Hybrid Chaos Synchronization of Four–Scroll Systems via Active Control

Open access

Abstract

This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.

[1] ALLIGOOD, K. T.-SAUER, T.-YORKE, J. A. : An Introduction to Dynamical Systems, Springer, New York, USA, 1997.

[2] LORENZ, E. N. : Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences 20 No. 2 (1963), 130-141.

[3] LAKSHMANAN, M.-MURALI, K. : Chaos in Nonlinear Oscillators: Controlling and Synchronization, World Scientific, Singapore, 1996..

[4] HAN, S. K.-KERRER, C.-KURAMOTO, Y. : D-Phasing and Bursting in Coupled Neural Oscillators, Physical Review Letters 75 (1995), 3190-3193.

[5] BLASIUS, B.-HUPPERT, A.-STONE, L. : Complex Dynamics and Phase Synchronization in Spatially Extended Ecological System, Nature 399 (1999), 354-359.

[6] CUOMO, K. M.-OPPENHEIM, A. V.-STROGATZ, S. H. : Synchronization of Lorenz-Based Chaotic Cicuits with Applications to Communications, IEEE Trans. Circuits and Systems II 40 (1993), 626-633.

[7] KOCAREV, L.-PARTLIZ, U. : General Approach for Chaotic Synchronization with Applications to Communications, Physical Review Letters 74 (1995), 5028-5030.

[8] LU, J.-WU, X.-L¨U, J. : Synchronization of a Unified Chaotic System and the Application in Secure Communication, Physics Letters A 305 (2002), 365-370.

[9] PECORA, L. M.-CARROLL, T. L. : Synchronization in Chaotic Systems, Physical Review Letters 64 No. 8 (1990), 821-824.

[10] OTT, E.-GREBOGI, C. YORKE, J. A. : Controlling Chaos, Physical Review Letters 64 (1990), 1196-1199.

[11] YANG, T.-CHUA, L. O. : Control of Chaos using Sampled- Data Feedback Control, International Journal of Bifurcation and Chaos 9 (1999), 215-219.

[12] PARK, J. H.-KWON, O. M. : A Novel Criterion for Delayed Feedback Control of Time-Delay Chaotic Systems, Chaos, Solitons and Fractals 17 (2003), 709-716.

[13] HUA, C.-GUAN, X. : Robust Control of Time-Delay Chaotic Systems, Physics Letters A 314 (2003), 72-80.

[14] HO, M. C.-HUNG, Y. C. : Synchronization of Two Different Chaotic Systems using Generalized Active Control, Physics Letters A 301 (2002), 424-428.

[15] YASSEN, M. T. : Chaos Synchronization between Two Different Chaotic Systems using Active Control, Chaos, Solitons and Fractals 23 (2005), 131-140.

[16] TIAN, L.-XU, J.-SUN, M. : Chaos Synchronization of the Energy Resource Chaotic System with Active Control, International Journal of Nonlinear Science 3 No. 3 (2007), 228-234.

[17] SUNDARAPANDIAN, V. : Global Chaos Synchronization of Shimizu-Morioka and Liu-Chen Chaotic Systems by Active Nonlinear Control, International Journal of Advances in Science and Technology 2 No. 4 (2011), 11-20.

[18] SUNDARAPANDIAN, V. : Global Chaos Synchronization of Liu and Harb Chaotic Systems by Active Nonlinear Control, International Journal of Computer Information Systems 2 No. 5 (2011), 8-12.

[19] YASSEN, M. T. : Applied Mathematics and Computation 135 (2001), 113-120.

[20] CHEN, S. H.-L¨U, J. : Synchronization of an Uncertain Unified System via Adaptive Control, Chaos, Solitons and Fractals 14 (2002), 643-647.

[21] JIA, L.-TONG, H. : Adaptive Control and Synchronization of a Four-Dimensional Energy Resources System of JiangSu Province, International Journal of Nonlinear Science 7 No. 3 (2009), 307-309.

[22] SUNDARAPANDIAN, V. : Adaptive Synchronization of Uncertain Sprott H and I Chaotic Systems, International Journal of Computer Information Systems 2 No. 5 (2011), 1-7.

[23] SUNDARAPANDIAN, V. : Adaptive Control and Synchronization of the Shaw Chaotic System, International Journal in Foundations of Computer Science and Technology 1 No. 1 (2011), 1-11.

