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ON SOME ASPECTS OF THE COMPLEX–ENVELOPE

FINITE–DIFFERENCES SIMULATION OF WAVE

PROPAGATION IN ONE–DIMENSIONAL CASE

L’ubomı́r Šumichrast
∗

Some aspects of the numerical modeling of the electromagnetic waves propagation using the “complex-envelope” finite-
differences formulation in the one-dimensional case are here reviewed and discussed in comparison with the standard finite-
differences in time-domain (FDTD) approach. The main focus is put on the stability and the numerical dispersion issues of
the “complex envelope” explicit and implicit methods.
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1 INTRODUCTION

Numerical simulations are routinely used for modelling

electromagnetic wave propagation problems in the area

of high frequency electromagnetics and photonics. The

finite-difference time-domain (FDTD) method of explicit

type designed by Yee [1] was for long years the preferred

numerical technique for such simulations due to its flex-

ibility, since it allows the inclusion of arbitrarily hetero-

geneous objects in the region to be simulated.

However, artificial artefacts are introduced in course

of the numerical computations, such as numerical atten-

uation or amplification of the wave power-flow-density as

well as the numerical dispersion. These are two main fac-

tors influencing electromagnetic-wave-propagation simu-

lations. Especially for explicit-type methods special pre-

cautions concerning the stability of the calculations must

be taken, ie the well-known CFL (Courant-Friedrichs-

Lewy) condition must be met, limiting thus the step-

length of the in-time-forward-marching algorithm. The

extent of literature in this area is huge including several

book publications eg [2, 3].

The implicit methods make possible to avoid the se-

vere CFL condition, on the other hand they require inver-

sion of tridiagonal matrices. The concise review of these

methods has been given in [4] and [5].

The “complex envelope” (CE) formulation can be used

to strip-off fast oscillations from the time dependence of

high frequency waves. As shown further this formulation

improves the stability properties of the explicit methods

[6], as well as the signal deterioration due to numerical

dispersion.

2 EXPLICIT AND IMPLICIT FORMULATION
OF THE STANDARD FDTD METHOD

IN ONE–DIMENSIONAL CASE

Let us consider the functions f(z, t) and g(z, t), rep-
resenting similarly as in [4] the normalised wave ampli-
tudes of the voltage u(z, t) and current i(z, t) on the
transmission line, ie f(z, t) = u(z, t), g(z, t) = Z0i(z, t),

Z0 =
√

L0/C0 , or the normalised transversal compo-

nents of the electric and magnetic field vectors Ex(z, t),
Hy(z, t) pertaining to the homogeneous plane wave, ie

f(z, t) = Ex(z, t), g(z, t) = Z0Hy(z, t), Z0 =
√

µ/ε .

The wave propagation is either governed by a pair of
coupled equations (formula (14) in [4]), ie for f(z, t) and
g(z, t) holds

1

c

∂f(z, t)

∂t
= −

∂g(z, t)

∂z
, (1)

1

c

∂g(z, t)

∂t
= −

∂f(z, t)

∂z
, (2)

or by the separated second order wave equations of type
(formula (15) in [4])

1

c2
∂2f(z, t)

∂t2
=
∂2f(z, t)

∂z2
, (3)

where c = (L0C0)
−1/2 , or c = (µε)−1/2 .

The equidistant discrete representation of f(z, t) and
g(z, t) [4] is formulated for the explicit discretisation
method in points of a double staggered grid in time and
space with the discrete values

f(zm, tn) = f(m∆z , n∆t) = f
∣

∣

n

m
, (4)

g
(

z
m+

1

2

, t
n+

1

2

)

= g
(

[m+ 1

2
]∆z , [n+ 1

2
]∆t

)

= g
∣

∣

n+ 1

2

m+
1

2

,
(5)
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or for the implicit discretisation method in the points of

a single staggered grid along the space axis only with

discrete values

f
(

zm, tn
)

= f
(

m∆z , n∆t

)

= f
∣

∣

n

m
, (6)

g
(

zm+1/2, tn
)

= g
(

[m+ 1/2]∆z, n∆t

)

= g
∣

∣

n

m+1/2
, (7)

where ∆z and ∆t , are discretisation intervals along the

spatial and time axis.

