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IMPROVED ROBUSTNESS OF GENERALIZED

PREDICTIVE CONTROL FOR UNCERTAIN SYSTEMS
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An off-line methodology has been developed to improve the robustness of an initial generalized predictive control (GPC)
through convex optimization of the Youla parameter. However, this method is restricted with the case of the systems
affected only by unstructured uncertainties. This paper proposes an extension of this method to the systems subjected
to both unstructured and polytopic uncertainties. The basic idea consists in adding supplementary constraints to the
optimization problem which validates the Lipatov stability condition at each vertex of the polytope. These polytopic
uncertainties impose a non convex quadratically constrained quadratic programming (QCQP) problem. Based on semidefinite
programming (SDP), this problem is relaxed and solved. Therefore, the robustification provides stability robustness towards
unstructured uncertainties for the nominal system, while guaranteeing stability properties over a specified polytopic domain
of uncertainties. Finally, we present a numerical example to demonstrate the proposed method.

K e y w o r d s: generalized predictive control, quadratically constrained quadratic programming, polytopic uncertainties,
relaxation, robust control, semidefinite programming, Youla parameterization

1 INTRODUCTION

Generalized Predictive Control (GPC) [3] has proven
its ability to give better performance while keeping its
implementation relatively simple. Its related algorithms
with guaranteed nominal stability as presented eg in [4],
the inner loop stabilizing Stable Predictive Control [5]
and the Cautious Stable Predictive Control [6]. The pres-
ence of the plant model is a necessary element for the
development of the predictive control. Therefore the suc-
cess of GPC depends on the degree of precision of the
plant model. Generally, there exist two typical descrip-
tions of model uncertainties, depending on how these un-
certainties are described, structured (parametric) or un-
structured uncertainties.

The GPC robustness issue in the presence of unstruc-
tured modeling errors is usually dealt with by enhanc-
ing the robustness of existing designs by introducing de-
grees of freedom based on the Youla parameterization,
also called as Q-parameterization. This parameterization
used in [5], [7], [8] and [9] where a robust optimization
problem is defined and the Youla parameter Q is derived.
However, these methods present some shortcomings. For
example, the method proposed in [5] provides high ro-
bustness bounds but penalizes the disturbance rejection
performance. Also, the methods developed in [7] and [8]
defined a mixed sensitivity problem, but the trade-off be-
tween robustness and nominal performance is difficult to
adjust. This difficulty is surmounted by the method pro-
posed in [9] but the Youla parameter is searched for in a
very restricted space.

Another sophisticated methodology has been devel-
oped recently in [1] to enhance the robustness of the
GPC controller towards unstructured uncertainties while

respecting time-domain constraints. This methodology
starts with the design of an initial stabilizing GPC con-
troller; this controller is then robustified via the Youla
parametrization which permits to access all the stabilis-
ing controllers. This parametrization allows formulating
frequency and time-domain constraints as convex opti-
mization

The last approach of robustification constitutes a
paramount advantage for a good regulation of a pro-
cess subjected to unstructured uncertainties. This paper
presents an extension of this methodology to the systems
subjected to both unstructured and polytopic structured
uncertainties, while preserving the same formalism by
Youla parametrization adopted in [1].

2 DESIGN OF THE GPC LAW

The GPC control law uses the controlled auto-regres-
sive integrated moving average (CARIMA) model

A
(
q−1

)
y(t) = B

(
q−1

)
u(t) +

ξ(t)

∆(q−1)
, (1)

where u(t) and y(t) are the plant input and output for
a SISO system. A and B are polynomials in backward
shift operator q−1 and ∆(q−1) = 1− q−1 . ξ(t) is an un-
correlated random sequence. The j -step ahead prediction
over the costing horizons N1 ≤ j ≤ N2 is given by

y(t+ j) = Fj(q
−1y(t) +Hj(q

−1)∆u(t− 1)︸ ︷︷ ︸
free response

+

Gj(q
−1)∆u(t+ j − 1) + Jj(q

−1)ξ(t+ j)︸ ︷︷ ︸
forced response

. (2)
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Fig. 1. GPC Equivalent polynomial RST controller

Fj , Gj , Hj are polynomials obtained by solving Dio-
phantine equations. To achieve optimal command values,
the GPC uses a quadratic cost function defined as

J(N1, N2) =

N2∑

j=N1

[ŷ(t+j)−w(t+j)]2+λ

Nu∑

j=1

[u(t+j−1)]2.

