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HYBRID CHAOS SYNCHRONIZATION OF
FOUR–SCROLL SYSTEMS VIA ACTIVE CONTROL
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This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical
Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control
method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in
this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents
are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical
and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate
the hybrid synchronization results derived in this paper.
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1 INTRODUCTION

Chaotic systems are nonlinear dynamical systems that
are highly sensitive to initial conditions. This sensitivity is
popularly known as the butterfly effect [1]. The chaos phe-
nomenon was first observed in weather models by Lorenz
([2], 1963). Chaos is an interesting nonlinear phenomenon
and it has been intensively and extensively studied in the
last three decades. Chaos theory has wide applications in
several fields such as physical systems [3], chemical sys-
tems [4], ecological systems [5], secure communications
[6–8], etc.

Synchronization of chaotic systems is a phenomenon
that may occur when two or more chaotic oscillators
are coupled or when a chaotic oscillator drives another
chaotic oscillator. Because of the butterfly effect which
causes the exponential divergence of the trajectories of
two identical chaotic systems started with nearly the
same initial conditions, synchronizing two chaotic sys-
tems is seemingly a very challenging research problem.

In most of the chaos synchronization approaches, the
master-slave or drive-response formalism is used. If a par-
ticular chaotic system is called the master or drive system
and another chaotic system is called the slave or response
system, then the idea of synchronization is to use the out-
put of the master system to control the slave system so
that the states of the slave system track the states of the
master system asymptotically.

Since the seminal work by Pecora and Carroll ([9],
1990) on complete synchronization of chaotic systems,
several approaches have been developed for chaos syn-
chronization such as the OGY method [10], sampled-data
feedback synchronization method [11], the time-delay
feedback method [12, 13], the active control method [14–
18], the adaptive control method [19–23], the backstep-

ping method [24–26], the sliding mode control method
[27–30] and others.

So far, various synchronization methods have been de-
veloped such as the complete synchronization [9], the
phase synchronization [31], the generalized synchroniza-
tion [32], the anti-synchronization [33–36], the projective
synchronization [37] and the generalized projective syn-
chronization [38–40].

Complete synchronization (CS) is characterized by the
equality of state variables evolving in time, while the anti-
synchronization (AS) is characterized by the disappear-
ance of the sum of relevant state variables evolving in
time. Projective synchronization (PS) is characterized by
the fact the master and slave systems could be synchro-
nized up to a scaling factor, whereas in generalized pro-
jective synchronization (GPS), the responses of the syn-
chronized dynamical states synchronize up to a constant
scaling matrix α . It is easy to see that the complete syn-
chronization and the anti-synchronization are the special
cases of the generalized projective synchronization where
the scaling matrix α = I and α = −I , respectively.

In hybrid synchronization of chaotic systems [41], one
part of the systems (for instance, the odd-numbered
states) is completely synchronized, while the other part
(for instance, the even numbered states) is anti-synchro-
nized so that complete synchronization (CS) and anti-
synchronization (AS) co-exist in the master-slave chaotic
systems. The co-existence of CS and AS is very useful in
secure communication and chaotic encryption schemes.

In this paper, we apply the active control method
to derive new results for the hybrid synchronization of
identical Wang four-scroll chaotic systems ([42], 2009),
identical Liu-Chen four-scroll chaotic systems ([43], 2004)
and non-identical Wang and Liu-Chen four-scroll chaotic
systems. Our hybrid synchronization results for the four-
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Fig. 1. The four-scroll attractor of the Wang system
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Fig. 2. The four-scroll attractor of the Liu-Chen system

scroll chaotic systems are established by the Lyapunov
stability theory [44].

This paper has been organized as follows. In Section 2,
we give a description of the four-scroll chaotic systems
addressed in this paper. In Section 3, we discuss the hy-
brid synchronization of identical Wang four-scroll systems
(2009). In Section 4, we discuss the hybrid synchroniza-
tion of identical Liu-Chen four-scroll systems (2004). In
Section 5, we discuss the hybrid synchronization of non-
identical Wang and Liu-Chen four-scroll systems. In Sec-
tion 6, we summarize the main results obtained in this
paper.

2 SYSTEMS DESCRIPTION

The Wang four-scroll system is a new chaotic system
derived by L. Wang ([42], 2009).