Standard explicit discretisation of (1) through (3)

leads to discretised equations on staggered grid (formulae

(37), (38) and (39) in [4])

f |n+1
m − f |nm
c∆t

= −
g|

n+1/2
m+1/2 − g|

n+1/2
m−1/2

∆z
, (8)

g|
n+1/2
m+1/2 − g|

n−1/2
m+1/2

c∆t
= −

fn
m+1 − f |nm

∆z
, (9)

f |n+1
m − 2f |nm + f |n−1

m

c2∆2
t

=
f |nm+1 − 2f |nm + f |nm−1

∆2
z

.
(10)

In the operator form (8) through (10) can be written

as

D+ − 1

c∆t
f
∣

∣

n

m
= −

1−D−

∆z
g
∣

∣

n+1/2

m+1/2
, (11)

1−D−

c∆t
g
∣

∣

n+1/2

m+1/2
= −

D+ − 1

∆z
fn
m , (12)

D+ − 2 +D−

c2∆2
t

f
∣

∣

n

m
=
D+ − 2 +D−

∆2
z

f
∣

∣

n

m
, (13)

where D+ denotes the shift-operator adding 1 to the

upper index and D− subtracting 1 from the upper index.

Similarly, the operators D+ and D− do the same with

the lower index.

The standard FDTD using implicit Crank-Nicolson

formulation leads either to two coupled equation of the

first order as shown in [4] formulae (44), (45), that in the

operator notation read

D+ − 1

c∆t
f
∣

∣

n

m
= −

1−D−

2∆z
(1 +D−)g

∣

∣

n+1

m+1/2
, (14)

1−D−

c∆t
g
∣

∣

n+1

m+1/2
= −

D+ − 1

2∆z
(1 +D+)f

∣

∣

n

m
, (15)

or to the equations of second order of type

D+ − 2 +D−

c2∆2
t

f
∣

∣

n

m
=
D+ − 2 +D−

4∆2
z

(D+ + 2 +D−)f
∣

∣

n

m
.

(16)

3 ”COMPLEX ENVELOPE IN
TIME” (CET) FDTD ––– EXPLICIT
AND IMPLICIT FORMULATION

In order to strip-off the fast oscillations in time depen-
dence of the wave amplitude let us further express f(z, t)
and g(z, t) in the complex representation as

f(z, t) = ϕ(z, t) exp(jω0t) , (17)

g(z, t) = ψ(z, t) exp(jω0t) (18)

ie as the amplitude- and phase-modulated harmonic
quantities, where ϕ(z, t) and ψ(z, t) is the slowly varying
complex amplitude of the full wave amplitude f(z, t) and
g(z, t) and ω0 is the carrier frequency.

For the “complex envelopes” ϕ(z, t), ψ(z, t) one again
obtains either two coupled equations of the first order

1

c

∂ϕ(z, t)

∂t
+ j

ω0

c
ϕ(z, t) = −

∂ψ(z, t)

∂z
, (19)

1

c

∂ψ(z, t)

∂t
+ j

ω0

c
ψ(z, t) = −

∂ϕ(z, t)

∂z
, (20)

or separated second order equations of the type

1

c2
∂2ϕ(z, t)

∂t2
+

2jω0

c2
∂ϕ(z, t)

∂t
−
ω2
0

c2
ϕ(z, t) =

∂2ϕ(z, t)

∂z2
.

(21)

Explicit discretisation of the CET FDTD equations
(19) through (21) leads to the discretised equations

ηD+ − η∗

c∆t
ϕ
∣

∣

n

m
= −

1−D−

∆z
ψ
∣

∣

n+1/2

m+1/2
, (22)

η − η∗D−

c∆t
ψ
∣

∣

n+1/2

m+1/2
= −

D+ − 1

∆z
ϕ
∣

∣

n

m
, (23)

η2D+ − 2|η|2 + η∗D−

c2∆2
t

ϕ
∣

∣

n

m
=
D+ − 2 +D−

∆2
z

ϕ
∣

∣

n

m
,(24)

analogous to (11)–(13), where

η = 1 + jγ , γ = ω0∆t/2 (25)

and the asterisk denotes the complex conjugate.

