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EMOTIONAL LEARNING BASED INTELLIGENT
CONTROLLERS FOR ROTOR FLUX ORIENTED

CONTROL OF INDUCTION MOTOR
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This paper presents design and evaluation of a novel approach based on emotional learning to improve the speed control
system of rotor flux oriented control of induction motor. The controller includes a neuro-fuzzy system with speed error
and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The
controller modifies its characteristics so that the critics stress is reduced. The comparative simulation results show that the
proposed controller is more robust and hence found to be a suitable replacement of the conventional PI controller for the
high performance industrial drive applications.
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1 INTRODUCTION

AC motor drives are used in multitude of industrial
and process applications requiring high performances. In
high performance drive systems the motor speed should
closely follow a specified reference trajectory regardless
of any load disturbances, parameter variations and any
model uncertainties. In order to achieve high perfor-
mance, field oriented control of IM drive is employed [1].
However, the controller design of such system plays cru-
cial role in the system performance. The decoupling char-
acteristics of vector controlled induction motor are ad-
versely affected by the parameters change in the motor.

The motor control issues are traditionally handled by
fixed gain proportional integral (PI) and proportional in-
tegral derivative (PID) controllers. However, the fixed
gain controllers are very sensitive to parameter variations,
load disturbances, etc. So, the controller parameters have
to be continually adapted. The problem can be solved by
several adaptive control techniques such as model refer-
ence adaptive control (MRAC) [2], sliding mode control
(SMC) [3], variable structure control (VSC) [4] and self
tuning PI controllers [5], etc. The design of all of the
above controllers depends on the exact system mathe-
matical model. However, it is often difficult to develop
an accurate system mathematical model due to unknown
load variation, unknown and unavoidable parameter vari-
ations due to saturation, temperature variations and sys-
tem disturbances. In order to overcome the above prob-
lems, recently the fuzzy logic controller (FLC) is being
used for motor control purpose.

The mathematical tool for the FLC is the fuzzy set
theory introduced by Zadeh [6]. As compared to the con-
ventional PI, PID and their adaptive versions, the FLC
has some advantages such as:

• it does not need any exact system mathematical model

• it can handle nonlinearity of arbitrary complexity

• it is based on the linguistic rules with IF-THEN gen-
eral structure which is the basis of human logic.

However, the application of FLC has been facing some
disadvantages during hardware and software implemen-
tation due to its high computational burden [7]. That is
why so far the reported fuzzy logic works in motor drives
[8-12] are mainly theoretical and based on either simula-
tion or experimental results at very low speed operating
conditions. With referring to above mentioned approaches
it is clear up that fuzzy-logic control utilization to design
speed control system of induction motor, rapidly increas-
ing because of the good performance of this controller
both in nonlinear and complex systems.

A fuzzy system includes a fuzzyfier of a determinis-
tic input signal with a membership function, reasoning in
a fuzzy rule set using a proper inference method, and
defuzzyfier process to produce a deterministic output.
Fuzzy rule base includes IF-THEN rules representing ex-
pert knowledge that makes decisions from input signals.
This knowledge is provided by a control engineer who
has performed extensive mathematical modeling, anal-
ysis, and development of control algorithms for power
systems. Thus, fuzzy controllers work well as supervi-
sory controllers in conditions such as severe nonlineari-
ties, time varying parameters and plant uncertainties.

The proposed method in this study is the controlling
model based on emotional processing in human beings
brain that is latter method from above methods where
the Critic gives rewards and punishments with respect
to the states reached by the learner and is called Brain
Emotional Learning Based Intelligent Controller (BEL-
BIC). In real time control and decision systems, Emo-
tional Learning is a powerful methodology due to its sim-
plicity structure, low computational complexity, and in-
dependent from system model, online controlling and fast
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Fig. 1. The proposed emotional controller based IM drive

training. For these reasons, recently there is rising tend
to intelligent controllers and BELBIC to use in different
systems such as [14-17].

This novel approach applied to improve the speed con-
trol system of rotor flux oriented control of induction
motor. The control system combined from a neuro-fuzzy
controller and a fuzzy critic which evaluates the motor
speed condition and then produces an appropriate signal
to controller learning.