The Wang system is described by the 3D dynamics

ẋ1 = a(x1 − x2)− x2x3 ,

ẋ2 = −bx2 + x1x3 , (1)

ẋ3 = −cx3 + dx1 + x1x2

where x1 , x2 , x3 are the states and a , b , c , d are
positive, constant parameters of the system.

The system (1) is chaotic when the parameter values
are taken as

a = 1 , b = 5.7 , c = 5 and d = 0.06 .

Figure 1 depicts the four-scroll attractor of the Wang
chaotic system (1).

The Liu-Chen four-scroll system is a new chaotic sys-
tem derived by W. Liu and G. Chen ([43], 2004). The
Liu-Chen system is described by the 3D dynamics

ẋ1 = αx1 − x2x3 ,

ẋ2 = −βx2 + x1x3 , (2)

ẋ3 = −γx3 + x1x2

where x1 , x2 , x3 are the states and α , β , γ are positive,
constant parameters of the system. The system (2) is
chaotic when the parameter values are taken as

α = 0.4 , β = 12 and γ = 5 .

Figure 2 depicts the four-scroll attractor of the Liu-
Chen chaotic system (2).

3 HYBRID SYNCHRONIZATION OF THE

IDENTICAL WANG FOUR–SCROLL SYSTEMS

3.1 Theoretical Results

In this section, we deploy the active control method
to derive new results for the hybrid synchronization of
identical Wang four-scroll systems ([42], 2009).

Thus, the master system is described by the Wang
dynamics

ẋ1 = a(x1 − x2)− x2x3 ,

ẋ2 = −bx2 + x1x3 , (3)

ẋ3 = −cx3 + dx1 + x1x2

where x1 , x2 , x3 are the states and a , b , c , d are
positive, constant parameters of the system.

The slave system is described by the controlled Wang
dynamics

ẏ1 = a(y1 − y2)− y2y3 + u1 ,

ẏ2 = −by2 + y1y3 + u2 , (4)

ẏ3 = −cy3 + dy1 + y1y2 + u3

where y1 , y2 , y3 are the states and u1 , u2 , u3 are the
active controllers to be designed.
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Fig. 3. Hybrid synchronization of the identical Wang four-scroll
systems

The hybrid synchronization error is defined as

e1 = y1 − x1 ,

e2 = y2 + x2 , (5)

e3 = y3 − x3 .

A simple calculation gives the error dynamics as

ė1 = a(e1 − e2 + 2x2) + u1 ,

ė2 = −be2 + y1y3 + x1x3 + u2 , (6)

ė3 = −ce3 + de1 + y1y2 − x1x2 + u3 .

We define the active controls u1(t), u2(t) and u3(t)
as

u1(t) = −a(e1 − e2 + 2x2) + y2y3 − x2x3 − k1e1 ,

u2(t) = be2 − y1y3 − x1x3 − k2e2 , (7)

u3(t) = ce3 − de1 − y1y2 + x1x2 − k3e3

where k1 k2 , k3 are positive constants.

Substituting (7) into (6), the error dynamics simplifies
to

ė1 = −k1e1 ,

ė2 = −k2e2 , (8)

ė3 = −k3e3 .

Theorem 1. The identical Wang four-scroll systems (3)
and (4) with constant, positive parameters are globally

and exponentially hybrid-synchronized by the active con-

trol law (7), where the gains k1 , k2 , k3 are positive con-

stants.

P r o o f . This result is a simple consequence of the
Lyapunov stability theory.

Consider the quadratic Lyapunov function V defined
by

V (e1, e2, e3) =
1

2
(e2

1
+ e2

2
+ e2

3
) , (9)

which is a positive definite function on R3 .

Differentiating V along the trajectories of (8), we get

V̇ = −k1e
2

1
− k2e

2

2
− k3e

2

3
, (10)

Clearly, V̇ is a negative definite function on R3 . Hence,
by the Lyapunov stability theory [44], it follows that
ei(t) → 0 as t → ∞ for i = 1, 2, 3. This completes
the proof.

3.2 Numerical Results

For the numerical simulations, the fourth-order Runge-
Kutta method with time-step h = 10−8 is used to solve
the two systems of differential equations (3) and (4) with
the active nonlinear controller (7). We take ki = 4 for
i = 1, 2, 3.

The parameters of the Wang four-scroll systems are
chosen so that the systems (3) and (4) are chaotic, ie

a = 1 , b = 5.7 , c = 5 , d = 0.06 .

The initial values of the master system (3) are chosen as

x1(0) = 12 , x2(0) = −9 , x3(0) = 8 .