Similarly for the implicit formulation of CET FDTD
one obtains from (19), (20) and (21) the equations

ηD+ − η∗

c∆t
ϕ
∣

∣

n

m
= −

1−D−

2∆z
(1 +D−)ψ

∣

∣

n+1

m+1/2
, (26)

η − η∗D−

c∆t
ψ
∣

∣

n+1

m+1/2
= −

D+ − 1

2∆z
(1 +D+)ϕ

∣

∣

n

m
, (27)

η2D+ − 2|η|2 + η∗2D−

c2∆2
t

ϕ
∣

∣

n

m
=

D+ − 2 +D−

4∆2
z

(D+ + 2 +D−)ϕ
∣

∣

n

m
. (28)

It is easily recognised that the form of equations (22)
through (24) and (26) through (28) for the “complex

envelopes in time” differs only in factors η , η∗ , or |η|2 on
the left-hand sides from the equations (11) through (13),
and (14) through (16) for the standard FDTD.
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4 ”COMPLEX ENVELOPE IN TIME AND

SPACE” (CETS) FDTD ––– EXPLICIT

AND IMPLICIT FORMULATION

Similarly as in previous paragraph, let us strip-off from

the complex amplitude ϕ(z, t) and ψ(z, t) also the fast

oscillations in space dependence due to propagating wave,
by defining

ϕ(z, t) = φ(z, t) exp(−jk0z) , (29)

ψ(z, t) = χ(z, t) exp(−jk0z) . (30)

The equations (1) through (3) now take the form

1

c

∂φ(z, t)

∂t
+ j

ω0

c
φ(z, t) = −

∂χ(z, t)

∂z
+ jk0χ(z, t) , (31)

1

c

∂χ(z, t)

∂t
+ j

ω0

c
χ(z, t) = −

∂φ(z, t)

∂z
+ jk0φ(z, t) , (32)

1

c2
∂2φ(z, t)

∂t2
+

2jω0

c2
∂φ(z, t)

∂t
−
ω2
0

c2
φ(z, t) =

∂2φ(z, t)

∂z2
− 2jk0

∂φ(z, t)

∂z
− k20φ(z, t) . (33)

For the explicit discretisation one obtains the following
equations in operator for m

ηD+ − η∗

c∆t
φ
∣

∣

n

m
=
α∗ − αD−

∆z
χ
∣

∣

n+1/2

m+1/2
, (34)

η − η∗D−

c∆t
χ
∣

∣

n+1/2

m+1/2
= −

α∗D+ − α

∆z
φ
∣

∣

n

m
, (35)

η2D+− 2|η|2 + η∗2D−

c2∆2
t

φ
∣

∣

n

m
=
α∗2D+− 2|α|2 + α2D−

∆2
z

φ
∣

∣

n

m
,

(36)

where

α = 1 + jk0∆z/2 = |α|ejδ. (37)

For the implicit discretisation one obtains

ηD+ − η∗

c∆t
φ
∣

∣

n

m
= −

α∗ − αD−

2∆z
(1 +D−)χ

∣

∣

n+1

m+1/2
, (38)

η − η∗D−

c∆t
χ
∣

∣

n+1

m+1/2
= −

α∗D+ − α

2∆z
(1 +D+)φ

∣

∣

n

m
, (39)

η2D+ − 2|η|2 + η∗2D−

c2∆2
t

φ
∣

∣

n

m
=

α∗2D+ − 2|α|2 + α2D−

4∆2
z

(D+ + 2 +D−)φ
∣

∣

n

m
, (40)

Observe that for α = 1, ie k0 = 0, (34)–(36) and (38)–

(40) are identical with (22)–(24) and (26)–(28). Moreover
for η = 1, ie ω0 = 0, (22)–(24) and (26)–(28) are identi-

cal with (11)–(13) and (14)–(16).

