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INTELLIGIBILITY ASSESSMENT OF IDEAL BINARY–MASKED
NOISY SPEECH WITH ACCEPTANCE OF ROOM ACOUSTIC

Vladimı́r Sedlák — Daniela Ďuračková
Roman Záluský — Tomáš Kováčik

∗

In this paper the intelligibility of ideal binary-masked noisy signal is evaluated for different signal to noise ratio (SNR),
mask error, masker types, distance between source and receiver, reverberation time and local criteria for forming the binary
mask. The ideal binary mask is computed from time-frequency decompositions of target and masker signals by thresholding
the local SNR within time-frequency units. The intelligibility of separated signal is measured using different objective
measures computed in frequency and perceptual domain. The present study replicates and extends the findings which were
already presented but mainly shows impact of room acoustic on the intelligibility performance of IBM technique.
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1 INTRODUCTION

The ideal binary mask is very useful technique for sep-
aration mixed signals. There are many speech and au-
dio applications where the desired signal is corrupted by
highly correlated noise sources. Separating such signals
from their mixture has often been considered as one of
the most challenging research topics in the area of speech
enhancement [1]. Our present work is aimed at investi-
gation of influence of environment and the origin of the
mixed signals on the intelligibility. In many of previous
study is shown only impact of noise level, masker type or
binary mask error on performance of this technique, but
in this article is presented also impact of environment
in which are signals acquired. It means the distance be-
tween receiver and source, room dimension and reflection
coefficients are accepted in evaluation process. All this
parameters are simply described using the room impulse
response (RIR) which is generated for our test room and
test conditions.

The approaches appropriate for solving this issue
(source separation) can be divided into two groups:
1) model based method, and 2) source driven or compu-
tational auditory scene analysis (CASA)-based method.
The first group, model-based separation system is based
on statistical models including vector quantization [2],
Gaussian mixture models [3] and Hidden Markov mod-
els [3]. The CASA-based methods search auditory scenes
in the time-frequency domain which are probably to come
from the same sources of speech signals by exploiting the
characteristics of human auditory system [4]. The CASA-
based methods rely on extracting psychoacoustics cues
from the given mixed signals and work in two stages:
segmentation and grounding. The ideal binary mask has
been set as a computational goal in CASA algorithms
and has also been adopted in ”missing feature” speech
recognition technique. The ideal binary mask takes value

of zero and one and is briefly described in the next sec-
tion. Currently the research groups working on speech-

separation problem especially focus on the topic of how to
separate speech signal from interfering sounds, including

other speech [5].

The rest of paper is structured as follows: In the next

section, the main problem definition is described. It in-
cludes specification of ideal binary mask and specification

of objective metrics for measuring the intelligibility. The
next section is devoted experiments and analyzes. There
are described methods, goals of individual analyses and

individual results. The last section concludes this article
and summarizes achieved results.

2 PROBLEM DEFINITION

This section is devoted to single channel source sep-

aration of mixed signals. Especially to technique based
on ideal binary mask. Because of is suitable to com-
pare achieved results under different test conditions the

value of intelligibility have to be measured. Therefore,
in this section are presented objective metrics for in-

telligibility assessment. It is focused on perceptual eval-
uation of speech quality (PESQ), segmental version of

SNR (SNRS) and on the sort-time intelligibility measure
(STOI).

2.1 Single Channel Source Separation

The approaches for signals separation can be divided
based on number of microphones which are included in

process of signal acquisition. In case of only one micro-
phone is available a process of separation is called the sin-

gle channel source separation. Separating different speech
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Fig. 1. Flow chart of single-channel source separation
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Fig. 2. Waveforms for: original (brighter) and input signal with
SNR = 5 dB – top; original (brighter) and separated signal –
middle; Illustration of ideal binary mask for acquiring separated

signal with LC = 0 dB

or audio signals using single-channel approach is very
challenging topic and can be defined as follows:

S = AX (1)

where S is the observed input matrix of mixtures S =
[s1(t), s2(t), . . . , sM (t)] and X represents matrix of origi-
nal source signals X = [x1(t), x2(t), . . . , xN (t)] . The sym-
bol A is a mixing matrix which is corresponding to the

mixing conditions and M is the number of inputs (mi-
crophones). In a single-channel separation case (M = 1),
the number of mixtures is one and equation (1) can be
simplified to equation (2) where N represents the num-
ber of sources which contribute to input signal s(t), e(t)

is additive noise and xn(t) is the nth source signal at
time t .