The initial values of the slave system (4) are chosen as

y1(0) = −2 , y2(0) = 15 , y3(0) = 20 .

Figure 3 shows the hybrid synchronization of the Wang
four-scroll systems (3) and (4). Figure 4 shows the time-
history of the hybrid synchronization errors.

Fig. 4. History of the error states e1 , e2 , e3
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Fig. 5. Hybrid synchronization of the identical Liu-Chen four-scroll
systems

4 HYBRID SYNCHRONIZATION

OF THE IDENTICAL LIU–CHEN

FOUR–SCROLL SYSTEMS

4.1 Theoretical Results

In this section, we deploy the active control method
to derive new results for the hybrid synchronization of
identical Liu-Chen four-scroll systems ([43], 2004).

Thus, the master system is described by the Liu-Chen
dynamics

ẋ1 = αx1 − x2x3 ,

ẋ2 = −βx2 + x1x3 , (11)

ẋ3 = −γx3 + x1x2

where x1 , x2 , x3 are the states and α , β , γ are positive,
constant parameters of the system.

The slave system is described by the controlled Wang
dynamics

ẏ1 = αy1 − y2y3 + u1 ,

ẏ2 = −βy2 + y1y3 + u2 , (12)

ẏ3 = −γy3 + y1y2 + u3

where y1 , y2 , y3 are the states and u1 , u2 , u3 are the
active controllers to be designed.

The hybrid synchronization error is defined as

e1 = y1 − x1 ,

e2 = y2 + x2 , (13)

e3 = y3 − x3 .

A simple calculation gives the error dynamics as

ė1 = αe1 − y2y3 + x2x3 + u1 ,

ė2 = −βe2 + y1y3 + x1x3 + u2 , (14)

ė3 = −γe3 + y1y2 − x1x2 + u3 .

We define the active controls and as

u1(t) = −αe1 + y2y3 − x2x3 − k1e1 ,

u2(t) = βe2 − y1y3 − x1x3 − k2e2 , (15)

u3(t) = γe3 − y1y2 + x1x2 − k3e3

where k1 , k2 , k3 are positive constants.

Substituting (15) into (14), the error dynamics simpli-
fies to

ė1 = −k1e1 ,

ė2 = −k2e2 , (16)

ė3 = −k3e3 .

Theorem 2. The identical Liu-Chen four-scroll systems

(11) and (12) with constant, positive parameters are glob-

ally and exponentially hybrid-synchronized by the active

control law (15), where the gains k1 , k2 , k3 are positive

constants.

P r o o f . This result is a simple consequence of the
Lyapunov stability theory.

Consider the quadratic Lyapunov function

V (e1, e2, e3) =
1

2
(e2

1
+ e2

2
+ e2

3
) , (17)

which is a positive definite function on R3 .

Fig. 6. History of the error states e1 , e2 , e3
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Differentiating V along the trajectories of (16), we get

V̇ = −k1e
2

1
− k2e

2

2
− k3e

2

3
, (18)

which is a negative definite function on R3 . Hence, by the
Lyapunov stability theory [44], it follows that ei(t) → 0
as t → ∞ for i = 1, 2, 3. This completes the proof.

4.2 Numerical Results

For the numerical simulations, the fourth-order Runge-
Kutta method with time-step h = 10−8 is used to solve
the two systems of differential equations (11) and (12)
with the active nonlinear controller (15). We take ki = 4
for i = 1, 2, 3. The parameters of the Liu-Chen four-
scroll systems are chosen so that the systems (11) and
(12) are chaotic, ie

α = 0.4 , β = 12 , γ = 5 .

The initial values of the master system (11) are chosen as

x1(0) = 7 , x2(0) = 20 , x3(0) = −19 .

The initial values of the slave system (12) are chosen as

y1(0) = −6 , y2(0) = 10 , y3(0) = −5 .

Figure 5 shows the hybrid synchronization of the Liu-
Chen four-scroll systems (11) and (12). Figure 6 shows
the time-history of the hybrid synchronization errors.

5 HYBRID SYNCHRONIZATION OF

THE NON–IDENTICAL WANG AND

LIU–CHEN FOUR–SCROLL SYSTEMS

5.1 Theoretical Results

In this section, we deploy the active control method
to derive new results for the hybrid synchronization of
non-identical four-scroll systems, viz. Wang system ([42],
2009) and Liu-Chen system ([43], 2004).

