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LOCATING PD IN TRANSFORMERS THROUGH
DETAILED MODEL AND NEURAL NETWORKS

Hamed Nafisi — Mehrdad Abedi — Gevorg B. Gharehpetian
∗

In a power transformer as one of the major component in electric power networks, partial discharge (PD) is a major source
of insulation failure. Therefore the accurate and high speed techniques for locating of PD sources are required regarding to
repair and maintenance. In this paper an attempt has been made to introduce the novel methods based on two different
artificial neural networks (ANN) for identifying PD location in the power transformers. In present report Fuzzy ARTmap
and Bayesian neural networks are employed for PD locating while using detailed model (DM) for a power transformer for
simulation purposes. In present paper PD phenomenon is implemented in different points of transformer winding using three-
capacitor model. Then impulse test is applied to transformer terminals in order to use produced current in neutral point for
training and test of employed ANNs. In practice obtained current signals include noise components. Thus the performance
of Fuzzy ARTmap and Bayesian networks for correct identification of PD location in a noisy condition for detected currents
is also investigated. In this paper RBF learning procedure is used for Bayesian network, while Markov chain Monte Carlo
(MCMC) method is employed for training of Fuzzy ARTmap network for locating PD in a power transformer winding and
results are compared.

K e y w o r d s: Bayesian network, detailed model (DM), fuzzy ARTmap (FAM) neural network, partial discharge (PD),
transformer

1 INTRODUCTION

Partial discharges (PD) are well known as a source of

insulation degradation and the major sources for insula-

tion failure in power transformers, which play important

role in electric power system [1, 2]. The capital cost of a

power transformer is relatively high and economic penalty

due to transformer failure and consequent outage is re-

markable. Thus deterioration of insulated material caused

by PD activity can be detected in early stage, then in-

cipient insulation failure can be identified and preventive

maintenance measures can be done [3]. PD detection tech-

nique is classified into acoustic and electrical methods.

Electrical method is based on detecting of created im-

pulses in the cavity of transformer insulation. Assessment

of PD in electrical method is possible by using current

transducers, which are connected to measuring terminals.

In this method different procedures such as tip-up, dielec-

tric loss analysing, inductive probes, pulse detecting and

analysing, or other methods can be employed [4].

The advantage of acoustic relative to electrical tech-

nique for PD detection is its simplicity. However acous-

tic method has low sensitivity. On the other hand com-

plicated structure of power transformer causes difficulty

due to propagation velocity of acoustic waves associated

with PD [5]. Therefore in recent years most reports are

available concentrated on electrical methods [3–7]. Most

of these reports deal with discharge between transformer

winding and ground, and discharge between coil to coil

has received little and incomplete attentions.

In this paper, partial discharge in the insulation be-
tween coil to coil is considered With EMTP simulation
tools and DM of transformer. Then the current of neu-
tral point of winding was measured when PD model was
located at different positions in the winding and is used to
finding location of PD using Fuzzy ARTmap neural net-
work and Bayesian network. Simulated results must con-
tain measurement noise for approximate to the truth. For
mentioned reason in the last section simulated currents is
changed to new one with considering measurement noise.
Then the corrected currents are used for determination of
the location of PD in transformer with aforesaid neural
networks.

2 PARTIAL DISCHARGE MODEL

PD is localized ionization within insulator caused by
high strength electric field. PD occurs in the part of insu-
lation and is limited to some extends. Therefore PD does
not cause full insulation breakdown immediately [4]. In
this paper three-capacitor model shown in Fig. 1 is em-
ployed for PD modeling, which its accuracy is verified by
EMTP software [5]. In this model we have

• Cg is the capacitance of the region in which discharge
occurs,

• Cb is the capacitance of region located in series with
Cg ,

• Ca is the capacitance of the other region in dielectric.