(3)
∆u(t + j) = 0 for j ≥ Nu . Here N1 and N2 define the
output prediction horizons, and Nu the control horizon.
λ is the control weighting factor, w the reference value, ŷ
the predicted output value. The receding horizon princi-
ple assumes that only the first value of the optimal control
sequence resulting from the minimization of (2) is applied,
so that at the next sampling period the same procedure
is repeated. This control strategy leads to a 2-DOF RST
controller implemented through a difference equation

S
(
q1−

)
∆
(
q1−

)
u(t) = −R

(
q1−

)
y(t) + T

(
q1−

)
w(t) . (4)

Assuming the design has been performed with R0 , S0 ,
T0 and N1 , N2 , Nu , λ adjusted to satisfy certain closed
loop performance. The resulting 2-DOF RST controller
will be denoted R0 , S0 , T0 , Fig. 1.

3 YOULA PARAMETRIZATION

As given in [1], the Youla parameterization of the pre-
vious initial generalized predictive controller (R0, S0, T0)
leads to the following stabilizing polynomials

T
(
q−1

)
= T0

(
q−1

)
−A0

(
q−1

)
Q2

(
q−1

)
,

R
(
q−1

)
= R0

(
q−1

)
+∆A

(
q−1

)
Q1

(
q−1

)
,

S
(
q−1

)
= S0

(
q−1

)
−q−1B

(
q−1

)
Q1

(
q−1

)
(5)

where Q1 and Q2 are free stable transfer functions. And
P0 = A0Ac = ∆AS0 + q1−BR0 is the characteristic
polynomial of the closed loop obtained with the initial
controller where Ac and A0 represent, respectively, a
control polynomial and an observer polynomial.

The corresponding block diagram of the controller (5)
is shown in Fig. 2. So, two remarks can be done: Q2

modifies only the tracking behavior, and, if the model is
exact, the characteristic equation is not modified by the
parametrization

∆AS0 + q−1BR0 = ∆AS + q−1BR (6)

whereas Q1 parameter modifies the closed loop features
keeping the input-output transfer unchanged.
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Fig. 2. RST controller with Youla parametrization

In the next developments, Q2 will be set to zero as-
suming that the tracking performance is ensured by the
initial GPC controller design and Q1 will be used to ro-
bustify this initial controller. As a result, the closed-loop
transfer between w and y becomes

y

w
=

T0q
−1B

P0
. (7)

4 ROBUST STABILITY UNDER

UNSTRUCTURED UNCERTAINTIES

Without loss of generality, and for simplification pur-
poses, the particular case of the maximization of the ro-
bust stability under additive direct unstructured uncer-
tainties is considered below. This uncertainty is shown in
Fig. 3. P (q−1) represents the system connected to the
uncertainty block.

P =
v

z
= −

R0A

P0
−

A2∆

P0
Q1 . (8)
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Fig. 3. Unstructured additive direct uncertainty

According to the small gain theorem [9], robustness
under unstructured uncertainties is maximized formulat-
ing a H∞ norm minimization

min
Q1∈RH∞

‖P (q−1)W (q−1)‖∞ (9)

where the weighting W reflects the frequency range
in which model uncertainties are more significant, and
RH∞ is the space of all proper and stable transfer func-
tions. The Youla parametrization allows linear depen-
dency between P and the Youla parameter Q1 as shown
in equation (8). So, the specifications defined by equation
(9) are convex in Q1 . This convex optimization problem
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Fig. 4. Polytopic uncertainty representation with l = 6

leads to a Q1 parameter varying in an infinite dimen-
sional space [1].

