
Journal of ELECTRICAL ENGINEERING, VOL. 65, NO. 2, 2014, 104–110

MODELING AND IDENTIFICATION OF NONLINEAR CASCADE
AND SANDWICH SYSTEMS WITH GENERAL BACKLASH

Jozef Vörös
∗

The paper deals with modeling and identification of nonlinear cascade and sandwich systems including general backlash,
where instead of the straight lines determining the upward and downward parts of backlash characteristic, general curves
are considered. This enables more precise modeling of mechanical parts and improves the performance of control systems.
The analytical description of the general backlash leads to mathematical models of the cascade system with output general
backlash and the sandwich system with internal general backlash, where all the model parameters are separated. Hence, the
identification is solved as a quasi-linear problem. Iterative algorithms with internal variables estimation are proposed and
illustrative examples are included.
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1 INTRODUCTION

Control systems performance in many cases is limited
by the so-called backlash. The backlash is a dynamic
nonlinearity and appears mainly in gear transmissions
and similar mechanical components. This kind of hard
(ie non-differentiable) nonlinearity may often cause de-
lays, oscillations and inaccuracy and the compensation of
backlash has attracted research effort of several decades
[1, 2]. As the knowledge of backlash characteristic is fun-
damental for its compensation, the identification of sys-
tems with backlash is of key importance. Unfortunately,
in many applications the backlash parameters are either
poorly known or completely unknown.

There are some contributions in the literature on the
identification of systems with backlash, however it is as-
sumed that the backlash is “straight” ie, straight lines ap-
proximate the upward and downward curves of the char-
acteristic; see eg [3–9]. This simplifies the system descrip-
tion, however, in some cases it leads to inaccuracies.

To increase the accuracy of control system descrip-
tions, it may be appropriate to generalize the backlash
and consider general upward and downward curves in-
stead of straight lines. For example, backlash in gears
and other mechanical components can change with time
and wear; hence, the use of “general backlash” will lead
to more precise system descriptions. Only few works are
dealing with the identification of cascade systems with
general input backlash nonlinearities [10–13]. However,
no paper was published dealing with the identification of
cascade systems with output general backlash in time-
domain, and no paper was published dealing with the
identification of sandwich systems with this type of non-
linearity.

In this paper, the identification of cascade systems
with output general backlash and sandwich systems with

internal general backlash based on new mathematical
models are described. The proposed iterative algorithms
enable simultaneous estimation of the general backlash
parameters and the parameters of the included linear dy-
namic systems on the basis of available input and output
data.

For modeling of the general backlash, a recently pro-
posed analytic description of this dynamic nonlinearity is
used, which is based on appropriate switching functions
and their complements [12]. The identification method
for cascade systems consisting of a linear dynamic sys-
tem followed by a general output backlash is based on a
special system description, where the parameters of lin-
ear dynamic system and the parameters characterizing
the general backlash are separated; hence, the estimation
of parameters is solved as a quasi-linear problem adopting
an iterative algorithm with internal variable estimation.
The identification of sandwich systems where the general
backlash is preceded with a linear dynamic system and
also followed by another linear dynamic system is a direct
extension of the above case and the sandwich system pa-
rameters can be estimated iteratively based on available
inputs and outputs. Simulation studies of cascade systems
with general output backlash and sandwich systems with
general internal backlash identifications are included to
demonstrate the feasibility of proposed methods.

2 GENERAL BACKLASH MODEL

In the case of “straight” backlash, the left and right
branches of the characteristic are considered to be straight
lines. However, in some applications the straight lines are
only advantageous approximations of general curves con-
stituting the left and right branches of backlash as shown
in Fig. 1.
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Fig. 1. General backlash characteristic

u(t) A(q-1)

B(q-1)

x(t) y(t)

Fig. 2. Cascade system with general output backlash

u(t) A(q-1)

B(q-1)

x(t) y(t) R(q-1)

S(q-1)

w(t)

Fig. 3. Sandwich system with general backlash

The general backlash characteristic can be described
by the equation [12]

y(t) =











L[x(t)] , x(t) ≤ zL ,

y(t− 1) , zL ≤ x(t) ≤ zR ,

R[x(t)] , x(t) ≥ zR

(1)

where the mappings L[x(t)] and R[x(t)] describe the left
and right branches of the characteristic, respectively, the
x-axis values zL and zR are given as

y(t− 1) = L(zL) , (2)

y(t− 1) = R(zR) . (3)

Assume the left and right curves can be described by the
polynomials

L[x(t)] =

n
∑

i=1

mLi[x(t) + cL]
i , (4)

