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IMPROVED LINEARIZATION OF THE OPTIMAL
COMPRESSION FUNCTION FOR LAPLACIAN SOURCE

Zoran H. Peri¢ — Lazar Z—. Velimirovié — Milan R. Dincié

*

In this paper, linearization of the optimal compression function is done and hierarchical coding (by coding the regions
firstly and then the cells inside the region) is applied, achieving simple and fast process of coding and decoding. The
signal at the entrance of the scalar quantizer is modeled by Laplacian probability density function. It is shown that the
linearization of inner regions very little influences distortion and therefore only the last region should be optimized. Two
methods of optimization of the last region are proposed, that improve performances of the scalar quantizer, and obtained
SQNR (signal-to-quantization noise ratio) is close to that of the nonlinear optimal compression function.
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1 INTRODUCTION

With the scalar quantization process, the current value
of continuous input signal rounds up to the nearest al-
lowed value from the finite set of discrete amplitude lev-
els. Scalar quantizer is unambiguously determined with
the set of allowable output amplitude levels, called repre-
sentational levels, and with division of the values of input
range on cells or quantization intervals. Quantizer can be
uniform (all the quantization intervals are of the same
width) and nonuniform (different width of the quantiza-
tion intervals) [1]. Uniform quantizers are suitable for sig-
nals that have approximately uniform distribution. How
most of the signals do not have a uniform distribution
(usually small current values are more likely than the
large ones), there is a need for using nonuniform quan-
tizer. One of the most used methods for the realization
of the nonuniform quantizer is companding technique, in
which a specific compressor function is applied on an in-
put signal. The most often used compressor functions are
optimal compressor function (which gives the maximum
signal-to-quantization noise ratio SQNR for the reference
variance of the input signal) and a logarithmic A-law
and p-law compression functions, by which maximum
SQNR cannot be achieved, but that provides a constant
SQNR in wide range of an input signal variance [1]. These
compressor functions are very complicated to be realized
practically. Therefore, in order to achieve easier practical
realization, linearization of the optimal compressor func-
tion is performed. Thus linearization of A-law and p-law,
done by defining a well known segment A-law and seg-
ment p-law compression functions [1], where input range
of quantizer is divided into segment s and inside each seg-
ment a linear compressor function is used, ‘e uniform seg-
ment division on cells is done. The number of cells in each
segment is equal and hierarchical coding can be applied,

which means that firstly the segment is coded and then
the cells inside the segment. This way the piecewise uni-
form quantizer is obtained. The piecewise uniform scalar
quantizer is analyzed in [2]. By the algorithm realization
for the speech signal [2], not only that the higher quality
signal than a quality defined by standard G.711 is ob-
tained, but the bit-rate reduces for about 1bit/samples.
The linearization of the optimal compressor function is
done in [3,4]. In [3], the linearization with unequal num-
ber of cells per region is done, ie for each segment, the
optimization of number of cells is done. The disadvan-
tage of this method is a high complexity of quantizer, the
complexity of coding and decoding, and the impossibility
to apply hierarchical coding. The analysis of compressor
function for Laplacian source is shown in [4].

In this paper, the linearization of the optimal compres-
sor function for the input signal with Laplacian distribu-
tion is done, in the similar way as for segment A-law
and segment p-law compression function. All segments
have the same number of cells and a hierarchical coding
is done. It is shown that the highest quality of the output
signal is achieved in the case when the last representa-
tional level is determined from the centroid condition.
The process of designing scalar quantizer whose repre-
sentational levels are determined from centroids’ condi-
tions, for Laplacian and Gaussian source, is described in
[5]. The linearization of the optimal compressor function
proposed in this paper is much simpler than in [2-4] and
the results, regarding the quality of the output signals,
are better. The special contribution of this work repre-
sents the optimization of the last region, by which the im-
provement is achieved comparing to previous linearization
techniques. Two methods of the last region optimization
are presented and obtained values of SQNR are close to
those values of SQNR for nonlinear optimal compressor
function.
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2 OPTIMAL NONLINEAR
COMPRESSOR FUNCTION