To the author’s knowledge, there is no solution to
this optimization problem, and a sub-optimal solution
can be obtained by considering a finite dimensional sub-
space generated by an orthonormal base of discrete stable
transfer functions such as a polynomial or FIR (Finite
Impulse Response) filter

Q1 =

nq∑

i=0

αiQ1i . (10)

Then, the H∞ norm minimization can be approximated
by a minimization under linear inequality constraints,
such as the equation (9) can be written as

min
Q1∈RH∞

‖T1 + T2Q1‖∞ =

min
Q1∈RH∞

max
0≤w≤π

∣∣T1(e
−iw) + T2(e

−iw)Q1(e
−iw)

∣∣. (11)

With the definition of Q1 given in (9), and replacing half
of the unit disk by a finite grid, this relation becomes
∣∣∣T1(e

−θk)︸ ︷︷ ︸
T1k

+T2(e
−θk)[Q10(e

−θk) . . . Q1nq
(e−θk)]

︸ ︷︷ ︸
T2k

×

[α0 . . . αnq
]⊤

︸ ︷︷ ︸
α

∣∣∣ ≤ γ (12)

with γ which is the upper bound of the left-hand side of
(11), and θk = π(k−1)/(N−1) for k = 1, . . . , N , leading
to relation

|T1k + T2kα| ≤ γ for k = 1, . . . , N . (13)

This matrix inequality under the form |u| ≤ γ , is
approximated by a set of four linear inequalities

Reu+ Imu ≤ γ ,

−Reu+ Imu ≤ γ ,

Reu− Imu ≤ γ ,

−Reu− Imu ≤ γ .
(14)

As given in [1], these inequalities lead to the cost min-
imization under inequality constraints. Hence, the sta-
bility robustness problem towards additive unstructured
uncertainties can be written as follows

min
AX−B≤0

CX (15)

with

A =




−1 Re(T21) + Im(T21)
...

...
−1 −Re(T2N )− Im(T2N )
−1 0 . . . . . . . . . 0



(4N+1)×(nq+2)

,

B =



−Re(T11)− Im(T11)

...
Re(T1N −− Im(T1N )



(4N+1)×1

,

C = [ 1 0 . . . 0 ]1×(nq+2) ,

X = [ γ α0 . . . αnq ]
⊤

nq+2)×1 .

5 ROBUST STABILITY UNDER

POLYTOPIC UNCERTAINTIES

This section formulates the main result of the paper
which consists into guaranteeing the robust stability un-
der polytopic uncertainties. The procedure is the follow-
ing: firstly an initial stabilizing controller is designed for
the nominal plant, which is then robustified under un-
structured uncertainties based on the Q1 parameter as
given in Section 4. Since the initial stabilizing controller
or the robustified nominal controller can be unstable for
some regions of the polytopic uncertain domain, a suit-
able method that guarantees stability on the entire poly-
topic domain is further investigated.

Consider a polytopic system with l vertices such that
the i -th vertex constitutes the transfer function of a
model Gi such that

Gi

(
q−1

)
= q−1Bi(q

−1)

Ai(q−1)
. (16)

Thus, the whole polytope (Fig. 4) can be denoted by

Ω = Co
{
[A1 B1], [A2 B2], . . . , [Al Bl]

}
(17)

where Co denotes the convex hull defined by l vertices
[Ai Bi] , i = 1, . . . , l .

As Ω is a polytope, thus a convex set, guaranteeing
the stability of (16) for the entire space Ω is equivalent to
guarantee the stability for all the vertices of the uncertain
polytopic domain [10].