If discharge happens in Cg a current (Id ) flows from
external terminals through Ca and Cb .
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Fig. 1. Three-capacitor model for PD

Fig. 2. DM of a two winding transformer

3 DETAILED MODEL

The equivalent circuit diagram of the test objects be-
yond 10 kHz is shown in Fig. 2. A winding unit can con-
tain one disk, two disks or several numbers of turns. The
number of units is a modeling parameter and the cho-
sen value is a compromise between the accuracy and the
complexity. For the sake of simplicity only three winding
units of the double disk high voltage winding are shown
in Fig. 2. Only one layer with three winding units have
been shown for the low voltage winding in Fig. 2, too.
This model is called detailed model [8].

The elements of the circuit diagram are defined in [8].
Using this model, it is possible to calculate node voltages

and branch currents in the time as well as in the frequency

domain. Due to the frequency dependence behaviour of

the resistive elements (Rpi , Rei and Rsi ) the calculation

in the frequency domain is preferable.

Fig. 3. Typical fuzzy ARTmap

Model parameters are calculated analytically after

some simplifications of the geometrical structure of the

winding. Determination of self inductance, mutual induc-

tance, capacitances, and resistances is described in [8].

4 FUZZY ARTMAP NEURAL NETWORK

For the purpose of training and testing, in this pa-

per Adaptive Resonance Theory (ART) neural networks

have been used. In general, this family of neural net-

works include ART1, ART2 [9], ART3 [10], ARTmap

[11], Fuzzy ART [12] and Fuzzy ARTmap [13]. ART1

and ARTmap categorize the binary input patterns while,

Fuzzy ARTmap are also capable to categorize analogue

patterns.

Fuzzy ARTmap is an incremental supervised learn-

ing algorithm which combines fuzzy logic and Adaptive

Resonance Theory (ART) neural network for recognition

of pattern categories and multidimensional maps in re-

sponse to input vectors presented in an arbitrary order.

It realizes a new minmax learning rule which conjointly

minimizes predictive error and maximizes code compres-

sion, and therefore gives generalization. This is achieved

by a match tracking process that increase the ART vigi-

lance parameter (fuzzy degree of membership of the input

with respect to the category templates) by the minimum

amount needed to correct a predictive error (PE). The

Fuzzy ARTmap neural network is composed of two Fuzzy

ART modules [13], ie fuzzy ARTa and fuzzy ARTb , which

are depicted in Fig. 3 and are essentially the same as those

described by Carpenter et al .

The interactions mediated by the map field F ab oper-

ationally characterized as follows.



Journal of ELECTRICAL ENGINEERING 65, NO. 2, 2014 77

4.1 ARTa and ARTb

Inputs to ARTa and ARTb are in the complement
code form: for ARTa I = A = (a, ac) and for ARTb

I = B = (b, bc) (See Fig. 3). Variables in ARTa or ARTb

are designated by subscript “a” and “b” respectively. For
ARTa , let xa = {xa

1 , . . . , x2Ma
} denote the F a

1 output
vector, let ya = {ya1 , . . . , yNa

} denote F a
2 , and let wa

j =

{wa
j1, . . . , w

a
j2Ma

} denote the jth ARTa weight vector.

For ARTb , let x
b = {xb

1, . . . , x
b
2Mb

} denote the F b
1 output

vector and let yb = {yb1, . . . , y
b
Nb

} denote F b
2 . And let

wb
k = {wb

k1, . . . , w
b
k2Mb

} denote the kth ARTb weight

vector. For the map field, let xab = {xab
1 , . . . , xab

Na
} denote

the F ab output vector, and let wab
j = {wab

j1 , . . . , w
ab
jNb

}

denote the weight vector from the jth F a
2 node to F ab .

Vectors xa , ya , xb , yb , and xab are set to 0 between
input presentations.

4.2 Map Field Activation

The map field F ab is activated whenever one of the
ARTa or ARTb categories is active. If node J of F a

2 is

chosen, then its weights wab
j activate F ab . If K in F b

2

is active, then node K in F ab is activated by one-to-
one pathways between F b

2 and F ab . If both ARTa and

ARTb are active, then F ab becomes active only if ARTa

predicts the same category as ARTb via the weights wab
j .