5 POWER CONSERVATION AND NUMERICAL
DISPERSION FOR THE EXPLICIT METHODS

The von Neumann stability analysis of standard ex-
plicit one-dimensional FDTD method (10), as performed
also in [4] formula (54) through (57), is done by substi-
tuting f |nm in the form

f |nm = exp(jω∆t) exp(−jkm∆z) = ξn exp(−jkm∆z)
(41)

into (10) to obtain the equation

ξ2 − 2[1− 2A]ξ + 1 = 0 , (42)

with the solution

ξ = 1− 2A2 + j2A
√

1−A2 , (43)

Where
A = b sin(k∆z/2) , b = c∆t/∆z . (44)

Performing the von Neumann stability analysis of the

explicit CET FDTD formulation, ie substituting φ
∣

∣

n

m
in

the form

ϕn
m = exp(jΩn∆t) exp(−jkm∆z) = ζn exp(−jkm∆z) ,

(45)
where Ω = ω − ω0 , into (24) yields the equation

η2ζ − 2
[

|η|2 − 2A
]

ζ + η∗2 = 0 , (46)

with the solution

ζ =
1

η2
{

|η|2 − 2A2 + j2A
√

|η|2 −A2
}

. (47)

Observe that (46) and (47) yield for η = 1, ie ω0 = 0,
the same result as (42) and (43).

For the CETS FDTD formulation one takes φ|nm in
the following form

φ
∣

∣

n

m
= exp(jΩn∆t) exp(−jκm∆z) = θn exp(−jκm∆z) ,

(48)
where κ = k − k0 , and after the substitution into (36)
one arrives at the equation

η2θ2 − 2
[

|η|2 − 2|α|2B2
]

θ + η∗2 = 0 , (49)

where
B = b sin

{

(κ∆z/2) + δ
}

, (50)

and δ = arctan(k0∆z/2) accordingly (37), with the solu-
tion

θ =
1

η2
{

|η|2 − 2|α|2B2 + j2|α|B
√

|η|2 − |α|2B2
}

. (51)

Observe that (49) and (51) yield for α = 1, ie k0 = 0,
the same result as (46) and (47).

For all three explicit FDTD methods the power con-
servation conditions |ξ| = 1, |ζ| = 1, and η| = 1 are
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4
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Normalized frequency ( )wD t

Normalized time step ( )kc tD
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Implicit FD

Explicit FD

Fig. 1. The normalised numerical dispersion relation ω∆t =
phase(ξ) versus kc∆t for the explicit method, k∆z = 2.51. The

dashed line represents the true dispersion dependence ω = kc

fulfilled only if the square roots in (43), (47) and (51) are
real numbers. This leads to conditions

A ≤ 1 , A ≤ |η| , B ≤ |η|/|α| (52)

for the respective cases.

Since the maximum value of sinus function in (44) and
(50) is equal to one, (52) leads to the ultimate Courant-
Friedrichs-Lewy (CFL) power conservation condition

c∆t ≤ ∆z (53)

for the standard FDTD, and further to the ultimate con-
dition

c∆t

/

√

1 + ω2
0∆

2
t/4 ≤ ∆z (54)

for the CET FDTD, and

c∆t

/

√

1 + ω2
0∆

2
t/4 ≤ ∆z

/

√

1 + k20∆
2
z/4 (55)

for the CETS FDTD.

The ultimate condition (54) can also be written as

c∆t

/

∆z ≤ 1
/

√

1− ω2
0∆

2
z/4c

2 , (56)

and the ultimate condition (55) as

c∆t

/

∆z ≤ 1
/

√

1 + k20∆
2
z/4− ω2

0∆
2
z/4c

2 . (57)

For the CET FDTD method (56) leads to the less
stringent condition for the choice of time-step ∆t in com-
parison with the CFL condition (53). It means that, if the
appropriate choice of ω0 fulfils the condition

ω0 ≥ 2c
√

1/∆2
z − 1/c2∆2

t , (58)

the CET FDTD method becomes power conserving for
the case c∆t/∆z > 1 in contrary to the classical explicit
FDTD method as it was shown in [6].