s(t) =
N
∑

n=1

xn(t) + e(t) . (2)

Formula (2) is graphically represented by top block of
Fig. 1 which shows flow chart of single channel source sep-
aration (SCSS) and is divided into two main blocks. This
block shows process of data acquisition, in other words
the creation of mixtures and signal capture. Sources or
original signals produce input signal s(t) which can be
written in vector notation as s = g(x1, x2, . . . , xN ), where
g is some possibly non-linear and stochastic mixing pro-
cess. The bottom block represents data processing to
achieve or estimate original signals from mixture and usu-
ally is based on data filtering, data decomposition and
grouping or on source modeling. The aim is estimating
the mixing matrix which is applied on the input signal to
produce estimated values of desired signals yn(t).

2.2 Ideal Binary Mask

An ideal binary mask (IBM) is defined in the T–F do-
main as a matrix of binary numbers. The T–F representa-
tion makes it possible to utilize the temporal and spectral
properties of speech and is obtained using eg the short-
time Fourier transform or a Gammatone filter bank. The
IBM is defined by comparing the SNR within each T–F
unit again a local criterion (LC) or threshold measured in
units of decibels [6]. Only the T–F units with local SNR
exceeding LC are assigned 1 in the binary mask what in
mathematically described by formula (3). Where T (j, k)
is the power of the target signal, M(j, k) is the power of
the masker signal, LC is a local SNR threshold, j the time
index, and k the frequency index. The LC value is the
threshold for classifying the T–F unit as target or masker
and determines the amount of target and masker signal
in the processed signal, if the binary mask is applied to
the mixture. In the most CASA-based method the LC is
set to 0 dB.

To calculate the IBM the unmixed signals must be
available, what is problem in real-life application, or the
IBM can be estimated from mixed signal using meth-
ods based on a Bayesian classification of speech features,
pitch continuity information, sound localization cues and
others. In picture number 2 are depicted results obtained
by IBM which was computed from original (unmixed sig-
nals). In the top part of figure is depicted original signal
(two seconds long male utterance) and mixed signal which
is generated from this original signal by adding babble
with SNR 5 dB. Both signal are sampled at 25 kHz and
normalized to maximum value of signals. In the middle
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Fig. 3. Intelligibility of IBM-processed mixtures masked by multi-
talker babble at −5 dB (brighter color) and 5 dB SNR as function

of local threshold used for generating the IBM
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Fig. 4. Intelligibility of IBM-processed mixtures masked by multi-
talker babble at −5 dB (brighter color) and 5 dB SNR as function

of the overall percentage IBM error

part is depicted original (lighter color) and output (sepa-
rated) signal which shows a marked improvement in qual-
ity of speech. And finally in the bottom part is shown il-
lustration of IBM where black and white color indicates 1
and 0, and the threshold is set to 0 dB. The whole proce-
dure for acquisition of mask will be described in the next
section.

IBM(j, k) =

{

1 , if T (j,k)
M(j,k) > LC ,

0 , otherwise.
(3)

2.3 Measures for Intelligibility Assessment

A necessary condition for development of source sep-
aration algorithms is the ability to measure the perfor-
mance or quality of result. In general, the separation
quality can be measured by comparing separated signals
with reference sources (objective methods) or by listening
to the separated signals (subjective methods). Subjective
methods are based on ratings by human listeners accord-
ing to the categories (Excellent, Good, Fair, Poor and
Bad) defined in a subjective test and finally the statis-
tical analysis is applied to these ratings to reach value
of speech quality. The most commonly used methods for
measuring the subjective quality of speech transmission
over voice communication systems have been standard-
ized by the International Telecommunications Union and
mostly are based on 5 categories.

Objective methods can be classified into intrusive (ref-
erence) measures and non-intrusive (non-reference) mea-
sures. The intrusive measures compare the output signal

(distorted signal) with the original signal, which is usually

called the reference signal. The non-intrusive methods do

not require a reference signal because the speech quality is
determined only by the output speech signal. In general,

objective speech quality measures can be categorized into
three domains: time domain, spectral domain or percep-

tual domain. The objective measures are more preferred

than subjective measures since they are more convenient
and time saving, and can be repeatedly utilized for dif-

ferent input data sets.

A very sophisticated objective measure is the percep-
tual evaluation of speech quality (PESQ) metric. Proce-

dure to compute this metrics is divided in two stages.

