Ohmic Conacts to p-GaN on the Basis of Carbon Nanomaterials

Open access


We have designed and verified a new structure for ohmic contacts to p-GaN based on a layer of carbon nanotubes (CNT), reduced graphene oxide (r-GO) and metallic layers of Cr, Pd and Au, namely in configurations Au/Cr/r-GO/CNT/p-GaN and Au/Pd/r-GO/CNT/p-GaN. The effects have been studied of the annealing temperature and the gas ambient upon the electrical properties of the contacts. Annealing of the Au/Pd/r-GO/CNT/p-GaN structure in air at 500°C for 1 minute resulted in linear I - V curves measured between planar electrodes on the p-GaN. Hence, addition of r-GO to the CNT interlayer between p-GaN and the metallization layer is a highly promising procedure for further improvements of the ohmic contacts to p-GaN.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] MURAKAMI M.–KOIDE Y. Ohmic Contacts for Compound Semiconductors Critical Reviews: Solid State and Materials Sciences 23 (1998) 1-60.

  • [2] WENZEL R.–FISCHER G. G.–SCHMID-FETZER R.: Ohmic Contacts on p-GaN (Part I): Investigation of Different Contact Metals and their Thermal Treatment Materials Science in Semiconductor Processing 4 (2001) 357-365.

  • [3] HOJ. K.–JONG C. S.–CHIUC.C.–HUANGC.N.–SHIH K. K.–CHEN L. C.–CHEN F. R.–KAI J. J.: Low Resistance Ohmic Contacts to p-type GaN Achieved by the Oxidation of Ni/Au Films Journal of Applied Physics 86 (1999) 4491-4497.

  • [4] MISTELE D.–FEDLER F.–KLAUSING H.–ROTTER T.–STEMMER J.–SEMCHINOVA O. K.–ADERHOLD J.: Investigation of Ni/Au-contacts on p-GaN Annealed in Different Atmospheres Journal of Crystal Growth 230 (2001) 564-568.

  • [5] JANG H. W.–KIM S. Y.–LEE J.-L.: Mechanism for Ohmic Contact Formation of Oxidized Ni/Au on p-type GaN Journal of Applied Physics 94 (2003) 1748-1752.

  • [6] LIDAY J.–HOTOVÝ I.–SITTER H.–VOGRINČIČ P.– VINCZE A.–VÁVRA I.–ŠATKA A.–ECKE G.–BONA-NNI A.–BREZAJ.–SIMBRUNNERC.–PLOCHBERGER B.: Investigation of NiOx-based Contacts on p-GaN Journal of Materials Science: Materials in Electronics 19 (2008) 855-862.

  • [7] SONG J.-O.–LEEM D.-S.–SEONG T.-Y.: Formation of Low Resistance and Transparent Ohmic Contacts to p-type GaN Using NiMg Solid Solution Applied Physics Letters 83 (2003) 3513-3515.

  • [8] SONG J.-O.–LEEM D.-S.–SEONG T.-Y.: Low-resistance and Transparent Ohmic Contacts to p-Type GaN Using ZnNi Solid Solution/Au Scheme Applied Physics Letters 84 (2004) 4663-4665.

  • [9] LIDAY J.–VOGRINČIČ P.–VINCZE A.–BREZA J.–HO-TOVÝ I.: Improving the Ohmic Properties of Contacts to p-GaN by Adding p-type Dopants into the Metallization Layer Journal of Electrical Engineering 63 (2012) 397-401.

  • [10] ZAHAB A.–SPINA L.–PONCHARAL P.–MARLIRE C.: Water-vapor Effect on the Electrical Conductivity of a Single-walled Carbon Nanotube Mat Physical Review No. B62 (2000) 10 000-10 003.

  • [11] LEE K.–WU Z.–CHEN Z.–PEARTON S. J.–RINZLER A. G.: Single Wall Carbon Nanotubes for p-type Ohmic Contacts to GaN Light-emitting Diodes Nano Letters No. 4 (2004) 911-914.

  • [12] DERYCKE V.–MARTEL R.–APPENZELLER J.–AVO-URIS PH.: Controlling Doping and Carrier Injection in Carbon Nanotube Transistors Applied Physics Letters 80 (2002) 2773-2775.

  • [13] ANTONOV R. D.–JOHNSON A. T.: Subband Population in a Single-wall Carbon Nanotube Diode Physical Review Letters 83 (1999) 3274-3276.

  • [14] LIDAY J.–VOGRINČIČ P.–VRETENÁR V.–KOTLÁ'R M.–VÁVRA I.–HOTOVÝ I.–BREZA J.–ŘEHÁČEK V.: The Layers of Carbon Nanomaterials as the Base of Ohmic Contacts to p-GaN Applied Surface Science 312 (2014) 63-67.

  • [15] PHAM T. A.–KIM JEONGSIK–KIM JEONGSU–JEONG Y. T.: One-step Reduction of Graphene Oxide with L-glutathio-nev Colloids and Surfaces A: Physicochemical and Engineering Aspects 384 (2011) 543-548.

  • [16] SKÁKALOVÁ V.–VRETENÁR V.–KOPERA.–L'KOTRU-SZ P.–MANGLER C.–MEŠKO M.–MEYER J. C.–HUL- MAN M.: Electronic Transport in Composites of Graphite Oxide with Carbon Nanotubes Carbon 72 (2014) 224-232.

  • [17] KINDER R.–MIKOLÁŠEK M.–DONOVAL D.–KOVÁČ J.–TLACZALA M.: Measurement System with Hall and Four Point Probes for Characterization of Semiconductors Journal of Electrical Engineering 67 (2013) 106-111.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 122 4
PDF Downloads 91 73 2