−1‖
≤ ‖σk‖ . (40)

Hence ‖σk+1‖ decreases monotonically and after a
finite numbers of sampling times the states are forced
onto and subsequently remain on the sliding manifold.

Therefore is proved that the proposed control law (35)
satisfies the inequality (38) and guarantees the conver-
gence and the global stability of the solution.

Finally, in order to assure a fast convergence it is fun-
damental the choice of a suitable values in the matrices
K and H .

In particular if σk ∈ R
m , xk ∈ R

n , K and H are
constant matrices of rank m and they are chosen such
that [24]

1) KBd is an invertible matrix;

2) H = −K[Ad−I−BdG] where G is a matrix so that the
poles of the matrix Ad −BdG are distinct and within
the unit circle.

At end in the following we will prove the reduced
chattering achieved with the proposed control.

If the system is in sliding mode for t = kTs (25) is
verified.

Now we must evaluate the thickness of the boundary
layer of the sliding manifold in the intersampling istant
t = kTs + τ where 0 ≤ τ ≤ Ts for evaluating the
maximum deviation of the state by the sliding manifold.

For the time-continuous system (19) if a switching
function like (24) is adopted, the dynamic equation for
the sliding surface vector σ = 0 is

σ̇ = Kẋ +Hx = K
(

Ax + f (t)
)

+Hx +KBu . (41)
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Let us consider the system (19) and the sliding surface
(41), considering the intersample instant t = kTs+τ and
integrating both sides of (41) from kTs to kTs + τ , it
yields (42)

σ(kTs + τ) = σk +

∫ kTs+τ

kTs

[K
(

Ax + f (t)
)

+Hx +KBu]dt .

(42)

Considering that in discrete-time SMC the control law
is a piecewise constant function therefore u(t) = uk , (42)
becomes

σ(kTs+τ) = σk+

∫ kTs+τ

kTs

[K
(

Ax+f (t)
)

+Hx]dt+τKBuk .

(43)

Substituting (29) into (43) and considering that in
sliding mode σk+1 = σk = 0 (43) yields

σ(kTs + τ) =

∫ kTs+τ

kTs

[K
(

Ax + f (t)
)

+Hx]dt−

τ(KB)(KBd)
−1[(KAd + TsH−K)xk +Kd̂k] . (44)

Because both the state x and the disturbance f are
smooth and bounded, the integrations in (44) can be
approximated by using Euler’s method (45)
∫ kTs+τ

kTs

[K
(

Ax + f (t)
)

+Hx]dt =

τ [K
(

Ax(kTs) + f (kTs)
)

+Hx(kTs)] +O(τ2) . (45)

In similar way after the application of the Euler’s
method and the Taylor’s series expansion of Ad , dk and
having truncated Bd to the first term we get

Ad = I+ ATs +O(T 2
s ); Bd = BTs +O(T 2

s ); (46)

dk = Tsf
(

(k + 1)Ts − t
)

+O(T 2
s ) = Tsf (kTs) +O(T 2

s )

(KB)(KBd)
−1[(KAd + TsH−K)xk +Kd̂k] =

[KAxk +Hxk +Kf (kTs)] +O(T 2
s ) . (47)

Defining the new variables

q1 =

∫ kTs+τ

kTs

[

K
(

Ax + f (t)
)

+Hx
]

dt

− τ
[

K
(

Ax(kTs) + f (kTs)
)

+Hx(kTs)
]

, (48)

q2 = (KB)(KBd)
−1

[

(KAd + TsH−K)xk + Kd̂k

]

−
[

KAxk +Hxk +Kf (kTs)
]

(49)

and substituting (48) and (49) into (44) yields

σ(kTs + τ) = q1 − τq2 ≤ O(T 2
s ) . (50)

Thus, it is proved that with a discrete-time formaliza-
tion of the controlled system and with an integral sliding
mode control even if the state is kept exactly in the slid-
ing manifold Σ at each sampling period, the intersample
behavior deviates from Σ by an amount O(T 2) which
is lower than what can be achieved adopting by a di-
rect implementation of the time-continuous modelling in
a sampled-data system or adopting a classical SMC, that
instead have thickness O(T ), [25]. This demonstration is
quite different by [24].

4 SIMULATION RESULTS

In order to verify the performance of the proposed con-

trol strategy based on the ISMC approach, some simu-

lations have been developed using MATLAB/Simulink.

Discrete models were used with a simulation step time

of 1µs. The electric parameters of the tested system are

listed in Table 1.

The PV generator has been simulated as depicted in

the section 2.1 and was connected to the grid-inverter

block. A space vector PWM with a sampling frequency

of 20 kHz was used.

Figure 3 shows the grid-voltage, the grid-current and

the actual and reference currents id , i
∗
d and iq , i

∗
q . The

reference component i∗d is step-changed at 0.132 s from
12.4 A (corresponding to a active power of 6 kW) to 6.2 A

(corresponding to a active power of 3 kW) during a time

of 300µs and then backed to 12.4 A at 0.1723 s dur-

ing the same time of 300µs, while the reference reactive

power is contextually fixed to zero (i∗q = 0). For repre-

senting on the same figure also the phase grid voltage and

the grid current the zero of the reference components i∗d
and i∗q has been translated to the value of −15 A on the

ordinate axis. As can be noted the current is always in

phase with the voltage and exhibits a very fast response.

Figure 4 shows the grid-voltage, the grid-current and

the actual and reference currents id , i∗d and iq , i∗q .