2 ROTOR FLUX ORIENTED

CONTROL OF INDUCTION MOTOR

In this paper rotor flux oriented control will be applied
to induction motor. The effects of magnetic saturation are
neglected. Stator voltage equations can expressed (using
complex notation) in the rotor flux reference frame as

Vsϕr
=Rsisϕr

+ Ls

disϕr

dt
+ Lm

dirϕr

dt
+

+ jωmrLsisϕr
+ jωmrLmirϕr

(1)

where Lm is magnetizing inductance and ωmr is rotor
flux speed and Vsϕr

can be express as

Vsφr
= Vsd + jVsq = (VsD + VsQ)e

−jθr (2)

where (d, q), (D,Q) and r refer to rotor flux reference
frame, stationary reference frame and flux rotor angel
respectively. The rotor voltage equation will yield the
following

0 = Rrirϕr
+

dϕrϕr

dt
+ j (ωmr − ωr)φrϕr

(3)

where ϕrϕr
rr is the rotor flux linkage in the rotor flux

oriented reference frame and

ϕrφr
= Lm |imr| (4)

By resolving into real and imaginary axis component, the
simple equations are obtained

Tr

d|imr|

dt
+ |imr| = isd, ωmr = ωr +

isq
|imr|

(5,6)

where Tr = Lr/Rr . The term (isq)/(Tr|imr|) represents
the angular rotor frequency ωsl , [1].

The conventional PI controller is one of the most com-
mon approaches for speed control in industrial electri-
cal drives in general, because of its simplicity, and the
clear relationship existing between its parameters and the
system response specifications. The conventional PI con-
troller fixed gains may perform well under some operat-
ing conditions but not all, because the involved processes
are in general complex, time variant, with nonlinearity
and model uncertainties. In order to improve the per-
formances of the indirect vector control system, a novel
approach based on emotional learning is being used to be
the speed controller. The schematic diagram of the ELIC-
based indirect vector control of IM is shown in Fig. 1. The
motor parameters are given in the Appendix.

3 EMOTIONAL LEARNING

There are three learning methods for neural networks
characterized by the information source used for learning
and classified with respect to the degree of information of
the source. These learning methods are supervised learn-
ing, unsupervised learning, and reinforcement learning.
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Emotional learning is a type of reinforcement learning.
It is done fuzzily and continuously in human being, in a
way that the learning process is done through emotional
signals. This signal is produced by the brain based on
the persons behavior. Whenever the persons behavior is
satisfactory, the stress is reduced in the person and no
correction of the behavior is needed and as a result the
value of the produced stress signal is small. If the persons
behavior is not satisfactory, the stress is increased and as
a result, the value of the stress signal is higher in order
to improve the persons behavior.

Although, reinforcement learning and emotional learn-
ing have many similarities in training the controller sys-
tems, there also exist some differences in a way that the
critic which is used in emotional learning has a continuous
performance producing the learning signal in the range of
[-1,1]. If the system operation is satisfactory, the value of
this signal will be close to zero and if it is unsatisfactory
its value is increased and based on the type of operation
it will be close to 1 or -1. But the critic which is used in
reinforcement learning just analyzes success and failure
in the system operation and based on this analyzing the
learning signal is produced in order to train the controller
(0 for failure in the system operation and 1 for success in
the system operation).

Neuro-fuzzy
Controller

Emotional
Critic

Plant Error
Signal

Control
Signal

Fig. 2. Scheme of an emotional learning methodology

4 EMOTIONAL LEARNING CONTROLLER

Figure 2 shows the emotional learning controller struc-
ture which is used in this paper. The critic produces an
emotional signal for the controller by analyzing the sys-
tem performance. Controller amends its parameters based
on this emotional signal and the current error in the sys-
tem output in order to improve system performance. In
this structure, because updating the controller param-
eters is based on the emotional signal, the system re-
sponse is so dependent on the critic performance. Thus,
the most important part in the control system is to de-
sign the critic. In this section, at first the neuro-fuzzy
controller, then the operation of emotional critic, and fi-
nally the method of teaching the neuro-fuzzy controller
is explained.