The PESQ measure is recommended by ITU-T P.862 for
speech quality assessment of 3.2 kHz handset telephony

and narrow-band speech codec. The first is a time align-
ment stage that aligns the separated signal and refer-

ence signal. In the next stage a psychoacoustics model

is used to calculate an auditory representation of the sig-
nals, followed by a cognitive model that calculates final

score based on the differences between signals [7].

Formula (4) represents segmental version of SNR
(SNRS), what is time domain measure. It is the ratio

of energies of the reference signal s(k) and the error be-

tween the separated ŝ(k) and reference signal. Symbol k
represents index of signal frame and symbol K is the total

number of frames. Other objective measure with shows
high correlation witch the intelligibility of noisy and time-

frequency weighted noisy speech is short-time objective

intelligibility measure (STOI) and was presented in [8].
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Very simplified is described by formula (5) where J rep-
resents the number of frequency bins, K is the number of
frames and dj,k represents correlation coefficient of jth

frequency bin of kth frame.

SNRS =
10

K

K
∑

k=1

log10
|s(k)|2

|s(k)− ŝ(k)|2
, (4)

STOI =
1

JK

∑

j,k

dj,k . (5)

3 EXPERIMENTS

This section is devoted for experiments which deal
with the ideal binary-masked noisy signals. The goal is
to show relationships between intelligibility of the out-
put speech, measured by some of mentioned metrics, and
some input parameter as IBM computing, input signals or
environment. Similar experiments have been already pre-
sented eg in [9] but without acceptance of room acoustics
and because we have used different dataset of speech, we
have decided to make suchlike experiments on our sam-
ples. It could be also useful for results comparison and
verification of intelligibility measures because in men-
tioned paper were performance measured by subjective
methods. It means we have as well verified performance
depending on the local SNR threshold, masker signal type
and accuracy of mask.

3.1 Speech database

Speech samples were taken from database presented
in [10], which consists of 100 utterances from each one
of 34 speakers. This database was primary collected to
support the use of common material in speech perception
and automatic speech recognition studies but it was also
used in the different signal processing tasks. Sentences
are simple, syntactically identical phrases such as “place
red at C 1 now”. The noisy samples were taken from
AURORA database [11], which was developed primary
for performance verification of algorithms for adaptive
noise cancelling. It contains noisy samples from different
places eg: car, restaurant, exhibition hall or airport. All
have been recorded at 20 kHz and then downsampled
to 8 kHz. Room acoustic was modeled by room impulse
response generator [12] and is based on image method.
Generator enables the user to control the reflection order,
room dimension and microphone directivity. This way
generated response in then used for create reverberant
signal from original “clean” signal

3.2 Signal processing

The IBM was computed from three types of signals:
the target signal, the masker signal and the resulting mix-
ture. It means the IBM was not estimated directly from
resulting mixture as it is in real applications because the

experiments are focused only on the binary masking tech-
nique and not on estimating on IBM. The same concept
is presented as well in [9]. As were mentioned earlier the
IBM technique is based on T–F representation of signals.
That is the reason why the signals are divided into 20 ms
frames with 50% overlap between frames in the first step.
Next the fast Fourier transform (FFT) is used to trans-
forms frames into frequency domain. In this point the
T–F representation is done. A local value of SNR of each
T–F unit is determined by comparing energies between
target and masker. The result value is compared again
a threshold value T to determine whether to retain the
T–F unit or to eliminate it. For separating target signal
from mixture is then the magnitude spectrum multiplied
by computed IBM and the inverse FFT is applied to this
modified spectrum. Speech is synthesized in each 20 ms
frame using overlap-and-add method.

3.3 Analyses

As was mentioned earlier a procedure for acquiring
of IBM is based on comparison of the local SNR and
the threshold. That is the reason why first was analyzed
the impact of threshold value on intelligibility, The local
SNR threshold T was varied from −50 dB to 20 dB for
two input signals which were corrupted by babble noise
(masker signal). The SNR of input (mixed) signal was
set to 5 dB and −5 dB. Changing of the threshold af-
fects the amount of energy how much the original signal
have to exceed masker signal to mark current T–F unit
as one. Achieved results are depicted in Fig. 3 and show
expected trend which can be compared with results pre-
sented in [9]. What is important is plateau region around
0dB and gradual decline of intelligibility with increasing
or decreasing of the T . In case when the threshold is set
to 0 dB only those T–F units are retained in which is en-
ergy of the original signal higher than energy of masker
signal. Increase of the T causes that less T–F units are
retained because the difference between energies of orig-
inal and masker signal has to be higher than in case of
lower threshold value. On the other site, decrease of the T

causes that more T–F units are retained. But the prob-
lem is that there are also retained units where masker
signal energy is higher than original signal energy. The
plateau region in a similar experiment in [9] was chosen
from −25 dB to 5 dB and in presented analyze it is from
−10 dB to 5 dB. This difference could be caused by dif-
ferent sound samples. Interesting is also comparison of
trends of individual evaluation measures which are very
similar although in [9] were used the subjective measures
and in this analyze the objective measure.