For the sufficiently high frequency ω0

ω0 ≥ 2c/∆z , γ ≥ b , (59)

the CET FDTD method becomes absolutely power-
conserving for any arbitrary magnitude of the ratio
c∆t/∆z and all representable spatial harmonics.

For the CETS FDTD method (57) indicates that for
the choice ω0 = ck0 the condition of power conservation is
equal to the CFL condition (53). For the choice ω0 < ck0
the condition of power conservation leads to even more
severe limitation than the CFL condition. For ω0 > ck0
the condition of power conservation is less stringent than
CFL condition but more stringent than (56) for the CET
FDTD method

For the CETS FDTD method in the case c∆t/∆z > 1,
the power conservation can be reached if the appropriate
choice of ω0 fulfils for given k0 condition analogous to
(58)

ω0 ≥ c
√

k20 + 4[1/∆2
z − 1/c2∆2

t ] , (60)

and for the sufficiently high frequency ω0 the method
becomes absolutely power conserving if

ω0 ≥ c
√

k2
0
+ 4/∆2

z . (61)

The phase of ξ in (43) for the standard FDTD, pro-
vided the CFL condition (53) is met, equals

phase(ξ) = ω∆t = arctan
{

2A
√

1−A2
/

(1−2A2)
}

, (62)

leading, instead of to ω = ck , to the dispersion relation

ω(k) =
2

∆t
arcsin{b sin(k∆z/2)} , (63)

or, written in more familiar form [2, 3], to

sin(ω∆t/2)

c∆t
=

sin(k∆z/2)

∆z
. (64)

Both (63) and (64) describe the numerical dispersion
of the explicit numerical method of wave propagation
simulation, with the phase velocity vp(k) = ω(k)/k and
the group velocity vg(k) = dω(k)/dk different from the
correct physical values vf = vg = c .

The phase of ζ in (47) for CET FDTD provided the
condition (56) is met, is given by

phase(ζ) = Ω∆t = arctan
{

2A
√

|η|2 −A2
/

(|η|2 − 2A2)
}

(65)
with the pertaining numerical phase velocity vp(k) =
ω/k = (Ω + ω0)/k and the group velocity vg(k) =
dω/dk = dΩ/dk , for any value of the ratio b = c∆t/∆z ,
provided, in case b = c∆t/∆z > 1, the condition (58)
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Fig. 2. The normalised numerical dispersion relation ω∆t =
phase(ζ) + ω0∆t = (Ω + ω0)∆t versus kc∆t for the explicit and
implicit method, k∆z = 2.51. The values of ω0/c are 1) ω0/c = 6

and 2) ω0/c = 4

8
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0 2 4 6 8

Normalized frequency ( )wDt

Normalized time step ( d )k c t

10 12 14 16
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14

CETS-Implicit FD2

CETS-Implicit FD1

CETS-Explicit FD1

CETS-Explicit FD2

Fig. 3. The normalised numerical dispersion relation ω∆t =
phase(θ) + ω0∆t = (Ω + ω0)∆t versus κc∆t for the explicit
and implicit method, κ∆z = 2.51. The values of ω0/c and k0
are 1) ω0∆z/c = 2.86, k0∆z = 1.43 and 2) ω0∆z = 1.91,

k0∆z = 0.955

is met. Observe that for the limiting value ω0 → 0, ie
γ → 0, (65) converges to (62).

The phase of θ in (51) for CETS FDTD provided the
condition (57) is met, is given by

phase(θ) = Ω∆t =

arctan
{

2|α|B
√

|η|2 − |α|2B2
/(

|η|2 − 2|α|2B2
)}

, (66)

with the pertaining numerical phase velocity vp(k) =
ω/k = (Ω+ ω0)/(k0 + κ) and the group velocity vg(k) =
dω/dk = dΩ/dκ , for any value of the ratio b = c∆t/∆z ,
provided, in case b = c∆t/∆z > 1, the condition (60)
is met. Observe that for the limiting value k0 → 0, (66)
again converges to (65).