In this multi-model case, the closed-loop transfer from
the input w to the output y (Fig. 2) is derived as

y

w
=

T0q
−1Bi

Pi

(18)

where Pi represents the closed loop characteristic poly-
nomial of the i -th vertex of the domain Ω given by

Pi = ∆AiS0 + q−1BiR0 + q−1∆Q1(BiA−AiB) . (19)
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Hence, the problem of checking the stability of the
Polytopic system reduces to the determination of whether
or not the roots of each characteristic polynomial Pi lie
inside the unit circle or not. At this step, the difficulty
appears due to the presence of Q1 parameter in (19).
It can be noticed easily that if the model is exact (ie if
A = Ai and B = Bi ), then the closed-loop transfer (18)
is reduced to (7).

So, let us rewrite the expression (19) as

Pi = T̃1i + T̃2iQ1 . (20)

Also, we can write

Pi =

n∑

j=0

pijq
−j , T̃1i =

n1∑

j=0

t1ijq
−j , T̃2i =

n1∑

j=0

t2ijq
−j .

Without loss of generality, let us assume that n2+nq ≥
n1 . This means that n = n2 + nq .

Now, for Q1 expressed as in (10), it is possible to
formulate the characteristic polynomial coefficients pij in
terms of αi parameters. This relation is given in matrix
form as

Pi = Li +Hiα (21)

with

Pi = [ pi0 pi1 . . . pin ]
⊤

(n+1)×1 ,

Li = [T1i0 . . . 0 . . . 0 ]
⊤

(n+1)×1 ,

Hi =




t2i0 0 . . . 0
t2i1 t2i0 . . . 0
... t2i1

. . .
...

T2in2

...
. . . t2i0

0 T2in2

. . . t2i1

0 0
. . .

...
...

...
. . .

...
0 0 . . . t2in3




(n+1)×(nq+1)

,

α = [α0 α1 . . . αnq ]
⊤

(nq+1)×1 ,

and n3 =

{
nq − n2 , if n2 < nq ,

nq if n2 ≥ nq .

Stability Condition

In 1978, Lipatov and Sokolov [11] developed the im-
proved sufficient conditions for stability and instability
of continuous linear stationary systems through Hurwitz
stability and instability conditions. It turns out that the
results are in terms of coefficients of characteristic poly-
nomials of the systems. In the following, we state a result
of theirs.

Let

F (s) =

n∑

k=0

aks
k, ak > 0 for k = 0, 1, . . . , n (22)

be a polynomial with real coefficients.

A sufficient condition for the above polynomial to be
Hurwitz stable (roots in the open left-half plane) is [11]

aj−1aj+2 ≤ 0.4655ajaj+1 , j = 0, 1, . . . , n− 2 . (23)

In order to apply the above condition to our procedure,
the characteristic polynomial (21) must be converted to
the continuous form. For that purpose, the bilinear trans-
form is used.

The bilinear transform is also known as Tustin’s Rule
as well as the more familiar Trapezoidal Rule used in
numerical integration [12]. Here, the backward shift op-

erator q−1 is replaced by

q−1 =
1− (T/2)s

1 + (T/2)s
(24)

where T is the sample time. Then, the equivalent char-
acteristic polynomial in continuous time is obtained. It is
denoted by asterisk.

P ∗
i =

(
1 +

T

2

)n

Pi

(1− (T/2)s

1 + (T/2)s

)
=

n∑

j=0

P ∗
ijs

j . (25)

The relationship between the elements pij and p∗ij is

given by the following matrix equation [13, 14]

P
∗
i = QnPi . (26)

The transformation matrix Qn is derived as

Qn =



(T/2)0q0,0 . . . (Te/2)

0q0,n
...

. . .
...

(T/2)nqn,0 . . . (T/2)nqn,n


 (27)

q0,j = 1 , j = 0, 1, . . . , n ,

qi,0 =
n!

(n− i)! i!
, i = 0, 1, . . . , n ,

qij = qi,j−1 − qi−1,j−1 − qi−1,j , i, j = 1, . . . , n .

