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ACHIEVING AN EQUILIBRIUM POSITION
OF PENDUBOT VIA SWING-UP AND
STABILIZING MODEL PREDICTIVE CONTROL

Martin Gulan — Michal Salaj — Boris Rohal-Ilkiv

In this paper, a complex control strategy to swing-up and balance the under-actuated pendubot system in one of its
unstable equilibrium positions is presented. The initial swing-up maneuver is performed using an energy-based approach. For
the purposes of stabilizing the system in its mid unstable equilibrium position a model predictive controller based on optimal
control law with integral action is proposed. Satisfaction of constraints is ensured by introducing perturbations in the LQ
control law acting as corrections when input amplitude/rate bounds are to be exceeded. The stability issue is addressed
via additional constraints imposed on the terminal set. The emphasis of the paper is on the experimental realization of the
pendubot swing-up followed by its balancing, which reveals the accuracy of the proposed control scheme.
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1 INTRODUCTION

The inverted pendulum presents a standard problem in
the field of control system. It is often used to demonstrate
various concepts in linear and nonlinear control such as
stabilization or swinging up of unstable systems [1]. This
system belongs to the class of non-minimum systems be-
cause of its internal dynamics. With regards to significant
nonlinearities and input/state constraints, predictive con-
trol can be seeked as a systematic methodology to handle
these challenging control problems [2].

In this paper a predictive control approach is discussed
for the problem of stabilization of a nonlinear mechatronic
system with fast dynamics, namely the pendubot, which
together with other mechanical systems such as double
pendulum on cart or acrobot belongs to the class of under-
actuated double inverted pendulums [3].

The pendubot is an interesting example of inverted
pendulum; it is an under-actuated system since the num-
ber of its control inputs is less than the number of its
degrees of freedom, which makes it difficult to control.
However, controlling such systems is challenging due to
nonlinear dynamics, nonholonomic behaviour, and lack
of linearizability exhibited by these systems [4]. The pen-
dubot itself is a two-link planar robot with a single actua-
tor at the base (shoulder) of the first link, and the (elbow)
joint between the two links is unactuated and allowed to
swing freely [5].

As outlined before, some of the principal control prob-
lems for the pendubot are swing-up, stabilization (bal-
ancing) and trajectory tracking. The problem of swing-
up and stabilization has been addressed in several works,
e.g. [6] used partial feedback linearization techniques for
swing-up control, and linear quadratic regulator (LQR)
for stabilization around the desired equilibrium position.
In [7] the authors propose a swing-up strategy based on

an energy approach and passivity properties of the sys-
tem where the second link moves and reaches the desired
position according to a homoclinic orbit while some con-
ditions on the initial state of pendubot have to be met
to avoid a singularity. Another works investigating the
balancing of pendubot involve strategies such as robust
control, fuzzy control, quotient method or sliding mode
control [8].

This work focuses mainly on design of balancing con-
troller via model predictive control (MPC) with guaran-
teed stability while for the swing-up an approach adopted
from [9] based on difference of actual energy and energy
of pendulum needed to reach the desired position is used.
Here, the main objective is to “take” the pendubot from
the stable downward position to balance it at its mid up-
right unstable equilibrium position.

The structure of this paper is as follows. In Section 2,
the pendubot system is described and its dynamic model
is given. The state-space model is subsequently linearized
around the desired equilibrium position and discretized.
The swing-up strategy is presented in Section 3. Section 4
is dedicated to design of stabilizing model predictive con-
troller with stability guarantees. In Section 4, the pen-
dubot laboratory setup is described and experimental re-
sults are presented. Finally concluding remarks are drawn
in Section 6.