R[x(t)] =
n
∑

i=1

mRi[x(t)− cR]
i , (5)

respectively, where cL > 0, cR > 0 are the intersections
of L[x(t)] and R[x(t)] with the x-axis. Then the general
backlash characteristic can be written as

y(t) =



























n
∑

i=1

mLi[x(t) + cL]
i, x(t) ≤ zL ,

y(t− 1) , zL ≤ x(t) ≤ zR ,
n
∑

i=1

mRi[x(t)− cR]
i, x(t) ≥ zR

(6)

where

y(t− 1) =

n
∑

i=1

mLi[zL + cL]
i , (7)

y(t− 1) =

n
∑

i=1

mRi[zR − cR]
i . (8)

After introducing the internal variables

ξ1(t) = x(t) + cL , (9)

ξ2(t) = x(t) − cR (10)

and considering the function

h(s) =

{

0 , if s > 0 ,

1 , if s ≤ 0 ,
(11)

switching between two sets of values, ie, (−∞, s) and
(s,∞), the following variables based on (7) and (8) can
be defined

f1(t) = h
[

n
∑

i=1

mLiξ
i
1(t)− y(t− 1)

]

, (12)

f2(t) = h
[

y(t− 1)−

n
∑

i=1

mRiξ
i
2(t)

]

. (13)

Then the general backlash can be characterized by one
difference equation

y(t) =

n
∑

i=1

mLiξ
i
1(t)f1(t) +

n
∑

i=1

mRiξ
i
2(t)f2(t)+

y(t− 1)[1− f1(t)][1− f2(t)] . (14)

To include the deadzone parameters cL and cR into the
backlash model, we separate the first terms of the sums in
(14) and then half-substitute from (9) and (10) as follows

y(t) = mL1x(t)f1(t) +mL1cLf1(t) +

n
∑

i=2

mLiξ
i
1(t)f1(t)+

mR1x(t)f2(t)−mR1cRf2(t) +

n
∑

i=2

mRiξ
i
2(t)f2(t)+

y(t− 1)[1− f1(t)][1− f2(t)] . (15)

Now the input/output relation for the general backlash
(15) is identical with that of (1). All the backlash pa-
rameters are separated and the equation is linear in the
input, output and internal variables. This description al-
lows the upward and downward curves to be different
provided that the intersection of the two curves is not in
the region of practical interest.
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3 CASCADE SYSTEMS WITH

GENERAL OUTPUT BACKLASH

Cascade systems consisting of a linear dynamic system
followed by a nonlinear static system are modeled by the
so-called Wiener model and many identification methods
have been proposed for this type of systems, eg [14–27].

In many real control systems, the backlash appears in
a cascade connection with linear dynamic systems. One
of the simplest cases is the cascade system where a lin-
ear dynamic system is followed by a general backlash as
shown in Fig. 2. In this case, linear dynamic and nonlin-
ear dynamic systems are cascaded; hence, an appropriate
mathematical model is much more complicated than the
Wiener model.

The linear dynamic system can be described by the
difference equation as

x(t) =

na
∑

i=1

aiu(t− i)−

nb
∑

j=1

bjx(t− j) (16)

(na and nb are assumed to be known) where u(t) and
x(t) are the inputs and outputs, respectively.

Assume the general backlash is described by the differ-
ence equation (15). The input/output description of this
cascade system can be constructed by connecting (16)
and (15). However, a direct substitution of (16) into (15)
leads to a quite complex expression, therefore it is appro-
priate to apply the so-called key term separation princi-
ple [24, 25]. It means that (16) will be half-substituted, ie
only for x(t) in the first term of (15). Moreover, we can
assume that mL1 = 1 (it is always possible in this connec-
tion of two subsystems), hence the input/output equation
for the cascade system with general output backlash will
be

y(t) =

na
∑

i=1

aiu(t− i)f1(t)−

nb
∑

j=1

bjx(t − j)f1(t)+

cLf1(t)+

n
∑

i=2

mLiξ
i
1(t)f1(t)+mR1x(t)f2(t)−mR1cRf2(t)+

n
∑

i=2

mRiξ
i
2(t)f2(t) + y(t− 1)[1− f1(t)][1 − f2(t)] (17)

where the parameters of both the linear system and the
general backlash are separated. Now the equation is quasi-
linear as the variables ξ1(t), ξ2(t), f1(t) and f2(t) de-
pend on the backlash parameters and the internal variable
x(t) depends on the linear system parameters.

We can define the following data vector

φ(t)=
[

u(t−1)f1(t), . . . , u(t−na)f1(t),−x(t−1)f1(t), . . . ,

− x(t− nb)f1(t), f1(t), ξ
2
1(t)f1(t), . . . , ξ

n
1 (t)f1(t), ;

x(t)f2(t),−f2(t), ξ
2
2(t)f2(t), . . . , ξ

n
2 (t)f2(t)

]⊤
(18)

and the corresponding vector of parameters

θ =
[

a1, . . . , ana, b1, . . . , bnb, c1,mL2, . . . ,mLn,mR1,

c2,mR2, . . . ,mRn

]⊤
(19)

where

mL1 = 1 , cL = c1 , cR = c2
/

mR1 , (20)

and the mathematical model for a cascade system with
general output backlash can be written in the concise
form

y(t)− y(t− 1)[1− f1(t)][1− f2(t)] = φ⊤(t)θ + e(t) (21)

where e(t) is a zero mean white noise.