Another question is how exactly should be estimated
the IBM in order to do not affect the intelligibility. So
this is the reason why we decide to analyze intelligibility
depending on the mask error. And because the IBM was
computed directly from input signals (not estimated from
mixed signal) the error was inserted artificially. The ad-
vantage of it is that the total error value in the IBM can
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Table 1. Intelligibility of IBM-processed mixtures masked by six
different types of masker signals: babble, one speaker, two speaker,

noise in car, noise at airport and noise at station

Masker Value SNRS PESQ STOI
Type (dB) (dB) (−) (%)

babble
−5 2.67 1.89 82.1
5 7.48 2.48 92.2

one −5 6.51 2.31 88.9
speaker 5 11.32 2.99 95.7

two −5 4.84 2.28 88.9
speakers 5 10.21 2.92 95.6

noise −5 4.74 1.96 83.1
in car 5 9.51 2.54 92.4

noise −5 4.67 1.92 84.4
at airport 5 9.37 2.53 92.8

noise −5 3.96 1.97 81.1
at station 5 8.72 2.5 92.3

be controlled very exactly. The mask error means how
many percent of T–F units is labeled wrongly (ie, 0 was
labeled as 1 and vice versa). In case of 10%-error condi-
tion were 10% of T–F units re-labeled. At the beginning
the IBM was created the same way as in the previous
analysis. In the next step specific count of T–F units was
labeled again but with opposite value, what represents an
error. The indexes of these re-labeled units were selected
randomly. In this analyze the amount of error was var-
ied from 0% to 40% with 5% step. This way changed
mask was then used to separate the same signals as in

the previous analyze. The achieved results are shown in
Fig. 4. The intelligibility of separated signal decreasing
with increasing error value what is an excepted trend. In-
teresting is finding that this trend is nearly linear and for
all evaluation measures is similar. From results can also
be seen that quality of input signal (measured as SNR)
influences the intelligibility of separated signal in form of
offset.

All previously presented analyses used for masking
only multi-talker babble, but the origin of masker can
also have strong impact on performance as was presented
in many previous articles. We decided to verify this ar-
gument using samples from AURORA database [12] and
using speech of other speakers. Our goal was show how the
origin of the masker signals can affect overall intelligibil-
ity of IBM-processed mixtures and to verify if all chosen
objective measures exhibit equal trend with changing of
masker signal. It is also interesting to observe whether
the IBM technique is more effective when the masking
has informational and energetic components or when the
masking is purely energetic (noise). The IBM was gener-
ated from mixtures masked by six different masker sig-
nals: multi-talker babble, speech (one speaker), speech
(two speakers), and noise in car, noise at airport and noise
at station. The values of these maskers were set to −5 dB
and 5 dB SNR and local threshold value was set to 0 dB.
Achieved results (evaluated by SNRS, PESQ and STOI)
are summarized in Tab. 1 and show that the IBM tech-
nique is more effective, in terms of improving intelligibil-
ity, when target speech is masked by speech that when
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it is masked by noise. Interesting is finding that multi-
talker babble had nearly equal effect like noise although
it is composed of human speech. The best results, for
all presented intelligibility measures, were achieved when
the target signal was masked by speech of one speaker.
Adding other speech of different speaker into masker sig-
nal caused decrease in speech intelligibility. The intelligi-
bility of processed mixtures masked by noise was nearly
equal, only the noise form station had a little bit stronger
effect when the intelligibility was measured using SNRS.
Otherwise all presented measured showed the same trend.

