Modeling and Identification of Nonlinear Cascade and Sandwich Systems with General Backlash

Open access


The paper deals with modeling and identification of nonlinear cascade and sandwich systems including general backlash, where instead of the straight lines determining the upward and downward parts of backlash characteristic, general curves are considered. This enables more precise modeling of mechanical parts and improves the performance of control systems. The analytical description of the general backlash leads to mathematical models of the cascade system with output general backlash and the sandwich system with internal general backlash, where all the model parameters are separated. Hence, the identification is solved as a quasi-linear problem. Iterative algorithms with internal variables estimation are proposed and illustrative examples are included.

[1] NORDIN, M.-GUTMAN, P. O. : Controlling Mechanical Systems with Backlash - a Survey, Automatica 38 (2002), 1633-1649.

[2] KALAŠ, V.-JURIŠICA, L.-ŽALMAN, M.-ALMÁSSY, S.- SIVIČEK, P.-VARGA, A. KALAŠ,-D. : Nonlinear and Numerical Servosystems, Alfa/SNTL, Bratislava, 1985. (in Slovak)

[3] CERONE, V.-REGRUTO, D. : Bounding the Parameters of Linear Systems with Input Backlash, IEEE Trans. Automatic Control 52 (2007), 531-536.

[4] DONG, R.-TAN, Y.-CHEN, H. : Recursive Identification for Dynamic Systems with Backlash, Asian Journal of Control 12 (2010), 26-38.

[5] GIRI, F.-ROCHDI, Y.-CHAOUI, F. Z.-BROURI, A. : Identification of Hammerstein Systems in Presence of Hysteresis- Backlash and Hysteresis-Relay Nonlinearities, Automatica 44 (2008), 767-775.

[6] HUANG, X.-WANG, J. : Identification of Ground Vehicle Steering System Backlash, Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control 135 (2013), art. no. 011014 (8 pages).

[7] VÖRÖS, J. : Modeling and Identification of Systems with Backlash, Automatica 46 (2010), 369-374.

[8] VÖRÖS, J. : Identification of Cascade Systems with Backlash, International Journal of Control 83 (2010), 1117-1124.

[9] VÖRÖS, J. : Identification of Nonlinear Cascade Systems with Time-Varying Backlash, J. Electrical Engineering 62 (2011), 87-92.

[10] GIRI, F.-ROCHDI, Y.-BROURI, A.-CHAOUI, F. Z. : Parameter Identification of Hammerstein Systems Containing Backlash Operators with Arbitrary-Shape Parametric Borders, Automatica 47 (2011), 1827-1833.

[11] ROCHDI, Y.-GIRI, F.-GNING, J. B.-CHAOUI, F. Z. : Identification of Block-Oriented Systems in the Presence of Nonparametric Input Nonlinearities of Switch and Backlash Types, Automatica 46 (2010), 785-958.

[12] VÖRÖS, J. : Parametric Identification of Systems with General Backlash, Informatica 23 (2012), 283-298.

[13] VÖRÖS, J. : Recursive Identification of Nonlinear Cascade Systems With Time-Varying General Input Backlash, ASME Journal of Dynamic Systems, Measurement, and Control 135 (2013), art. no. 014504 (5 pages).

[14] BAI, E. W.-REYLAND, J. : Towards Identification of Wiener Systems with the Least Amount of a Priori Information: IIR Cases, Automatica 45 (2009), 956-964.

[15] CHEN, H. F. : Recursive Identification for Wiener Model with Discontinuous Piece-Wise Linear Function, IEEE Trans. Automatic Control 51 (2006), 390-400.

[16] CHEN, J.-ZHANG, Y.-DING, F. : Gradient based Iterative Algorithm for Wiener Systems with Piece-Wise Nonlinearities using Analytic Parameterization Methods, Computers and Applied Chemistry 28 (2011), 855-857.

[17] HU, X. L.-CHEN, H. F. : Recursive Identification for Wiener Systems using Gaussian Inputs, Asian Journal of Control 10 (2008), 341-350.

[18] HWANG, S-H.-HSIEH, C-Y.-CHEN, H-T.-HUANG, Y-C. : Use of Discrete Laguerre Expansions for Noniterative Identification of Nonlinear Wiener Models, Industrial & Engineering Chemistry Research 50 (2011), 1427-1438.

[19] JANCZAK, A. : Instrumental Variables Approach to Identification of a Class of MIMO Wiener Systems, Nonlinear Dynamics 48 (2007), 275-284.

[20] KAZLAUSKAS, K.-PUPEIKIS, R. : On Intelligent Extraction of an Internal Signal in a Wiener System Consisting of a Linear Block Followed by Hard-Nonlinearity, Informatica, 24 (2013), 35-58.

[21] MZYK, G. : A Censored Sample Mean Approach to Nonparametric Identification of Nonlinearities in Wiener Systems, IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing 54 (2007), 897-901.

[22] PAWLAK, M.-HASIEWICZ, Z.-WACHEL, P. : On Nonparametric Identification ofWiener Systems, IEEE Trans. Signal Processing 55 (2007), 482-492.

[23] PUPEIKIS, R. : On the Identification ofWiener Systems Having Saturation-Like Functions with Positive Slopes, Informatica 16 (2005), 131-144.

[24] VÖRÖS, J. : Modeling and Identification of Wiener Systems with Two-Segment Nonlinearities, IEEE Trans. Control Systems Technology 11 (2003), 253-257.

[25] VÖRÖS, J. : Parameter Identification of Wiener Systems with Multisegment Piecewise-Linear Nonlinearities, Systems and Control Letters 56 (2007), 99-105.

[26] WANG, D.-DING, F. : Least Squares based and Gradient Based Iterative Identification for Wiener Nonlinear Systems, Signal Processing 91 (2011), 1182-1189.

[27] ZHOU, L.-LI, X.-PAN, F. : Gradient based Iterative Parameter Identification forWiener Nonlinear Systems, Applied Mathematical Modelling 37 (2013), 8203-8209.

[28] BAI, E. W.-CAI, Z.-DUDLEY-JAVOROSK, S.-SHIELDS, R. K. : Identification of aModifiedWiener-Hammerstein System and its Application in Electrically Stimulated Paralyzed Skeletal Muscle Modeling, Automatica 45 (2009), 736-743.

[29] SJBERG, J.-SCHOUKENS, J. : Initializing Wiener-Hammerstein Models based on Partitioning of the Best Linear Approximation, Automatica 48 (2012), 353-359.

[30] TAN, Y. H-DONG, R. L.-LI, R. Y. : Recursive Identification of Sandwich Systems with Dead Zone and Application, IEEE Trans. Control Systems Technology 17 (2009), 945-951.

[31] VÖRÖS, J. : An Iterative Method for Wiener-Hammerstein Systems Parameter Identification, J. Electrical Engineering 58 (2007), 114-117.

[32] XIE, Y.-TAN, Y.-DONG, R. L. : Identification of Sandwich Systems with Dead Zone using Combinational Input Signals, Transactions of the Institute of Measurement and Control 33 (2011), 957-970.

Journal of Electrical Engineering

The Journal of Slovak University of Technology

Journal Information

IMPACT FACTOR 2018: 0.636
5-year IMPACT FACTOR: 0.663

CiteScore 2018: 0.88

SCImago Journal Rank (SJR) 2018: 0.200
Source Normalized Impact per Paper (SNIP) 2018: 0.771

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 98 9
PDF Downloads 101 87 11