The scalar quantizer is determined by the repre-
sentational levels {yi,...,yn} and decision thresholds
{to,t1,...,tn}. The input range of the quantizer is
divided into N cells or quantization intervals o; =
[tj—1,t;), 7 = 1,2,...,N. During the quantization, the
quantization error, expressed with distorsion, is made.
The total distortion can be found as a sum of the granu-
lar D, and the overload D, distortion [1]

D=D,+ D, (1)

that is determined as follows

N1 Y
D=3 [ uPpans. )
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D,=2 / (x —yn)*p(x)de, (3)

tN—1

where p(x) is Laplacian PDF (probability density func-
tion) which is defined as

o) = L VElel/o
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Since p(x) is an even function, the quantizer will be sym-
metrical. The decision thresholds and representational
levels in the negative section of the real axis will be sym-
metrical to those in the positive section of the real axis.
Therefore, only the positive section of the real axis will
be considered. One of the methods of the realization of
the nonuniform quantization is companding technique.
Nonuniform quantization can be achieved by compressing
the signal x using a nonuniform compressor characteris-
tic ¢(-), by quantizing the compressed signal ¢(z) em-
ploying a uniform quantizer, and by expanding the quan-
tized version of the compressed signal using a nonuniform
transfer characteristic ¢~1(-) that is inverse to that of the
compressor. The granular distortion for the companding
quantizer is presented in the form of Bennett’s integral
as [1, 7-8]

_ 1 p(z)
2= | e ?
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where A(z) is the density of representational level and is
defined as

1
A = ti—1,ti], 6
(@)= ya @€t (6)
and A; = t; — t;_1 denotes amplitude quantum size.

Bennett’s integral (5) obtains the form

D, = 1—12/A12p($)d$. (7)
R

The minimum of the Bennett’s integral (5) is also a mini-
mum of the distortion of the nonuniform scalar quantizer,
which means that by using the companding technique,
optimal scalar quantization can be realized. By determi-
nation of the gradient of the compressor function (for
positive characteristic’s section)

A - 2Zmax
A;  NA,

C'(z) = ~d(y),i=N/2+1,...,N, (8)

an expression for the density of representational level is
achieved, and with substitution in (5), a known form of
Bennett’s integral is obtained

_ Thax [ P@)
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The performances of the quantizer are determined by
SQNR which is defined as follows [1]

2

SQNR = 10log,, % (dB). (10)

The optimal compressor function ¢(x) by which the max-
imum SQNR is achieved for the reference variance of an
input signal is defined as [1]

Cpl/3(2)da
c(x) = :vmaxfop—() . (11)
J"O max p1/3 (:C)dx
Without diminishing the generality, the quantizer design

will be done for the reference input variance of o2, = 1.

Based on the equations

2 max N 1 2 max
C(tz) = _xmax+i de b C(yl) = _fEmax‘f’ (1_5) xN
(12)

The next expressions for the decision thresholds t; and
for representational levels y;, i = N/2+1,...,N, are
obtained

3 N

ti:—ln N (13)
V22N - 2i 4 (20 — N) exp =2 Zuax
3 N
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V2 2N - 2i+1+4 (2 — N — 1) exp =2max 1

In this paper, the design of the scalar quantizer is per-
formed for the case when the maximum amplitude of the
quantizer is finite. The dependency of the maximum am-
plitude of the quantizer on the number of representational
levels is shown in [6]. In [3], it is shown that its optimum
value in that case is equal to

SN +1).

Tmax = \/5 (15)
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Table 1. Comparing granular distortion to ranges for different quantizer models
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Fig. 1. Piecewise linear compressor functions illustration

3 LINEARIZATION OF THE OPTIMAL
COMPRESSION FUNCTION

This section contains a detailed description of lin-
earization of the optimal compression function. The lin-
earization is done in the way that the amplitude quantizer
range is divided into L regions, and each region is uni-
formly divided into N/L cells of equal width. The piece-
wise uniform scalar quantizer is obtained in this way. Due
to the symmetry of quantizer, we will only consider the
positive region of characteristic (see Figure 1). The deci-
sion thresholds between regions in the positive section of
the characteristics ¢, i = L/2+1,..., L are determined
by using the expression

3 L
tr=-"In ,

V2 9L — 20+ (2 — L) exp(—kiax)

where z} . denotes the maximum amplitude of the lin-
earized piecewise uniform scalar quantizer. The size of the
cells in the i-th region is equal to

g
As_ﬁ: 7 1—1 1
With ¢, ¢ =1,...,L, j = 0,...,N/L the threshold

point between cells in the i-th region is denoted, where
ti70 = tz—l and ti,N/L = tr With Yij i = 1,...,L,
j =1,...,N/L representational level the j-th cell into
the ¢-th region is denoted. Due to the uniform regions of
the cell division it goes

tij =ti1+JA7, tia+ (1 —1/2)A7.