4.1 Neuro-fuzzy controller

Fuzzy systems are knowledge-based or rule-based sys-
tems [13]. The heart of a fuzzy system is a knowledge

base consisting of the so-called fuzzy IF-THEN rules. A
fuzzy IF-THEN rule is an IF-THEN statement in which
some words are characterized by continuous membership
functions. The starting point of constructing a fuzzy sys-
tem is to obtain a collection of fuzzy IF-THEN rules
from human experts or based on domain knowledge. The
next step is to combine these rules into a single sys-
tem. In fact the fuzzy system can be viewed as per-
forming a real and nonlinear mapping from an input
vector X = [x1, x2 . . . xn]

T ∈ Rn to an output vector

ỹ = f̃(X) ∈ Rm ( .T denotes transposition; n and m are
input and output vector dimensions). Different fuzzy sys-
tems use different principles for this combination. There
are two types of fuzzy systems that are commonly used
in the literature: Takagi-Sugeno-Kang (TSK), and fuzzy
systems with fuzzyfier and defuzzyfier.

The model which is used here to design the neuro-
fuzzy controller is of TSK type. Consider a multiple-input
single-output (MISO) fuzzy system consisting of N rules
as follows:

• Rj (j -th rule): if(x1)isFj1) and (x2isFj1) and (x3isFj3)
and . . . and (xnisFjn) then cj = gj(X), where
j = 1, 2, . . . , N ;xi(i = 1, 2, . . . , n) are the input vari-
ables of the fuzzy system, Fji is characterized by its
corresponding membership function µFji(xi), cj is
the consequence of the j -th rule and gj : R

n → Rm .
Each rule Rj , can be viewed as a fuzzy implication by
the inference engine.

• The antecedent fuzzy set (fuzzy Cartesian product)
of each rule F1 × F2 × · · · × Fn is quantified by the
t-norm operator which may be defined as below, the
min-operator or the product operator.

µF1 × µF2 × · · · × µFn(x1, . . . xn) =

=











min[µF1(x1)× F2(x2)× · · · × µFn(xn)]

or

µF1(x1)× F2(x2)× · · · × µFn(xn)
(7)

• The defuzzification is then performed,

ỹ = f̃(x) =

N
∑

j=1

cµj

N
∑

j=1

µj

, X = [x1, . . . , xn] ∈ Rn

µj = µF1 × µF2 × · · · × µFn(x1, . . . , xn)

(8)

where µj is the firing strength of the antecedent as a
part of the j -th rule.

In TSK fuzzy systems, the consequent part of rules is
given by

cj = a0j +

n
∑

i=1

aij · xi (9)

where where a0j and aij are the coefficients that should
be set at design stage or tuned during the correspond-
ing learning procedure. Implementing a fuzzy inference
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system in the framework of an adaptive neural network
results in a six layer network in which each layer serves as
one part of the equivalent fuzzy system. Figure 3 shows a
sample neuro-fuzzy system equivalent to a two-input and
one-output TSK fuzzy inference system which has two
linguistic labels for each input and therefore four rules in
its rule base.

In the first layer, which is shown by I, the input is
normalized to the range [-1,1]. In the second layer, which
is shown by MF, by using the membership functions the
input variables are transformed from real variables into
linguistic variables. The third layer which is shown by
c, multiplies the variables received from layer two and
provides the antecedent part of the fuzzy rules µFj1

(x1)×

· · ·×µFjn
(xn). In the fourth layer, which is shown by N ,

the term µj/
∑n

j=1 µj is calculated which expresses the

ratio of firing strength in the j -th node to the sum of all
firing strengths of the rules.

In the fifth layer, which is shown by T-S, by using the
normalized data of the previous layer and the arranged
TSK rules in this layer, the output of the above rules are
calculated. Finally, the sixth layer is a defuzzyfier layer
and the output is calculated based on (8).