The F ab output vector xab obeys the following
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yb ∧ wab
j If the jth F a

2 is active

and F b
2 is active.

wab
j If the jth F a

2 is active

and F b
2 is inactive.

yb If the jth F a
2 is inactive

and F b
2 is active.

0 If the jth F a
2 is inactive

and F b
2 is inactive.

(1)

From (1), xab = 0 if the prediction wab
j is disconfirmed

by yb . Even such a mismatch triggers and ARTa search
for a better category, as follows.

4.3 Match Tracking

At the start of each input presentation, the ARTa

vigilance parameter ρa equals to baseline vigilance ρa .
The map field vigilance parameter is ρab

If xab < ρab.|y
b| . (2)

The ρa is increased until it is slightly larger than
|A∧wa

j | |A|
−1 , where A is the input to F a

1 , in complement

coding form, and

|xa| = |A ∧ wa
j | < ρa|A| (3)

where J is the index of active F a
2 node.

When this occurs, ARTa search leads either to acti-
vation of another F a

2 node J with

|xa| = |A ∧wa
j | ≥ ρa|A| (4)

and

|xa| = |yb ∧ wab
j | ≥ ρa|y

b| . (5)

Or, if no such nodes exist, ie the input pattern to F a
2

layer does not match any pattern: the input pattern is
classified as a new pattern.

4.4 Testing of Network

In this testing method, neural network have no surveil-
lance on foreseen output. This means for each patterns of
inputs one pattern is offered in output and this proffer
downright after passing from condition (minimum error
with existing output patterns) is accomplished which is
caused faster response but reduction in precision because
errors may so classified that clusters are sorely close to
each other. In these cases resemblance of estimated pat-
tern to each output pattern may cause accuracy descend
in estimation, thereupon existence probability of error is
considered.

Block diagram of accustomed testing method is shown
in Fig. 4.

Also test algorithm for FAM network is depicted is
Fig. 5.

5 FUNDAMENTAL OF BAYESIAN NETWORK

Bayesian networks are usually used to model the situ-
ations (eg, medical diagnosis) in which causality plays a
role but where the understanding of what is actually go-
ing on is incomplete. That is, a Bayesian network for the
domain represents a joint probability distribution over a
set of variables (ie, chance nodes) [14].

Bayesian network is a directed acyclic graph that con-
sists of single-evidence, multiple-evidence, and multiple-
layer probabilistic relationships among the variables. For
detailed description about DAGs see [15]. Thus, Bayesian
network expresses the global joint distribution with a
set of local distributions and relates only the neighbor-
ing nodes. Figure 6 illustrates the basic structure of a
Bayesian network.

The Bayesian network has been successfully applied
in many fields such as medical diagnosis [16], equipment
diagnosis [17], and mineral exploration [18]. Extensive
review of Bayesian networks can be found, for example,
in [19].

The Bayesian network is a directed acyclic graph in
which the following holds.

• A set of random variables makes up the nodes of the
network.



78 H. Nafisi — M. Abedi — G.B. Gharehpetian: LOCATING PD IN TRANSFORMERS THROUGH DETAILED MODEL AND . . .

Fig. 4. Typical fuzzy ARTmap test method

Fig. 5. Algorithm of FAM network test method

Fig. 6. Basic structures of Bayesian network (DAG) [15]

• A set of directed links or arrows connects pairs of
nodes.

• Each node has a conditional probability table that
quantifies the effects that the parents have on the node.
The parents of a node are all those nodes that have
arrows pointing to it.

• The graph has no directed cycles (hence is a directed,
acyclic graph or DAG).

A Bayesian network provides a complete description
of the domain. Every entry in the joint probability dis-
tribution can be calculated from the information in the
network. A generic entry in the joint is the probability of
a conjunction of particular assignments to each variable.
The value of this entry is given by [20]

P (x1, . . . , xn) =

n
∏

i=1

P
(

xi | parents(Xi)
)

. (6)

We use the notation P (x1, . . . , xn) as an abbreviation
for this. Thus, each entry in the joint is represented by
the product of the appropriate elements of the condi-
tional probability tables (CPTs) in the belief network.
The CPTs therefore provide a decomposed representa-
tion of the joint.