Yij = (18)

Now, we want to investigate how much the granu-
lar distortion of the piecewise uniform (PU) quantizer is
higher than the granular distortion of the optimal com-
panding (OC) quantizer, and how much each region con-
tributes on this increase of the granular distortion. There-
fore, we will calculate the granular distortion both of
the PU quantizer and of the OC quantizer and compare
them. To find the contribution of each region on the in-
crease of the granular distortion, the granular distortions
of PU and OC quantizers will be calculated for intervals
[t 671 = [t} o ti], i = L/2+1,..., L. The granular
distortion of the PU quantizer in the interval [—tf,t}],
denoted as DIV (t7), is defined as

DPU

A*Q
_22 kPk, i=L/2+1,...,L (19)

where Py is the probability that the current value of am-

*

plitude input signal belongs to the k-th region [t} _,,t;]

2

P, = / p(a)dz =

*
tk—l

(exp(—ti_y) —exp(—t7)) . (20)
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The granular distortion of the OC quantizer in the inter-
val [—t¥,tf] can be calculated in two ways. The first way
is by analytical solving of Bennett’s integral given with
the equation (5), where the optimal compressor function
¢(x) is determined with (11) and the maximum amplitude
of the quantizer is given by (15). We obtain the follow-

ing expression for the granular distortion in the interval

[—t7, 7]
9 —V2t L
Ben (px\ __ _ i P
D, (ti)——2 2(1 exp — ), i 2—i—l,. L
(21)

The second way to calculate the granular distortion of the
OC quantizer is to use the following exact expression [1]

i N/L kg

2 > 2.

k=L/2+1 =14, "

i=L/2+1,...,L.

Dewact :E _ yk,j)2p(517)d517 ,

(22)

In Table 1, numerical values of the previous distortions
are given for the quantizer with N = 128 levels and
L = 16 regions. We can see that in the intervals [—t},t}],

177
1 =29,...,15, the granular distortion of the PU quantizer,
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Fig. 2. Numerical determination of the decision threshold of the
granular region

Table 2. Key parameters and performances of the proposed quan-
tizer model

method tmax th_1 As SQNR

I 10.31 9.56 0.751 34.56
11 10.31 7.29 0.427 35.34

Table 3. Quantizer performances depending on number of levels
and number of regions for method II

N=16 N=32 N=64 N=128
L=38 17.91 23.49 29.10 34.68
L=16 — 23.74 29.54 35.34
L =32 - - 29.67 35.58
SQNRopt 17.55 23.57 29.59 35.61

Déj U(ts), is very close to the granular distortion of the
OC quantizer (DF"(t7) or D&*ee!(t¥)). Therefore, the
linearization of the inner regions has a very small influ-
ence on the increase of the granular distortion of the PU
quantizer. But, from the last column of Table 1 we can see
that the granular distortion in the interval [—t34,¢5s] of
the PU quantizer is significantly higher (for about 30 %)
than the granular distortion of the OC quantizer. There-
fore, we can conclude that the last region [ti5,t}s] has
the highest contribution on the increase of the granular
distortion of the PU quantizer. Hence, the last region of
the linearized PU quantizer should be optimized with the
aim of the decrease of the granular distortion. In this pa-
per, we propose two methods for optimization to improve
the linearization of the last region. These methods for
optimization are described in the next chapter.