From (21), the relation (26) becomes

P
∗
i = L

∗
i +H

∗
iα, L

∗
i = QnLi, H

∗
i = QnHi . (28)

Also from (28) and (23)

Pi = Qn[Li +Hiα], (29)

thus

Pi = Ni +Miα, (30)

Ni = QnLi, Mi = QnHi (31)
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Let

P i =
[
0 | [Pi(1 : n)]⊤

]⊤

P i =
[
[Pi(2 : n+ 1)]⊤ | 0

]⊤

P i =
[
[Pi(3 : n+ 1)]⊤ | 0 0

]⊤

N i =
[
0 | [Ni(1 : n)]⊤

]⊤

N i =
[
[Ni(2 : n+ 1)]⊤ | 0

]⊤

N i =
[
[Ni(3 : n+ 1)]⊤ | 0 0

]⊤

M i =
[
0 | [Mi(1 : n)]⊤

]⊤

M i =
[
[Mi(2 : n+ 1)]⊤ | 0

]⊤

M i =
[
[Mi(3 : n+ 1)]⊤ | 0 0

]⊤

It becomes

P i = N i +M iα,

P i = N i +M iα,

P i = N i +M iα.

Now, the Lipatov stability condition (23) is given in
matrix form as

P i. ∗ P i ≤ 0.4655Pi. ∗ P i, (32)

where (.*) denotes element-by-element multiplication

[N i +M iα]. ∗ [N i +M iα] ≤

0.4655 [Ni +Miα]. ∗ [N i +M iα]. (33)

The relation (33) constitutes of (n+ 1) inequalities, and
according to the condition (25), we interest only on the
(n− 2) first inequalities

α
⊤Wijα+ V⊤

ijα+Uij ≤ 0 forj = 1, . . . , n− 2, (34)

where

Wik = [[M i(k)]
⊤Mi(k)

− 0.4655 [Mi(k)]
⊤Mi(k)](n−2)×(n−2)

Vik = [N i(k)M i(k) +N i(k)M i(k)

−0.4655 (N i(k)M i(k) +N i(k)M i(k))]1×)nq+1

Uik = [N i(k)N i(k)− 0.4655Ni(k)Ni(k)]1×1

Hence, the whole number of inequalities for all vertices
is (n-2)l , in general, this set of constraints is non convex.

Therefore, guaranteeing the stability for all the ver-
tices of the uncertain polytopic domain is equivalent to
satisfying the (n−2) inequalities defined by (29) for each
vertex i of the domain, it means (n− 2)l inequalities for
all vertices. In conclusion, guaranteeing robust stability

under both unstructured and polytopic uncertainties is
globally achieved by adding the constraints (29) to the
optimization problem (15).

Thus, the global optimization becomes a Quadratically
Constrained Quadratic Programming problem (QCQP),
and because the matrices Wik are not always positive
semidefinite, so, the problem is NP-hard [15].

Generally, global optimization methods for such prob-
lem are typically based on convex relaxations. In this pa-
per we use that proposed in [2] and [16], this relaxation
is based on semidefinite programming (SDP), indeed, re-
laxations of QCQP based on SDP utilizes new variables
zij that replace the product terms αiαj of the original

problem. Let Z = αα
⊤ be the matrix with entry zij cor-

responding to the quadratic termαiαj . The relaxation of

QCQP is obtained, [2], by imposing: Z < αα
⊤ .