[24] MASCOLO, S.-GRASSI, G. : Controlling Chaotic Dynamics using Backstepping Design with Application to the Lorenz System and Chua’s Circuit, International Journal of Bifurcation and Chaos 9 (1999), 1425-1434.

[25] TAN, X.-ZHANG-YANG, Y. : Synchronizing Chaotic Systems using Backstepping Design, Chaos, Solitons and Fractals 16 (2003), 37-45.

[26] ZHANG, H.-MA, X.-LI, M.-ZOU, J. : Controlling and Tracking Hyperchaotic Rossler System via Active Backstepping Design, Chaos, Solitons and Fractals 26 (2005), 353-361.

[27] UTKIN, V. I. : Variable Structure Systems using Sliding Mode, IEEE Transactions on Automatic Control 22 (1977), 212-222.

[28] SLOTINE, J. E.-SASTRY, S. S. : Tracking Control of Nonlinear Systems using Sliding Surface with Application to Robotic Manipulators, International Journal of Control 38 (1983), 465-492.

[29] SUNDARAPANDIAN, V.-SIVAPERUMAL, S. : Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control, International Journal on Computer Science and Engineering 3 No. 6 (2011), 2430-2437.

[30] SUNDARAPANDIAN, V. : Global Chaos Synchronization of the Pehlivan Systems by Sliding Mode Control, International Journal on Computer Science and Engineering 3 No. 5 (2011), 2163-2169.

[31] GE, Z. M.-CHEN, C. C. : Phase Synchronization of Coupled Chaotic Multiple Time Scales Systems, Chaos, Solitons and Fractals 20 (2004), 639-647.

[32] WANG, Y. W.-GUAN, Z. H. : Generalized Synchronization of Continuous Chaotic Systems, Chaos, Solitons and Fractals 27 (2006), 97-101.

[33] ZHANG, X.-ZHU, H. : Anti-Synchronization of Two Different Hyperchaotic Systems via Active and Adaptive Control, Interntaional Journal of Nonlinear Science 6 (2008), 216-223.

[34] CHIANG, T.-LIN, J.-LIA, T.-YAN, J. : Anti-Synchronization of Uncertain Unified Chaotic Systems with Dead-Zone Nonlinearity, Nonlinear Analysis 68 (2008), 2629-2637.

[35] SUNDARAPANDIAN, V. : Anti-Synchronization of Arneodo and Coullet Systems by Active Nonlinear Control, International Journal on Control Theory and Applications 4 No. 1 (2011), 25-36.

[36] SUNDARAPANDIAN, V.-SIVAPERUMAL, S. : Anti-Synchronization of Hyperchaotic Lorenz Systems by Sliding Mode Control, International Journal on Computer Science and Engineering 3 No. 6 (2011), 2450-2457.

[37] QIANG, J. : Projective Synchronization of a New Hyperchaotic Lorenz System, Physics Letters A 370 (2007), 40-45.

[38] JIAN-PING, Y.-CHANG-PIN, L. : Generalized Projective Synchronization for the Chaotic Lorenz System and the Chaotic Chen System, J. Shanghai University 10 (2006), 299-304.

[39] LI, R. H.-XU, W.-LI, S. : Adaptive Generalized Projective Synchronization in Different Chaotic Systems based on Parameter Identification, Physics Letters A 367 (2007), 199-206.

[40] SARASU, P.-SUNDARAPANDIAN, V. : Active Controller Design for Generalized Projective Synchronization of Four-Scroll Chaotic Systems, International Journal of System Signal Control and Engineering Application 4 No. 2 (2011), 26-33.

[41] SUNDARAPANDIAN, V. : Hybrid Synchronization of Lorenz and Pehlivan Chaotic Systems by Active Nonlinear Control, International Journal of Advances in Science and Technology 2 No. 6 (2011), 10-20.

[42] WANG, L. : 3-Scroll and 4-Scroll Chaotic Attractors Generated from a New 3-D Quadratic Autonomous System, Nonlinear Dynamics 56 (2009), 453-462.

[43] LIU, W.-CHEN, G. : Can a Three-Dimensional Smooth Autonomous Quadratic Chaotic System Generate a Single Four-Scroll Attractor?, International J. Bifur. Chaos 14 (2004), 1395-1403.

[44] HAHN,W. : The Stability of Motion, Springer, New York, USA, 1967.

Journal of Electrical Engineering

The Journal of Slovak University of Technology

Journal Information


IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 188 137 9
PDF Downloads 132 119 11