4 THE IMPROVEMENT OF
THE LINEARIZATION BY
OPITIMIZNG THE LAST REGION

In this section, we will optimize the last region (the L-

th region) (¢} _,t5 = % .x], and give expressions for the

*

maximum amplitude of the linearized quantizer z}, ., and
the thresholdV of the granular region t_; = tr,N/L—1-
Optimizing these parameters, the distortion reduces and
the quality of the output signal increases. In this paper,
we propose two methods for optimization of ¢f_ .
Method I. According to this method, the maximum am-
plitude of the linearized quantizer z}, .. is chosen to be
equal to the maximum amplitude of the nonlinearized
quantizer z% . given by (15). In this case, the size of the
cell is equal to

*

*
Tmax — thl

A} = 23
The threshold of the granular region is equal to
t?\/'—l = xrnax - Az : (24)

Method II. This method proposes that the threshold of
the granular region t%y_, is determined numerically, re-
specting the criterion of minimum total distortion DL for
the last region (See Fig. 2), where the last representa-
tional level yn is centroid of the last cell (thy_,,00) [1]

‘[;/N—l xp(x)dx

T (25)

YN =

The value of the total distortion Dy , for the last region,
in this case is

/ p(x)dzr + %exp(—ﬁtﬁv,l) , (26)

*
thl

where the size of the cell in the last L-th region is equal
to
! _ t*
AF = N—-1 L-1

Changing (27) into (26), and numerically solving (26),
ty_, is found.

5 NUMERICAL RESULTS

Numerical results presented in this section are ob-
tained for the case when the total number of levels is
equal to N = 128, the number of regions is equal to
L = 16 and the number of cells inside the each region
is equal to N/L = 8. Table 2 shows the numerical re-
sults for the previously described methods of the opti-
mization of the last region. Comparing the obtained val-
ues of SQNR, one can notice that method II is actually
improved method I. Optimizing the last region by us-
ing method II, value of SQNR is 35.34 dB, that is very
close to values of SQNR for nonlinear optimal compressor
function [7,8]. The value of SQNR for the case where all
representational levels are centroids and the optimization
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of the last region performed according to method II, is
35.35 dB. Due to minor differences in the quality of the
output signal and less complexity of coding and decoding
process, this paper proposes method II as the best solu-
tion. The values of SQNR for different values of parame-
ters N and L, obtained on the basis of the method II are
shown in Table 3. The last row in Table 3 represents the
optimal value of SQNR for different values of parameter
N [7,8]. Taking into consideration simple and fast cod-
ing and decoding process and the less complexity of the
system, and the quality of the output signal, one can con-
clude that the best result is achieved for values of param-
eters L =16 and N = 128. By introducing the lineariza-
tion, coding and decoding process is considerably simpler
and faster. In order to linear model represents a worthy
substitution for the original nonlinear model, the correct
selection of an amplitude range of quantizer is important.
Therefore it is necessary to optimize SQNR which is very
difficult to achieve analytically because many parameters
of the quantizer indirectly depend on the size of the am-
plitude range of the quantizer. Therefore, we decided for
numerical determination of the amplitude range of quan-
tizer respecting the criterion of minimum distortion (see

Fig. 2).

6 CONCLUSION

This paper proposes the new method of the lineariza-
tion of the optimal compressor function. This linearized
quantizer can be considered as a generalized quantized,
whose special cases are the nonuniform optimal compand-
ing quantizer (for L = N) and the uniform quantizer
(L =1). Our aim was to decrease the complexity of the
nonuniform optimal companding quantizer by lineariza-
tion, but to keep performances near to those of the opti-
mal companding quantizer. Based on the results obtained
by the adequate analysis of the proposed method for op-
timization of the last region, one can conclude that the
proposed methods are very effective solution because ob-
tained value of SQNR is close to that of the nonlinear
optimal compressor function. Since method II represents
the improvement of method I, in this paper, method II is
proposed as the best solution. Also, it is shown that the
highest signal quality, for the lowest complexity of the
system, is achieved by the method II for the parameter
values L = 16 and N = 128. For these values of param-
eters, the complexity is considerably reduced compared
to the nonuniform optimal quantizer, but SQNR is only
for 0.32 dB smaller. Also, the combination of parameters
L =32 and N = 128 can be used as a very good solution
(this combination has a higher complexity than the pre-
vious combination but much smaller complexity than the
nonuniform quantizer, but the SQNR is almost identical
to SQNR of the nonuniform quantizer). This linearized
model allows to us to choose the best combination of pa-
rameters, regarding the application and the memory and
computation capacity.
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