P (x1, . . . , xn) =

P (xn | xn−1, . . . , x1)P (xn−1 | xn−2, . . . , x1) . . . P (x1) =

n
∏

i=1

P
(

xi | xi−1, . . . , x1

)

(7)

Then we repeat this process, reducing each conjunctive
probability to a conditional probability and a smaller con-
junction. We end up with one big product. Comparing
this with Equation (6) and (7), we see that the specifi-
cation of the joint is equivalent to the general assertion
that.

5.1 Markov Chain Monte Carlo Blanket

A node is conditionally independent of its non-descen-
dants, given its parents. A node is conditionally indepen-
dent of all other nodes in the network, given its parents,
children, and children’s parents that is, given its Markov
blanket.

From these conditional independence assertions and
the CPTs, the full joint distribution can be reconstructed;
thus, the “numerical” semantics and the “topological”
semantics are equivalent.

According to the theory of Markov blanket, the nodes
for inference, such as the fault node or protection node,
are chosen first.

5.2 The MCMC Algorithm

The MCMC generates each event by making a ran-
dom change to the preceding event. It is therefore helpful
to think of the network as being in a particular current
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state specifying a value for every variable. The next state
is generated by randomly sampling a value for one of the
non-evidence variables Xi, conditioned on the current val-
ues of the variables in the Markov blanket of Xi . MCMC
therefore wanders randomly around the state space-the
space of the possible complete assignments-flipping one
variable at a time, but keeping the evidence variables
fixed. The algorithm is that:

Let q(x → x′) be the probability that the process
makes a transition from states x to state x′ . This tran-
sition probability defines what is called a Markov chain
on the state space. Now suppose that we run the Markov
chain for t steps, and let Pt(x) be the probability of be-
ing in state x at time t . Similarly, let Pt+1(x

′) be the
probability of being in state x′ at time t+1. Given Pt(x),
we can calculate Pt+1(x

′) by summing, for all states the
system could be in at time t, the probability of being in
that state times the probability of making the transition
to x′

Pt+1(x
′) =

∑

x

Pt(x)q(x
′ → x) . (8)

We will say that the chain has reached its stationary
distribution if Pt(x) = Pt+1(x

′). Let us call this station-
ary distribution P ; its defining equation is therefore

P (x′) =
∑

x

P (x)q(x′ → x) for all x′ . (9)

Under certain standard assumptions about the transition
probability distribution q , there is exactly one distribu-
tion P satisfying this equation for any given q .

Equation (8) can be read as saying that the expected
“outflow” from each state (ie, its current “population”)
is equal to the expected “inflow” from all the states. One
obvious way to satisfy this relationship is if the expected
flow between any pair of states is the same in both direc-
tions. This is the property of detailed balance

P (x′)q(x → x′) =
∑

x

P (x)q(x′ → x) for all x, x′ . (10)

5.3 Radial Basis Function (RBF)

In order to assess the input data Radial Basis Function
(RBF) method is used. A radial basis function (RBF) is
a real-valued function whose value depends only on the
distance from the origin, so that [21]

ϕ(x) = ϕ
(

‖x‖
)

. (11)

Or alternatively on the distance from some other point
c , called a center, so that

ϕ(x, c) = ϕ
(

‖x− c‖
)

. (12)

Any function ϕ that satisfies the property ϕ(x) =
ϕ(‖x‖) is a radial function. The norm is usually Euclidean

distance.

Radial basis functions are typically used to build up
function approximations of the form

y(x) =

N
∑

i=1

ωiϕ
(

‖x− ci‖
)

(13)

where the approximating function y(x) is represented as
a sum of N radial basis functions, each associated with a
different centerci , and weighted by an appropriate coeffi-
cient ωi . Approximation schemes of this kind have been
particularly used in time series prediction and control of
nonlinear systems exhibiting sufficiently simple chaotic
behaviour.