Notation:

We use X < 0 to denote that a symmetric matrix X

is positive semidefinite. For n × n matrices the matrix
inner product is denoted

X ∗ Y =

n∑

i=1

n∑

j=1

xijyij (35)

Finally, the global optimization problem may then be
written:

min CtXt

S.t.: AX− B ≤ 0

Wik ∗ Z+ Vikα+Uik ≤ 0, |k=1,....n−2
i=1,...,l[

1 α
⊤

α Z

]
< 0,

(36)

X⊤ =
[
γ | α

⊤]⊤, Ct = [1 1 . . . 0
]
1×n)t

X⊤
t =

[
[X⊤ | Z00 Z10 . . . Z(nq+1)(nq+1)]

⊤
]
1×nt

where nt is the number of scalar decision variables

nt = (nq + 2) +
(nq + 1)(nq + 2)

2

6 EXAMPLE

This part focuses on the results obtained while apply-
ing the previous robustification methodology to the ve-
locity control of an induction machine. Starting from the
identified transfer function between the torque Γm and
the velocity Ωm for a sampling period T = 5 ms

Ωm

Γm

=
aq−1 + bq−2

1 + cq−1 + dq−2
(37)

with a = 1.344, b = 3.204, c = −0.98 and d = −0.02.
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T

With this model, an initial GPC controller (called

GPC0) has been first designed with C(q−1) = 1, and
the following tuning parameters, selected according to the
rules given in [17], N1 = 1, N2 = 8, λ = 200.

Afterwards, it is considered that the nominal system
is affected by high frequency neglected dynamics, repre-
sented as additive unstructured uncertainties. Thus, the
following weighting W (q−1) is considered

W
(
q−1

)
=

1− 0.8q−1

0.2
. (38)

Solving the optimization problem (15) provides a Youla
parameter as a polynomial of a chosen order nq = 6.

Figure 5 shows measurement noise/control transfer
function for the nominal system before robustification
(GPC0) and after robustification under additive unstruc-
tured uncertainties (RGPC0). It can be noticed that the
H∞ norm has been reduced using RGPC0. Therefore the

robust stability for the nominal system with respect to

high-frequency additive unstructured uncertainties is im-

proved.

The next part refers to the robustification under poly-

topic uncertainties. Let us consider that the parameters

a, b, c and d in (37), are uncertain up to ±30% of their

nominal values. This leads to a four-dimensional hyper-
cube with 24 = 16 vertices.

From Figs.6 and 7, it can be noticed that the closed-

loop of the polytopic uncertain system with both the ini-

tial controller GPC0 and RGPC0 are unstable for some

vertices. Also we noticed that the RGPC0 destabilizes

some vertices, which are initially stable with the GPC0.

This difficulty justifies the design of other robustified con-

trollers that will guarantee the stability under polytopic

uncertainties. For that purpose, the robustified controller

RGPC1 is designed by solving the optimization problem

(36).
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The closed-loop poles of all the vertices of the poly-
topic system with RGPC1 are shown in Fig. 8. As can
be observed, the controlled system is stable for the entire
polytopic domain. But the robust stability for the nom-
inal system is decreased in comparison with the result
obtained with RGPC0 for the nominal system (Fig. 5). It
can be easily stated that a compromise has been achieved:
with RGPC1 the robustness under unstructured uncer-
tainties is less improved compared to RGPC0, but the
robustness under polytopic uncertainties is satisfied. On
the other hand, we noticed that with an increase of the
degree of the Youla parameter, performances can still be
improved to the detriment of the computational time.

7 CONCLUSION

This paper has presented an extending off-line method-
ology which enables robustifying an initial GPC controller
using Youla parametrization and Lipatov stability crite-
rion. The major advantage consists in managing the com-
promise between robust stability under unstructured un-
certainties for a nominal system and the robust stability
under polytopic uncertainties for an entire variation do-
main, leading to an additional set of non convex quadratic
constraints.

The main contribution of this work consists in impos-
ing the Lipatov stability condition to stabilize the con-
trolled system for the entire polytopic domain, giving ro-
bustness properties, even if the system coupled with the
initial controller is unstable in some points of the poly-
topic domain. This means that the proposed method of-
fers a way to increase the polytopic domain for which
the stability is guaranteed. Indeed, this robustification
method can be also applied to any RST controller, not
necessarily predictive.
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