In all previously presented analyses have not been
taken account the environment in which the sound prop-
agates. However, this environment can have a significant
effect on the signal, eg reflections, therefore the following
analysis deals with the impact of reverberation time on
the overall quality. Using the room impulse generator [12]
was created imaginary testing room which was described
by its impulse response and served for affecting the initial
signals (without reflections). Reverberant speech samples
were generated by convolving anechoic speech corrupted
by noise at different SNR levels with impulse response
of testing room. In an effort to minimize the effect of
magnitude indeterminacies, the root-mean-square value
of all speech signals was equalized to the same root-mean-
square value. The results presented in Fig. 5 were ob-
tained at constant distance between the source and the
receiver (1 m), for two different SNR values (−5 dB —
brighter color, 5 dB — darker color). The test room di-
mensions was set to 6× 3× 4 meters (length × width ×
height), the number of samples of the room impulse re-
sponse was 1024, high-pass filter was disabled, maximum
frequency order was not used, and reverberation time was
varied from 0.1 to 0.6 second. All intelligibility measures
show the same trend: their value decrease with increasing
of reverberation time. This trend is expected because with
the increasing value of RT60 is raised also amount of re-
flected energy which affects the direct part of signal. The
PESQ score is inversely proportional to the reverberation
time but the sensitivity is not very large. It was changed
from 2.42 to 2.28 for 5 dB SNR. Note that the PESQ
score was not developed to determine the speech quality
in a reverberant environment. But it in [13] a good cor-
relation between this measure and subjective evaluation
of intelligibility of reverberant speech was shown. Better
sensitivity on change of reverberation time show SNRS
which was changed from −2.2 dB to −7.1 dB (5 dBSNR)
for analyzed values of RT60 . The short-time objective in-
telligibility measure also exhibits the comparable sensi-
tivity, from 91% to 81% for 5 dBSNR. The noise in
inputs signals manifests like offset as in the previous ex-
periments. This analysis is closely related to the following
analysis because instead of changing reverberation time
was varied the distance between the source and receiver.
All other parameters necessary for generating room im-
pulse response was the same and the distance was var-
ied from 0.5 m to 3 m. Achieved results are depicted in
Fig. 6 and were done for two values of RT60 : 300 ms

and 600 ms (brighter color). Same as above the root-
mean-square value of all speech signals was equalized to
the same root-mean-square value to minimize the effect
of magnitude indeterminacies. Expected dependence be-
tween intelligibility and distance between source and re-
ceiver is reduction in intelligibility with increase in dis-
tance. This trend can be observed in Fig. 6 so our ex-
periments meet expectations. The decrease is caused by
decrease of energy of direct part of signal if the distance
is increasing.

Experiment also shows how the reverberation time can
affect intelligibility of speech when the distance is chang-
ing. For RT60 set to 300 ms the separation procedure
shows better performance (or intelligibility of separated
signal) in comparison with RT60 set to 600 ms. This fact
confirms our previous experiments (depicted in Fig. 5)
which show that intelligibility is inversely proportional to
the reverberation time. When we compare all evaluation
measures we can see that the most sensitive measures is
STOI, but for overall evaluation is it important that all
measures show the same trend. The PESQ score is de-
creasing from 3.06 to 2.41, the SNRS from −1.38 dB to
−3.55 dB, the STOI from 96.3% to 73.3% for distance
varying from 0.5 m to 3 m and RT60 set to 300 ms. For
higher values of reverberation time are these measures
shifted to lower values.

Because of room impulse response generator [12] takes
into consideration the microphone type (or microphone
directionality) the last experiment was focused on ana-
lyzing impact of microphone directionality on speech in-
telligibility. Different kinds of polar patterns are imple-
mented in this generator and can be chosen using input
parameter. The signal attenuation A(θ), where θ denotes
the directional of arrival, is calculated using formula (6).
The polar pattern is controlled by parameter ? and is
described in Tab. 2. The angle in which the microphone
is pointing can be adjusted by external parameter but
in our experiments the microphone pointed towards the
positive x-axis.

A(θ) = α+ (1− α) cos θ . (6)

The last analyze was done with the same basic parame-
ters as two experiments above, it means: room dimension,
number of samples and disabled high-pass filter. The dis-
tance between source and microphone was constant and
set to one meter, the reverberation time was 300 ms and
600 ms and microphone directionality was varying from
0 to 1. The microphone type can also have impact on
overall intelligibility because parameter ?, used to spec-
ify microphone directionality, affects amount of reflected
energy which is recorded by this microphone. So if the di-
rectionality is increasing the amount of reflected energy is
also increasing and intelligibility is decreasing. Achieved
results are depicted in Fig. 6 for two different RT60 val-
ues: 300 ms and 600 ms (brighter color). As we could see
the RT60 had the same effect to the intelligibility as in
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Table 2. Polar patterns and corresponding values of α for RIR
generator