The sum can also be interpreted as a rather simple
single-layer type of artificial neural network called a ra-
dial basis function network, with the radial basis func-
tions taking on the role of the activation functions of the
network. It can be shown that any continuous function on
a compact interval can in principle be interpolated with
arbitrary accuracy by a sum of this form, if a sufficiently
large number N of radial basis functions is used.

There are some commonly used types of radial basis
functions include r = ‖x− ci‖ .

• Gaussian

ϕ(r) = exp(−βr2) for some β > 0 . (14)

• Multi-quadric

ϕ(r) =
√

r2 + β2 for some β > 0 . (15)

• Polyharmonic spline

ϕ(r) =

{

rk , k = 1, 3, 5, . . .

rk ln r , k = 2, 4, 6 . . .
(16)

• Thin plate spline (a special polyharmonic spline)

ϕ(r) = r2 ln r . (17)

These polyharmonic splines (which include the thin-
plate spline) minimise certain energy semi-norms and are
therefore the “smoothest” interpolators. Note that the
associated basic functions are not compactly supported
— they grow as r increases from the origin.

RBFs are popular for interpolating scattered data as
the associated system of linear equations is guaranteed to
be invertible under very mild conditions on the locations
of the data points. For example, the thin-plate spline
only requires that the points are not co-linear while the
Gaussian and multi-quadric place no restrictions on the
locations of the points. In particular, RBFs do not require
that the data lie on any sort of regular grid.

In this paper Radial Basis Function method with
Gaussian type is considered for assessment of data which
is depicted in Fig. 7.
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Fig. 7. Un-normalized radial basis functions with c1 = 0.75 and
c2 = 3.25

Fig. 8. Current waveform in neutral point resulting from PD model
in 1st node of DM

5.4 Estimating the Weights

The approximant y(x) is differentiable with respect to
the weights ωi . The weights could thus be learned using
any of the standard iterative methods for neural networks.
But such iterative schemes are not in fact necessary be-
cause the approximating function is linear in the weights
ωi , the ωi can simply be estimated directly, using the
matrix methods of linear least squares.

The input assessment has been shown in this section.
In the next section required input-output data and mod-
eling of power system will be presented.

6 CASE STUDY

DM of transformer is used for simulation PD mecha-
nism in EMTP and this PD model is considered between
coil to coil, as mentioned in previous sections.

6.1 Transformer Specification

The used transformer is 35 kV/220kV and 50 MVA.
Windings dimensions and model of the transformer tank
are detailed in [4].

HV winding of the simulating transformer consist of
56 discs. The first 6 two-discs is interleaved type and the
22 other two-disc is inverted type. Dimensions of all two-
discs are presented in Tab. 1.

Table 1. Technical Specification of HV Winding

Winding
Num Disc Num. of height

type of number turns in ×

discs from-to each disc width

Interleaved 4 01-05 13 18

20
3.0 × 15.0

Interleaved 8 05-13 12 18

20
2.8 × 13.2

Inverted 4 13-17 15 18

20
2.5 × 17.0

Inverted 28 17-45 19 17

20
2.0 × 23.0

Inverted 9 45-54 19 18

20
2.0 × 17.0

Inverted 3 54-56 15 18

20
2.5 × 17.0

Total 56 1005

Table 2. Results of neural network testing

Training Vigilance Num. of Accuracy
rate parameter clusters (%)

0.9 35 83.3
0.95 0.95 62 66.7

0.98 208 66.7

0.9 50 83.3
0.93 0.95 89 100

0.98 288 83.3

0.9 69 83.3
0.9 0.95 103 66.7

0.95 301 83.3

6.2 simulation Results

PD model is placed in different points of the winding
and steep impulse current applied to the winding as input
signal. The current at the other terminal is measured as
output. Produced current in neutral point of the winding
is recorded. For instance Figs. 8, 9 and 10 show the cur-
rent in neutral point of the winding when PD in two-disk
1, 18 and 28 was modelled, respectively.