2 SYSTEM MODEL

The mathematical model of an under-actuated planar
robot can be in general derived by means of the Lagrange
formalism
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Fig. 1. Schematic of the pendubot in a relative coordinate system

Fig. 2. Main equilibrium positions of the pendubot. From left
to right: down-down (—3,0,0,0), down-up (—3,0,,0), up-down
5,0,m,0), up-up (%,0,0,0)

Table 1. Basic Mechanical Parameters of Pendubot Model

Parameter Symbol Value*
mass mi 0.265 kg
length 1 0.206 m
how |l tecons L osomm
moment of inertia I 9
about the centroid 1 0.0025 kgm
friction coefficient b1 0.08kgm?s~!
mass mo 0.226 kg
length la 0.298 m
P |dstanceof B cemter g g
Link 2 |moment of inertia I 5
about the centroid 2 0.0011kgm
friction coefficient bo 0.00001 kg m2s!
torque (control input) T (Nm)

*valid for the actual experimental setup described in Section 5

with the Lagrangian

L(q,q) =T(q,q) —V(q) (2)

defined as the difference between the kinetic energy T
and potential energy V of the system, and the Rayleigh
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dissipation function R accounting for friction. q =
[q1,...,qn] " € R™ is the vector of the angles of all joints
in generalized coordinates, and T = [r1,...,7,]' € R®
denotes the external control force vector. By applying
Eq. (1), the resulting equation of motion can be described
in standard vector/matrix form

(3)

where D(q) € R"™™ is a symmetric positive definite in-
ertia matrix, C(q,q) € R™"*™ contains the Coriolis and
centrifugal terms, F(g) € R™ is the vector of viscous fric-
tional terms, and F(q) € R™ denotes the vector of grav-
itational terms. For the pendubot system, schematically
illustrated in Fig. 1, the following quantities can be ob-
tained:

D(a)d +Cla, @)q + F(q) +g(q) =7

@ | 614+ 62+205c05q2 62+ O3cosqe

q[qg]’ D(q)[ 2 + 05 cos g2 6, |
.\ | —03sin(g2)ga  —03sin(gz2)ga — O3 sin(g2)q1

C(q7 q) - |: 93 Sin(q2)dl O 9

019 cosqr + 059 cos(q1 + ¢2) 71
F(q) = dr=
(@) { 059 cos(q1 + q2) T 0

where

01 = mil +mol + 1, 04 =male +mal,

0y = m2132 + I, 05 = maleo

03 = malileo,

are the parameter equations needed for the subsequent
control design. Taking into account friction in both joints
the dynamic system (3) can be rewritten as follows

1

N 6102 — 05 cos? qa (820251 4241 + d2)

+03 cos g2 sin(g2) 47 — 02049 cos g1 +03059 cos g2 cos(q1 +q2)

+ 0211 — Ob1Gr + (02 + 05 cos g2)bago]|,  (4)

1

- [05(62+ 0, Ny
9192—930052(12[ 3(02 + 03 cos g2) sin g2 (g1 + G2)

Go
— (61403 cos g2)03 sin(qQ)(ijr(GngH;g cos q2)(01g cos g1 —71)
— (01 + 03 cos q2)059 cos(q1 + g2) + (02 + 03 cos g2)bida

— (91 + 65 + 203 cos QQ)bgq'Q} R (5)

yielding pendubot’s two non-linear equations of motion,
which are to be used for design of a balancing controller.

The main mechanical parameters of the pendubot
along with their values valid for the laboratory model
are listed in Table 1.

By introducing the state vector x(t) = [x1, 21, To, d2] |
= [q1,d1,q2,42] " the equations of motion of the pendubot
may be written in the input-affine system representation
(6)

X =f(x)+ f(x)u, x(0) = xo.
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For the purpose of subsequent controller design, the
system (6) is linearized along the desired reference tra-
jectory, in our case considered to be time-constant, ie
x* = [qf, 45, 45,43] T corresponding to an input u*, with
initial condition x*(0) = x¢. For sufficiently small de-
viations from the desired setpoint, x(t) = x* + %x(t),
y(t) = y* +y(t) and u(t) = u* + a(t), the system (6)
can be described by the continuous, linear, time-invariant
state-space formulation

X

Ax + Bu, 5((750) = Xy,

y=Cx "

with Xy = x9 — x* and system matrix and input vector

A=_—(f(x)+ F(x)u)

Bx B =F(x").