The reference component i∗q is step-changed at 0.132 s

from 0 A to 6.2 A (corresponding to a reactive power of

3 kVA) during a time of 300µs and then backed to 0 A

at 0.1723 s during the same time of 300µs, while the

reference active power is contextually fixed to 6.2 A (cor-

responding to a active power of 3 kW).

For representing on the same figure also the phase grid

voltage and the grid current the zero of the reference

components i∗d and i∗q has been translated to the value of

−15 A on the ordinate axis. As can be noted the current is

initially in phase with the voltage then, in correspondence

of the reference change rapidly presenting a phase change

of 45◦ . In all the simulation the ripple on the current is

very low.

In order to prove the robustness of the proposed con-

trol again the modeling error and external disturbances a

5-th and 7-th harmonic have been added to the three-

phase sinusoidal grid-voltage; moreover the inductance

LF has been reduced of 10 times respect to the values

implemented in the control algorithm and RL has been

incremented 10 times respect to the values implemented

in the control algorithm. Figure 5 shows the simulation

results.

The reference component i∗d is fixed to 6.2 A (corre-
sponding to an active power of 3 kW) and i∗q is contex-

tually fixed to zero. As can be noted even though the

strong parametric modelling and disturbance errors the

response of the system is very good.
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Fig. 5. Grid-voltage and grid-current, when modelling error and
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Fig. 6. Grid-voltage and grid-current, actual and reference currents
id and iq for a step change of i∗

d

Fig. 7. Grid-voltage and grid-current, actual and reference currents
id and iq for a step change of i∗q

Fig. 8. Grid-voltage and grid-current, when modelling error and
external disturbances are considered

5 EXPERIMENTAL RESULTS

In order to validate the performances of the proposed
control strategy an experimental prototype has been
arranged. The control strategy has been developed in
MATLAB/SIMULINK and implemented on DSP
dSPACE1103 Motorola PowerPC 60K 333 MHz.

The dSPACE1103 is a well known all-rounder in rapid

control prototyping. A graphical user interface has been

developed using the Control Desk software by dSPACE in

order to control the converter and to monitor the electri-

cal variables of the PV inverter. The main specifications

of the experimental prototype are listed in the Table 1.
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Table 1. Specifications of the experimetal prototype

Components Rating values

PV generator

(MITSUBISHI ELECTRIC PV)

10 strings connected in serie. Each 10 kWp, 246V ,

string is composed of 6 modules in 42A (@STC)

parallel (170 Wp per module)

PV module (PV-MF170EB4)

Rating power (Pp ) 170Wp

Isc (short circuit current) 7.38 A

Voc (open circuit voltage) 30.6 V

VM (MPP voltage) 24.6 V

IM (MPP current) 6.93A

Temperature coefficient of Voc −0.346%/ ◦C

Temperature coefficient of Isc +0.057%/ ◦C

Temperature coefficient of Pp −0.478%/ ◦C

IGBT/Inverter
SEMIKRON

1200V-50A

Module
3xSKM50

(@25 ◦C)
GB 123D

DC Capacitor bank –

input
Electrolytic

CPV filter
2x 2200µF/400V in series

total equivalent capacitance

1100µF/800 V

Grid side

LF , RL , Rs inductor and 4mH, 10mΩ

resistence

GRID POWER
80V/400V 3-phase 10 kVA

TRANSFORMER
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Fig. 9. Steady state grid-current harmonic spectra

Figures 6, 7 and 8 show the experimental response
of the controlled system in the same operative conditions
depicted in Figs 3, 4 and 5. Only the time scale is different
and it can be deduced by the figures. As can be seen from
the waveforms in Figs. 6, 7 and 8 compared with Figs. 3, 4

and 5 the experimental results are in well accordance with
the simulated ones. Figure 9 illustrates the grid-current
harmonic spectra. Each harmonic amplitude is expressed
in percentage of the amplitude of the fundamental. The
THD is 4.03%.

In all the considered operative conditions the current
chattering on the references components of the grid cur-
rents has been always within ±0.02 A. It is not shown in
the figures only for space saving.

6 CONCLUSION

In the paper a new discrete-time integral variable
structure control of grid-connected PV inverter is pro-
posed in order to maximize the input power given by PV
arrays and at the same time for using the grid-inverter as
a reactive power compensator.

The proposed VSC is fully formulated in discrete-
time, taking into account the effects introduced by a
microprocessor-based implementation and it introduces
respect to the classical formalization of the VSC an inte-
gral action that improve the performance of the controlled
system and a correction of the control vector which elimi-
nates the influence of modeling error and external distur-
bances. Thanks to the proposed control law the controlled
system exhibits fast dynamic response, strong robustness
and good current harmonic rejection.

Nomenclature

Iph Light generated current
Isat Saturated reverse current
q Electronic charge
A p-n junction ideality factor
K Boltzmann constant
θ Temperature in Kelvin degrees
rs Series resistance
Vdc PV array voltage
Idc PV array current
sk, sn Gating signals
Rs IGBT’s on-state resistance
Lf , RL Filter inductance and equivalent series

resistance (ESR) of the filter inductor
ik, id, iq Grid currents (for k = 1, 2, 3) and their

components in d, q reference-frame
vg,k, vg,d, vg,q Grid voltages (for k = 1, 2, 3) and their

components in d, q reference-frame

A
⊤ Transpose of the matrix A

Ts Sampling period
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