S

k

MF

MF

MF

I

MF

MFx1

I MFx2

C

C

N

N

T-S

T-S

x2x1

L1 L2 L3 L4 L5 L6

Fig. 3. Neuro-fuzzy structure equivalent with a MISO TSK fuzzy
inference system with layers: L1 – input fuzzyfier, L2 – input lin-
guistic, L3 – conjunction, L4 – normalizer, L5 – TSK rules and L6

– summation

4.2 Emotional critic

The performance of the critic is similar to the emo-
tional section of human brain, in a way that it produces
a learning signal in order to update the neuro-fuzzy con-
troller weights by analyzing the system performance. This
analysis is done by using the system error and its deriva-
tion signals. It means that position of system output and
also the system behavior are effectual on the emotional
signal. The critic is designed by implementing PD behav-
ior via fuzzy systems. The critic which is designed by PD
controller has a linear performance and it is not suggested
to be used for non-linear systems. But the critic which is
designed by neuro-fuzzy controller has a proper perfor-
mance in non-linear systems. In this article, the expert
fuzzy system model is used to design the critic.

Considering the fact that controller performance cor-
rection should lead to reduction of critic stress, the cost
function is defined as follows

E =
m
∑

j=1

kj
r2j
2

in which rj is the output emotional signal of critic j ,
kj is the weight of this signal, and m is the number of
system outputs which also defines the number of critics
used in the system.

4.3 Emotional learning

As already mentioned, the main goal of emotional con-
troller is to update the neuro-fuzzy controller parameters
in order to reduce the critic stress based on cost function
using steepest descent method

E =
1

2
r2, ∆ω = −η

∂E

∂ω
(10,11)

in which η is the controller learning rate and ω is the
tunable parameter of the controller. By using the chain
rule in order to calculate equation XXX we will have

∆ω = −η
∂E

∂r

∂r

∂y

∂y

∂u

∂u

∂ω
, (12)

in which u is the control signal.

In the above equation J is the system Jacobean. As
the system input is increased its output will increase too,
as a result the system Jacobean sign is positive in this
system.

∆ω = −η r
∂r

∂y
(+1)

∂u

∂ω
= −η r(

∂r

∂e

∂e

∂y
)
∂u

∂ω
(13)

Because the critic operation is fuzzy, ∂r
∂e

value can be
replaced by its symbol. Considering the fact that increase
in the system error leads to increase in the stress, the sign
of the above equation is positive. The system error is also
calculated by using e = yref − y

∆ω = η r
∂u

∂ω
. (14)

In the introduced neuro-fuzzy controller, control signal
u of the previous sub-sections is calculated by combining
(8) and (9) to get

u =

N
∑

j=1

(

a0j +
n
∑

i=1

aijxi

)

µj

n
∑

j=1

µj

(15)

Now based on (14) the controller parameters can be up-
dated using

∆a0j = η r
∂u

∂a0j
= η r

µj

N
∑

j=1

µj

∆aij = η r
∂u

∂aij
= η r xi

µj

N
∑

j=1

µj

(16)
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Fig. 4. The membership functions of the corresponding linguistic
variables of the neuro-fuzzy Controller
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Fig. 5. Fuzzy critic membership functions: (a) – input membership
functions and (b) – output membership functions

5 THE PROPOSED SPEED CONTROL

SYSTEM OF ROTOR FLUX ORIENTED

CONTROL OF INDUCTION

The structure of the designed emotional controller for
speed control system of rotor flux oriented control of in-
duction is shown in Fig.1. This structure is made of neuro-
fuzzy controller and critic sections. The neuro-fuzzy con-
troller section produces command signal in order to speed
control system of rotor flux oriented control of induction.

As it was mentioned earlier the structure of this con-
troller is of TSK type and speed error signal and its
derivation are used as the inputs of this controller. In
this controller three linguistic variables – Negative (N ),
Positive (P ) and Zero (Z ) – are used in each input in
order to tune the rules and according to this 9 rules are
formed for the controller. Membership functions of lin-
guistic variables are shown in Fig. 4.