)
X=X* u=u*

In our one-input two-output case u(t) = 71 is the input
at time (¢); A € R¥4 B € R**! and C € R?** is
the output matrix. Output of the system are the angular
positions of both links y(t) = [q1(t), g2(t)] T measured in
pendubot’s joints.

Note that for v = 7 = 0 the system (6) exhibits
in total four main equilibrium positions, see Fig. 2, the
first being a stable and the other three are unstable equi-
librium positions. Challenging from the control point of
view are the down-up (mid) and up-up (top) pendubot’s
equilibrium positions. In this work the control objective
is to stabilize the system around its mid unstable equi-
librium position, ie x* = (—x/2,0,7,0) with respective
input u* = 0.

Next, a simple numerical integration by means of the
Euler method, see eg [10], is utilized to calculate the time-
discrete system representation for the sampling time 7T in
the form

Xk+1 = Adf(k + Bdﬂ(k) , (8)

Vi = Caxy,

where Ay = AT B, = (fOT eATdT>B = A'(A;—1)B,
C,=C.

3 SWING-UP CONTROL

As outlined in Section 1 there exists a variety of ap-
proaches to inverted pendulum swing-up. Predominantly,
they are based on adding energy to the pendubot system
until it equals the potential energy in the desired equilib-
rium position.

Our approach is based on the same but simplified
idea. Here, the sequential adding of energy is achieved by
swinging the arm (link 1) around its downward position
(01 = —n/2). The pendulum (link 2) then approaches
the upright position where it can be caught with an ap-
propriate stabilizing strategy.

For the calculation of required torque the following
control law [8] is used (subscript (-), denotes that vari-
able refers to absolute coordinate system)

u = sat,, (ks(E — EO))sign(éga cos Hga) 9)

where E, Ey are the actual and desired energy of the
pendulum, respectively. The gain ks is a design param-
eter which adjusts the speed of swinging-up. The arm
swings are limited to help smoothening the transition to
balancing control. The correct polarity of control input
applied to the pivot is determined by the signum term.
The normalized energy E [8] can be determined as

1 9.20, 2
E = magls <§ (w_o) + cos by, — 1> (10)

maglo

wo =
I

(11)
is the frequency of pendulum’s small oscillations around
its downward position. A convenient choice is to set the
desired upright position of pendulum as the base with
0. Hence, according to (10) the
energy in the downward position is —2magls .

zero energy, ie Ey =

This approach is clearly a bang-bang strategy for large
errors and proportional control for small errors [8]. No-
tice, however, that the described strategy does not con-
sider the entire energy of the system, and therefore can
not guarantee that both links will enter the basin of at-
traction of the balancing controller at the same time. Nev-
ertheless, it has been proven true by a series of simulation
and experimental runs; and after all the fact that the arm
can be found in the vicinity of the downward position
when the transition happens is implied by close-to-zero
values of torque (see Fig. 6) as directly results from (9).
This is however valid only for the mid equilibrium posi-
tion, which is in the scope of this work.

4 BALANCING CONTROL

The balancing controller proposed in this Section uses
the mathematical model, (4) and (5), which is further lin-
earized for the mid unstable equilibrium position. To ob-
tain better numerical conditioning of predictions’ calcula-
tion, the technique of stabilization of the nominal model
is employed. First, the linear quadratic controller is de-
scribed, which is commonly used to balance a pendulum
system and here also serves as a basis for the further de-
rived predictive controller.
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Fig. 3. Dual mode predictions and receding horizon control idea

4.1 Discrete Linear Quadratic Controller

For a discrete time-invariant state-space system, the
LQ controller is defined as the fixed matrix feedback gain
K, which in case of our system minimizes the following
infinite horizon cost function

Jp = Z(x,jka +ru(k)?)

k=0

(12)

where Q € Ri“ is a positive semi-definite state weight-
ing matrix and r € Ry, is a positive input weighting
scalar. The output torque at motor shaft applied at time
instant (k) is then

u(k) = —Kx;, (13)
where the LQ feedback gain may be calculated from
K= (B,PB;+7)"'B]PA, (14)

where P is the positive definite solution of trhe discrete
time algebraic Ricatti equation (DARE) defined by