6 POWER CONSERVATION AND
THE NUMERICAL DISPERSION
FOR THE IMPLICIT METHODS

The von Neumann stability analysis of the equations
for implicit FDTD methods can be performed similarly
as for explicit methods. After substituting for f |nm , φ|nm
and φnm from (41), (45) and (48) into (16), (28) and (40)
respectively, one obtains for the standard implicit FDTD
method the equation

ξ2(1 +A2)− 2ξ(1−A2) + (1 +A2) = 0 , (67)

for the implicit CET FDTD method the equation

ζ2{η2 +A2} − 2ζ{|η|2 −A2}+ {η∗2 + A2} = 0 , (68)

and for the implicit CETS FDTD method the equation

θ2{η2|α|2B2} − 2θ{|η|2 − |α|2B2}+ {η∗2 + |α|2B2} = 0 .
(69)

The solutions are

ξ = {1−A2 + 2jA}
/

{1 +A2} , (70)

ζ = {|η|2 −A2 + j2A}
/

{η2 +A2} , (71)

θ = {|η|2 − |α|2B2 + j2|α|B}
/

{η2 + |α|2B2} . (72)

All three implicit FDTD methods are absolutely power
conserving, ie |ξ| = 1, |ζ| = 1 and |θ| = 1 always holds.

The dispersion relation for the standard implicit FDTD
method is

phase(ξ) = ω∆t = arctan
2A

1−A2
, (73)

or in the form analogous to (64)

tan(ω∆t/2)

c∆t
=

sin(k∆z/2)

∆z
. (74)

For the implicit CET FDTD and CETS FDTD the
following formulas hold

phase(ζ) = Ω∆t =

arctan
2A

1−A2 + γ2
− arctan

2γ

1−A2 − γ2
, (75)

phase(θ) = Ω∆t =

arctan
2|α|B

1− |α|2B2 + γ2
− arctan

2γ

1 + |α|2B2 − γ2
. (76)
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7 CONCLUSIONS

For the explicit methods the power conservation con-
ditions are given by (53), (54) and (55). When these con-
ditions are fulfilled the numerical dispersion relations for
the three explicit finite-differences formulations are given
by (62), (65) and (66).

The implicit FDTD methods are unconditionally power
conserving. The numerical dispersion relations for the
three implicit finite-differences formulations are given by
(73), (75) and (76).

The dependence of ω∆t = phase(ξ) versus kc∆t for
standard explicit and implicit FDTD method is shown
in Fig. 1. The deviation of both curves from the dashed
line ω = kc represents the numerical dispersion of the
respective method. In both cases the numerical phase
velocity vp(k) = ω(k)/k as well as the numerical group
velocity vg(k) = dω(k)/dk is smaller than the physical
value vp = vg = c as shown already in [4] in Figs. 5 and
6. Due to stability requirements the independent variable
values are for the explicit method limited to kc∆t ≤ π .

As can be easily seen from Figs. 2 and 3 for the explicit
and implicit CET FDTD and CETS FDTD methods the
dependencies Ω∆t = phase(ζ) and Ω∆t = phase(θ) in
Figs. 2 and 3 are much more linear, ie they are much less
loaded by the numerical dispersion error, approximating
more closely the true linear dependence of ω = kc , par-
ticularly the curves “CET EXPLICIT FD 2” and “CETS
EXPLICIT FD 2” that is practically identical with the
dashed line in Fig. 1. However, for this case of condi-
tional stability, and the value ω0∆z/c = 1.91, the limit
of stability of CET FDTD in accordance with (52) equals
kc∆t ≤ 10.41. Similarly for the CETS FDTD the limit
of stability accordingly (52) is reached for κc∆t ≤ 7.67.
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