It is obvious that sigmoid functions are used for vari-
ables N and P , ie

µFji(xi) =
1

1 + e−aji(xi−cji)

and Gaussian function, ie

µFji(xi) = −

[

xi − cji
σji

]2

is used for variable Z . In the above equations cij – is
the center of function, σji – is the function variance and
aij – is the curve inflection function. The main sector in
emotional controller is the critic. In this controller expert
fuzzy model is used in order to design the critic. Speed
error signal and its derivation are used as critic inputs in
order to analyze system performance. Five linguistic vari-
ables are used for each of the above inputs; their member-
ship functions are shown in Fig. 5(a). and Fig. 5(b). As it
is seem in the figure, Gaussian function is used for vari-
ables SP , SN and Z and Sigmoid function is used for
variables BP and BN . According to the above linguistic
variables, 25 different states can be defined in the critic
and 25 different rules are tuned based on them in order to
form the critic stress in the then part of these rules. The
above rules are shown in Table 1 and also Fig. 5(c) shows
the critic stress signal derived from these rules. For ex-
ample if the speed error signal and its derivation are BP
(Big Positive), the system performance is unsatisfactory
and the critic stress will be V BP ; contrary to that if the
speed error signal is SP (Small Positive) and its deriva-
tion is SN (Small Negative) the system performance is
satisfactory and the critic stress is also reduced.

Table 1. Critic fuzzy rule base

Speed error BNe SNe Ze SPe BPe

BNed VBN BN SN VSN ZE

Speed error
SNed BN SN VSN ZE VSP

derivative
Zed SN VSN ZE VSP SP

SPed VSN ZE VSP SP BP

BPed ZE VSP SP BP VBP

Finally by applying the stress signal to the neuro-fuzzy
controller, the controller parameters are tuned by using
SD method in order to optimize system performance.

6 RESULTS AND DISCUSSIONS

Several tests were performed to evaluate the perfor-
mance of the proposed ELIC based vector control of IM
drive system simulated.

The speed control loop of the drive was also designed,
simulated implemented with PI controller, in order to
compare the performances to those obtained from the
respective FLC based drive system. The speed responses
are observed under different operating conditions such as
sudden change in command speed, step change in load,
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Fig. 6. Simulated starting responses of the drive with ELIC and
PI
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Fig. 7. Simulated speed responses of the drive due to step change
of the reference speed ELIC and PI

etc. Some sample results are presented in the following
section.

The PI controller is tuned at rated conditions in order
to make a fair comparison. Fig.6. show the simulated
starting performance of the drive with PI and ELIC based
drive systems, respectively. Although the PI controller is
tuned to give optimum response at this rated condition,
the emotional controller yielded better performances in
terms of faster response time.

Figure 7 shows the speed responses of the drive system
using PI and emotional controller, with step change in ref-
erence speed. It is evident from Fig. 7, that the proposed
ELIC based IM drive system can follow the command
speed without any overshoot and steady state error. So
this intelligent controller is not affected by the sudden
change of the command speed. Thus, a good tracking has
been achieved for the ELIC. Whereas, the PI controller
based drive system is affected with the sudden change in
command speed

These figures also show that the ELIC based drive
system can handle the sudden increase in command speed
quickly without overshoot, undershoot and stead-state
error, whereas the PI controller based drive system has
steady-state error and the response is not as faster as
compared to the ELIC. Thus, the proposed emotional
controller based drive has been found superior to the
conventional PI controller based system.

7 CONCLUSION

A novel Emotional learning based intelligent con-
trollers to improve the speed control system of rotor flux
oriented control of induction motor has been presented
in this paper. The ELIC has been designed for speed
control loop. The simulation has been carried out using
SIMULINK Toolbox. The above controller is an intelli-
gent controller of reinforcement learning type which uses
a fuzzy critic in order to assess the system performance
and tuning parameters of the controller. Since exact sys-
tem parameters are not required in the implementation
of the proposed controller, the perform-ance of the drive

system is robust, stable and insensitive to parameters and
operating condition variations. In order to prove the su-
periority of the ELIC, a conventional PI controller based
IM drive system has also been simulated implemented. It
is concluded that the proposed Emotional learning based
intelligent controllers has shown superior performances
over the PI controller.

Appendix

Specifications of induction motor:

5HP, 3-Phase, 4-Pole, Y-Connected, 460 V, 60 Hz,
1800 rpm, squirrel cage induction type

Rs = 1.115Ω, Rr = 1.083Ω, Ls = 0.0059H, L =
0.0059H, Lm = 0.2037H, Jm = 0.01 kgm2 , Bm =
0.02Nms.
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