P=Q+A;(P-PByB,;PB,+7) 'BjP)A;. (15)

4.2 Stabilizing Model Predictive Controller

The main idea of predictive control is to compute an
optimal input sequence by minimizing the predicted cost
on a certain horizon and applying its first element to the
plant repeatedly at each sampling instant, while respect-
ing specified constraints. Hence, it contains the basic com-
ponents of prediction, optimization and receding horizon
implementation. The length of the prediction horizon has
to meet both stability and computational requirements.
Here, the so-called dual mode control was used, see Fig. 3,
combining both finite and infinite horizon control. The
first mode contains free optimization variables, while the
second mode associated with the last state will be steered
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into equilibrium by a stabilizing fixed feedback law, usu-
ally a LQ control law, ie

optimization
, 1=0,1,...,N — 1(mode 1),
u(k+i| k) =4 wvariables,
KX pif i=N,N+1,...(mode 2)

(16)
with the assosiated cost in following form:

N—-1
T T T
Ji = Z (Xk+iQXk+i + uk_H-RukJri)Jer_i_NPkaJrN
1=1

(17)
where the terminal weighting matrix Py can calculated
as the solution of the Lyapunov equation [11].

From the numerical robustness point of view it is con-
venient to express predictions as perturbations on the sta-
bilizing linear feedback law according to the approach of
plant pre-stabilization prior to prediction phase proposed
by [12]. The control law is then

ulk+1i|k)= KXk+i|k +e(i] k) (18)
where K is the optimal LQ gain and
optimization
) , 1=0,1,...,N —1,;(mode 1)
c(i|k) = wvariables,
0, 1> N, (mode 2)

are the input perturbations that implicitly ensure satis-
faction of constraints along the finite horizon N.

The prediction problem can be now reformulated us-
ing the so-called autonomous augmented state-space de-
scription [13] yielding an augmented cost function in the
following form

Jo=x"Px +f'Sf

—k —k —k —k

(19)

where S = diag(BjPBg+ 1), S € RV*N and fk e RN
—

is a vector of predicted input perturbations (More details
on this topic can be found eg in [16]).

Since the cost (19) is to be minimized with respect
to input perturbations, the first term that depends only
on the actual state can be further omitted. Hence, it is
sufficient to minimize

J, =Ff'S f + const. (20)
—k —k

In this work, for minimization of (20) the following con-

straining condition were considered.

— control action limitation (amplitude and rate con-
straints on control input),

— achieving a desired invariant and feasible target set at
the end of prediction horizon.
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[ start MPC
[ stop MPC

Fig. 4. Illustration of position ranges where particular control

regimes of the pendubot are active. The angular values represent

deflections with respect to the vertical axis (Not to be confused
with the control errors ¢§ and g5, respectively).

For a successful implementation of input constraints
it is essential to derive prediction equations of inputs on
horizon N . These can be obtained as follows.

u(k) = Kxy, + c(k) ,
u(k+1) = Kxgp1 +c(k+1)
= Kd®x;, + KBye(k) +c(k+ 1),

u(k + N —1) = KON Ix; + ¢(k + N — 1)
N-2

+ ) KON 2Bye(k + i)
=0

or, in a compact vector/matrix form,

=Mx; +Nf . (21)
—k

u
—k
where u = [u(k),u(k+1),...,u(k+ N —1)]7, M and
—
N are appropriate input prediction matrices, and ® =
A +ByK, & € R™*" is a closed-loop system state matrix,
eigenvalues of which lie within a unit circle. Notice that
Xk4+1 = (I)Xk.
Prediction equations for input increments can be de-
rived in a similar way yielding

Au =Max,+Na f + ug (22)
—k —k

where ug = [~u(k —1),0,...,0]T € RV,
This paper further utilizes following low-complexity

polytopic invariant and feasible target set as the terminal
set [14]:

Anv =Po(W,a, @) ={xeR":a<Wx <a} (23)
where the polytope definition matrix W € R™ contains
left eigenvectors of ®; and «a, a denote its defining
hyperplanes.