Directivity Pattern α

Omnidirectional (Monopole) 1

Subcardiod 0.75
Cardiod 0.5

Hypercardiod 0.25
Bidirectional (Dipole) 0

the previous analyze (it exhibits like offset in intelligibil-
ity). Based on polar plots the best intelligibility should
be achieved in case hypercardiod or cardiod microphone
type, because their characteristics have the most direc-
tionality. On the other side the monopole should have the
worst intelligibility of recorded speech because this type
does not take account direction of sound and finally the
dipole should be between monopole and cardiod. When
we compare these expectations with the achieved results
we can see that our expectations are meet only in the case
PESQ and STOI. If the intelligibility was measured using
SNRS, the speech recorded by dipole showed higher intel-
ligibility than the speech recorded by hypercardiod type
of microphone what is different from our expectations.
Generally we can say that chosen type of microphone has
impact on overall intelligibility of separated speech but its
sensitivity is not very strong as we can see in Fig. 6. The
top score for PESQ is 2.81 and the lowest score is 2.55,
for SNRS the top is −1.9 dB and bottom −2.2 dB and
for STOI is the top 89% and bottom 81%, all for RT60

set to 300 ms. This sensitivity could be also affected us-

ing other parameters (room dimension, distance between
source and receiver), not only using RT60 because all
these have impact on reflections.

4 DISCUSSION

The present study extended and replicated the find-
ings and analyses presented in [9]. There are a number
of differences and a number of similarities between the
procedures and the results of the two studies. The main
difference was in evaluation of intelligibility since in this
study were used objective methods instead of subjective
methods. Generally are these methods less accurate so for
higher credibility three different approaches (measures)
were used. Although the PESQ measure assesses overall
loudness differences between input and processed signal
it has been shown good correlation with subjective rat-
ings, eg in [14]. Other used measure was STOI also with
good correlation with subjective ratings and last one was
SNRS. The SNRS was used only for check because it is
based on totally different approach, belongs to basic mea-
sures and generally is used for measuring speech quality
not intelligibility. We have assumed that if the intelligibil-
ity performance curves (especially PESQ and STOI) have
the same trend than this trend would be similar with the
curve achieved using subjective methods.

Experiment 1 verified how value of local threshold af-
fects intelligibility. The results are nearly the same as in
similar analysis in [9]. The difference is only in plateau
region, in our experiment it was chosen from −10 dB to
5 dB, what could be caused by different data set. The sec-
ond experiment showed dependence on accuracy of binary
mask. The pattern of performance was similar for all three
measures and also for different value of noise. Scores were
high when binary mask error was near 0% and dropped
thereafter. Next experiment confirmed fact that the IBM
technique is more effective when desired speech is masked
by speech than when it is masked by noise. It means this
technique is more effective by informational masking than
by energetic masking. All other experiments were focused
to reveal impact of room acoustic on intelligibility per-
formance. Using room impulse generator was created re-
sponses for different values of reverberation times (varied
from 0.1 s to 0.6 s) and different distances between source
and microphone (varied from 0.5 m to 3 m). Achieved
results showed how intelligibility performance gradually
decreasing with increasing values of these parameters for
all three measures. This fact could be caused by depen-
dence of energy of reflected sounds on these parameters.
Therefore, for a greater distance or reverberation time the
energy of these reflected sounds is increasing and affect-
ing the input signal, what is the reason why the intelligi-
bility decreasing. With energy of reflected sound is also
connected directivity of microphone used for recording,
what was the last analysis. Outcomes showed that using
the microphone with higher directivity positively affects
indelibility of separated signal.
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5 CONCLUSION

By measuring intelligibility of ideal binary-masked
speech (usually corrupted by noise or reflections), we have
shown how this intelligibility depends on parameters such
as: local threshold value, amount and origin of noise in
the input signal, accuracy of the mask estimation, dimen-
sions of room and distance between source and receiver,
reverberation time and directionality of microphone. For
evaluation of intelligibility we have not chosen subjective
measures as it was presented in many previous studies but
objective measures, because of these are less time consum-
ing and can be repeatedly utilized for different input data
sets (but less accurate). To minimize this disadvantage we
have used three different objective metrics: SNRS, PESQ
and STOI. For achieving of impact of room acoustics we
have used RIR generator and based on desired parameters
we have generated impulse responses which have been ap-
plied on origin mixtures. By applying IBM processing on
this way modified mixtures, we have extended the find-
ings presented in [9] showing similar analysis without ac-
ceptance of room acoustic but evaluated using subjective
methods.
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