6.3 Test result of Fuzzy ARTmap Neural Net-
work

In order to train the neural networks there is a need
for measured training patterns. The current neutral point
is used for learning of Fuzzy ARTmap neural network.
This neural network is implemented in MATLB software.
Used DM consists of 28 nodes. Thus all simulated states
are 28. For training of neural network 22 of them is used.
This low number of data sets is because of the EMTP
limitation for number of the mutual inductances.

As mentioned, necessary simulations of transformer
are done in EMTP and the results used for input data for
the Fuzzy ARTmap neural network in MATLAB. Result
of the Fuzzy ARTmap neural network testing is shown in
Tab. 2.

As it is shown in Tab. 2, the best PD location accu-
racy is reached to 100 for 0.93 of training rate, 0.95 for
mapfield vigilance parameters. The obtained number of
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Fig. 9. Current waveform in neutral point resulting from PD model
in 18th node of DM

Fig. 10. Current waveform in neutral point resulting from PD
model in 28th node of DM

Table 3. Results of neural network testing with noise

Training Vigilance Num. of Accuracy
rate parameter clusters (%)

0.9 85 75.3
0.93 0.95 268 86.2

0.98 971 68.8

Table 4. Results of Bayesian Network

PD located Output of Rounded
in Bayesian network value

1 1.42 1
10 9.89 10
18 18.37 18

clusters is 89. The reason of this matter is lack of the
parameters which are used for training and test of Fuzzy
ARTmap neural network because of EMTP limitation.
But because of sufficient difference among current wave-
form Fuzzy ARTmap neural network can determine the
correct position of PD in power transformer.

With regard to this point that in truth and actual
measured current waveforms contain measurement noise
and different from simulated values, white noise is added
to simulated currents. Amplitude of the white noise con-
sidered form 1 to 10 percent of peak value of simulated
current amplitude in 1 percent steps. Therefore, neural
network response to noisy inputs with best training rate
and mapfield vigilance parameters, obtained from Tab. 2,
is shown in Tab. 3.

According to Tab. 3, accuracy of Fuzzy ARTmap neu-
ral network with considering noise is about 86.2%. The
best output of FAM network is a network with vigilance
parameter equal to 0.95 and training rate of 0.93.

6.4 Test result of Bayesian Network

In Bayesian network such as FAM neural network,
EMTP software is used for simulations of the transformer.
The obtained current waveforms used for input data for
the Bayesian network in MATLAB. Some result of the
Bayesian network test result is shown in Tab. 4.

As it is shown in Tab. 2, a wide range of outputs are
similar to the targets and if the output of the Bayesian
network round, the best PD location accuracy is reached.
As the result of the simulation, Bayesian network has
100% accuracy for determination of partial discharge lo-
cation as FAM neural network.

Actually measured currents have measurement noise
component and is not identical as the simulated values,
hence white noise is added to simulated current wave-
forms. Amplitude of the white noise considered form 1 to
10 percent of peak value of simulated current amplitude
in 1 percent steps. Accuracy of this network is 91 per-
cent which is better than FAM network. The excellence
of Bayesian network respect to FAM neural network is
the better accuracy to finding the PD location in power
transformer with presence of measurement noise.

7 CONCLUSION

In this paper Fuzzy ARTmap neural network and
Bayesian network are proposed for locating of PD in
power transformers winding. DM of transformer is used
for PD simulation in EMTP and three-capacitor PD
model is considered between coil to coil of power trans-
former winding. A study on DM parameters selection is
presented in this paper and the results show highly de-
pendency of results and prediction of PD location to these
parameters. It has been shown that Fuzzy ARTmap neu-
ral network response to the signals with considering noise
is acceptable and the results have good accuracy. But
Bayesian network have better accuracy in noisy environ-
ment. These methods can be used as a general solution
for locating of partial discharge in power transformers,
provided the parameters value of detailed model of trans-
formers to be selected truely.
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