The terminal state xy4pn, which must belong to the
target set, ie xpyn € v CR™, can be expressed as

Xp+N = Goanxp +Hon f (24)
—k

where matrices Gony and Hepy can be derived as

Gony =0V,  Hen =[2V'BOV?B ... B].

Parameters a and a of the target set Py may be pre-
calculated using an effective linear programming based
(LP) algorithm, as shown eg in [16].

Notice also that since the control objective is to steer
the system to a non-zero reference, the following shifted
variables are introduced (In this case the target set Py
needs to be re-calculated for shifted input bounds u — et
and T — uger as well).

u’(k) = u(k) — tyet,

s (25)
X = Xk — Xref
which satisfy the state equation
Xip1 = Aaxy + Bau® (k). (26)

Referring to Section 2 it is clear that x° = X, Xpof = xX*
and u® = U, ups = u* (=0 in our case).

The above described approach, however, requires an
exact knowledge of the controlled system’s dynamics and
in case of any inaccuracies may lead to a residual steady-
state error. This can be eliminated by introducing of
integral action into the control law. To achieve that one
can consider incremental form of control inputs in the cost
function, however, more convenient in terms of invariant
and feasible sets’ computation is to augment the state
vector xj with the state of integrator ey, evolution of
which is described by ex41 = er + (Y& — Yret). Let us
therefore rewrite the shifted system (26) in the following
fashion.

X1 = Aaxi + Bau® (k) o
yi = Cak; 27

with the augmented vectors and matrices

- ol A; 0| & B =
X12|:X§:|,Ad |:CZ I:|, Bd|:0d:|,cd[cd 0].

Applying the LQR problem in order to obtain the con-
troller with integral action K = [Kx K] for system (27),
the control signal is given by

ut (k) = KX = Kyxi + Keej (28)

where K is calculated similarly to (14) and (15).
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Fig. 5. Snapshots of the swing-up maneuver depicted in eight consecutive sequences with increasing darkness of snapshots as time
increases during the respective sequence. Notice that the actual swing-up phase ends approximately at ¢t = 2.4 s when it is switched to
the balancing controller

Finally, to obtain the optimizing input sequence an
optimization procedure has to be performed at each sam-
pling instant (k), repeatedly solving a minimization prob-
lem of the form

. T'v
m;n{jk Si‘k + const }. (29)

—k

subjected to input amplitude and rate constraints im-
posed on control inputs as well as boundaries of the in-
variant target set

(30)

where 1 € RY is a vector of ones.

Assume we have pre-calculated target set ’PO(W, a, @)
and matrices g, I\7I, N, I\7IA, NA, éq,N and I:|¢N. Then
the control is given by Algorithm 1.

Algorithm 1. MPC with guaranteed stability

e Observe (State estimation was not considered here
since all the states can be directly obtained or derived)
or measure actual system state at sample (k), x;, and

set element u(k — 1) in vector ug.

e Solve the following quadratic programming problem

minimize 'S f
f —k —k
—k
lu < MX;+N £+ unerl <17,
—
subject to —

—a < V~V(é<1>N5<Z + F'@Njk)ﬁ .

e According to the receding horizon strategy apply only
the first element of the sequence of optimal control
moves

u*(k) = Kxp + [1 0 ... 0] f* = K&, + c*(k)

—k

to the controlled system, and restart the procedure.

By minimization of cost (29) with respect to con-
straints an optimal sequence of control input perturba-
tions, f ;, along the prediction horizon can be obtained,

—

of which the first element, ¢*(k), is used as a correc-
tion to the optimal LQR control law according to (18).
If the steady-state values Uref, Xrof, Eret and Yyer are de-
termined properly, Algorithm 1 ensures that the shifted
state converges to zero (x; — 0), and hence the actual
state, integrator state and input converge to their steady-
state values (Xr — Xyef, €k — Erof, (k) = Uret).