Thus, the master system is described by the Wang
dynamics

ẋ1 = a(x1 − x2)− x2x3 ,

ẋ2 = −bx2 + x1x3 , (19)

ẋ3 = −cx3 + dx1 + x1x2

where x1 , x2 , x3 are the states and a , b , c are positive,
constant parameters of the system.

The slave system is described by the controlled Liu-
Chen dynamics

ẏ1 = αy1 − y2y3 + u1 ,

ẏ2 = −βy2 + y1y3 + u2 , (20)

ẏ3 = −γy3 + y1y2 + u3

where y1 , y2 , y3 are the states, α , β , γ are positive,
constant parameters of the system and u1 , u2 , u3 are
the active controllers to be designed.

The hybrid synchronization error is defined as

e1 = y1 − x1 ,

e2 = y2 + x2 , (21)

e3 = y3 − x3 .

A simple calculation gives the error dynamics as

ė1 = αy1 − a(x1 − x2)− y2y3 + x2x3 + u1 ,

ė2 = −βy2 − bx2 + y1y3 + x1x3 + u2 , (22)

ė3 = −γy3 + cx3 − dx1 + y1y2 − x1x2 + u3 .

We define the active controls u1(t), u2(t) and u3(t) as

u1(t) = −αy1 + a(x1 − x2) + y2y3 − x2x3 − k1e1 ,

u2(t) = βy2 + bx2 − y1y3 − x1x3 − k2e2 , (23)

u3(t) = γy3 − cx3 + dx1 − y1y2 + x1x2 − k3e3

where k1 , k2 , k3 are positive constants.

Substituting (23) into (22), the error dynamics simpli-
fies to

ė1 = −k1e1 ,

ė2 = −k2e2 , (24)

ė3 = −k3e3 .

Theorem 3. The non-identical Wang four-scroll sys-

tem (19) and Liu-Chen four-scroll system (20) with con-

stant, positive parameters are globally and exponentially

hybrid-synchronized by the active control law (23), where
the gains k1 , k2 , k3 are positive constants.

P r o o f . This result is a simple consequence of the
Lyapunov stability theory. Consider the quadratic Lya-
punov function defined by

V (e1, e2, e3) =
1

2
(e2

1
+ e2

2
+ e2

3
) , (25)

which is a positive definite function on R3 .

Differentiating V along the trajectories of (24), we get

V̇ = −k1e
2

1
− k2e

2

2
− k3e

2

3
, (26)

which is a negative definite function on R3 . Hence, by the
Lyapunov stability theory [44], it follows that ei(t) → 0
as t → ∞ for i = 1, 2, 3. This completes the proof.
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Fig. 7. Hybrid synchronization of the non-identical Wang and Liu-
Chen four-scroll systems

Fig. 8. History of the error states e1 , e2 , e3

5.2 Numerical Results

For the numerical simulations, the fourth-order Runge-
Kutta method with time-step h = 10−8 is used to solve
the two systems of differential equations (19) and (20)
with the active nonlinear controller (23).

We take ki = 4 for i = 1, 2, 3.

The parameters of the Wang and Liu-Chen four-scroll
systems are chosen as in the chaotic case, ie

a = 1 , b = 5.7 , c = 5 , d = 0.06 ,

α = 0.4 , β = 12 , γ = 5 .

The initial values of the master system (19) are chosen as

x1(0) = 12 , x2(0) = −4 , x3(0) = −27 .

The initial values of the slave system (20) are chosen as

y1(0) = −16 , y2(0) = 30 , y3(0) = 9 .

Figure 7 shows the hybrid synchronization of the Wang
system (19) and the Liu-Chen system (20). Figure 8 shows
the time-history of the hybrid synchronization errors.

6 CONCLUSIONS

In this study, we have applied active control method
for the hybrid chaos synchronization of the identical
Wang four-scroll systems (2009), the identical Liu-Chen
four-scroll systems (2004) and non-identical Wang and
Liu-Chen four-scroll systems. The hybrid synchronization
results derived in this paper have been proved using the
Lyapunov stability theory. Since the Lyapunov exponents
are not required for these calculations, the proposed adap-
tive control method is very effective and convenient for
achieving hybrid synchronization of the four-scroll sys-
tems addressed in this paper. Numerical simulations are
shown to validate and illustrate the hybrid synchroniza-
tion results derived in this paper for the four-scroll chaotic
systems.
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