To evaluate the constrained minimization quadratic
problem (QP) described by Algorithm 1 the qpOASES
on-line active set solver developed by Ferreau et al [17]
was utilized.

4.3 Controller Switching

To implement the idea of a complex pendubot con-
troller it must switch from swing-up to balancing con-
troller whenever it enters its basin of attraction. To ac-
complish this, a switching strategy was devised and im-
plemented into Simulink model. Its idea is schematically
illustrated in Fig. 4.

5 REAL-TIME EXPERIMENTAL RESULTS

The experimental setup developed for testing efficient
MPC in pendulum control applications consists of two
main parts:
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-15
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Fig. 6. Measurement results for swing-up and stabilization of the pendubot around the mid unstable equilibrium position. The first four
graphs depict the evolution of system’s state variables while the last one shows the respective control actions. The swing-up phase is
distinguished by grey colour

Mechanical part of the system

The pendubot body consists of an adjustable frame,
which allows the pendubot to be reassembled into a ro-
tary, so-called Furuta pendulum or vice versa, and a dou-
ble inverted pendulum. The joint between its two links is
unactuated, whereas the joint between the first link and
the frame is actuated by a motor. The physical parame-
ters of the system (Tab. 1) can be modified by replacing
one or both links with ones of desired length, as well as
equipping them with additional weights.

Control and data acquisition electronics

The actuator of the system is a Mitsubishi HC-KFS43
servo motor with a WITTENSTEIN alpha CP060 gear-
box. It uses a Mitsubishi MR~J2S-40A control unit work-
ing in torque control mode. It is also equipped with an
absolute encoder allowing the real-time measurement of

the arm angular position. In order to measure the angle
that the pendulum makes with the arm, an incremental
rotary encoder OMRON E6B2-C is used.

The whole system is running under xPC rapid proto-
typing system (a target PC used for real-time control and
a host PC used for controller development). Data acqui-
sition is carried out utilizing a multifunction Humusoft
MF-624 1/0 card.

The experimental results for the swing-up and stabi-
lization of the pendubot model around the mid position
are presented in Fig. 6. It shows the development of sys-
tem’s states during the selected period of 10 seconds from
start of the real-time experiment. The swing-up algorithm
was initialized manually - by touching the pendulum gen-
tly. This is then swung up from the downward equilibrium
position to the pre-determined vicinity of the upright mid
equilibrium position (see Fig. 4), where the control is
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taken over by the balancing predictive controller. After
the initial transient the pendubot successfully balances
about the desired equilibrium position. Notice that dur-
ing the critical phase of entering the basin of attraction of
the balancing MPC controller the appropriate input was
ensured by perturbations that adjusted the overall torque
when the constraints were to be violated (see Fig. 6).
The swing-up maneuver itself is depicted in more detail
in Fig. 5.

The following values of design parameters were used:
T =0.01s, N =100 steps, ks = 1.4, Q = diag(10,0,8,0)
and 7 = 1. Bounds used in minimization of cost function
are u=—1,u=1, Au= —0.5 and Au = 0.5 Nm.

6 CONCLUSION AND FUTURE WORK

In this paper a methodology and successful imple-
mentation of a control strategy to swing-up and balance
the underactuated pendubot system has been presented.
Here, an energy-based approach was utilized to perform
the initial swing-up maneuver. For the purposes of bal-
ancing the pendubot in the up-right mid position a con-
strained model-based predictive controller with guaran-
teed stability was used.

The overall performance and efficiency of the proposed
control algorithm were experimentally demonstrated on
a laboratory test bench. It was shown to perform very
satisfactorily and may be thus applied in a variety of not
only under-actuated but mechatronic systems with fast
dynamics in general.

Our future work will be focused on achieving and pos-
sibly traversing also the other equilibria of pendubot
by means of a moving horizon state and parameter
estimation-based nonlinear model predictive control ex-
ploiting the full nonlinear model of the system.
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