As the variables ξ1(t), ξ2(t), f1(t), f2(t) and the
internal variable x(t) in (18) are unmeasurable they must
be estimated. Therefore, an iterative algorithm has to
be considered for the parameter estimation. Assign the
estimate of internal variable x(t) in the s-th step as

sx(t) =
na
∑

i=1

saiu(t− i)−
nb
∑

j=1

sbj
sx(t− j) (22)

and the estimated variables ξ1(t), ξ2(t), f1(t) and f2(t)
in the s-th step as

sξ1(t) =
sx(t) + scL , (23)

sξ2(t) =
sx(t) − scR , (24)

sf1(t) = h
[

n
∑

i=1

smLi
sξi1(t)− y(t− 1)

]

, (25)

sf2(t) =
[

y(t− 1)−

n
∑

i=1

smRi
sξi2(t)

]

. (26)

Then the following error

s+1ε(t)=y(t)− y(t− 1)[1− sf1(t)][1−
sf2(t)]−

sϕ⊤(t)s+1θ

(27)
will be minimized in the estimation procedure, where
sϕ(t) is the data vector with the corresponding estimates
of variables x(t), ξ1(t), ξ2(t), f1(t) and f2(t) according

to (22)–(26) and s+1θ is the (s + 1)-st estimate of the
parameter vector.

The steps of the algorithm for the cascade system
identification are

a) Minimizing the least squares criterion based on (27),
ie

s+1J =
1

N

N
∑

t=1

s+1ε2(t) (28)

where N is the number of measured input/output sam-

ples, the estimates of parameters s+1θ are computed
using sϕ(t) with the s-th estimates of variables sx(t),
sξ1(t),

sξ2(t),
sf1(t) and sf2(t).
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Fig. 4. Example 1 – general output backlash

b) Using (22)–(26), the estimates of s+1ϕ(t) are eval-
uated by means of the recent estimates of corresponding

parameters.

c) If the estimation criterion is met the procedure ends,
else it continues by repeating steps a) and b).

In the first iteration, only the parameters of linear
dynamic system are estimated. However, nonzero initial

values of the general backlash parameters mR1 , cL and
cR have to be considered for evaluation of 1ϕ(t) to begin
the iterative algorithm.

4 SANDWICH SYSTEMS

WITH GENERAL BACKLASH

The so-called sandwich system consists of a linear dy-
namic system followed by a nonlinear system and this
is followed by another linear dynamic system. If the
nonlinear system is static, we speak about the Wiener-

Hammerstein system. The identification of these systems
is more complicated than that of Wiener systems and
fewer methods can be applied to deal with them, eg [28–

32]. A more complex case of sandwich system is shown
in Fig. 3 where a linear dynamic system is followed by a
general backlash, ie, a dynamic nonlinearity, and this is

followed by another linear dynamic system.

Let the input linear system be described by (16) and
the general backlash by (15), leading to (17). The output
linear dynamic system can be described by the following

difference equation (nr and ns are assumed to be known)

w(t) =

nr
∑

i=1

riy(t− i)−

ns
∑

j=1

sjw(t− j) . (29)

Then the output equation of the sandwich system
with a general backlash can be constructed in the similar

way as that of cascade system in the previous Section.
It means that the decomposition technique with half-
substitution for the key term only will be applied in (29),

where y(t − 1) will be chosen as the key term. We can

again choose the value of one parameter in (29), ie we as-
sume r1 = 1. Now the sandwich system output equation
will be

w(t) =

na
∑

i=1

aiu(t−i−1)f1(t−1)−

nb
∑

j=1

bjx(t−j−1)f1(t−1)

+ cLf1(t− 1) +

n
∑

i=2

mLiξ
i
1(t− 1)f1(t− 1)+

mR1x(t− 1)f2(t− 1)−mR1cRf2(t− 1)+

n
∑

i=2

mRiξ
i
2(t−1)f2(t−1)+y(t−2)[1−f1(t−1)][1−f2(t−1)]

+

nr
∑

i=2

riy(t− i)−

ns
∑

j=1

sjw(t − j) (30)

where the parameters of input and output linear systems
and those of general backlash are separated and the equa-
tion is quasi-linear as the variables ξ11(t), ξ2(t), f1(t)
and f2(t) and the internal variables x(t) and y(t) depend
on the corresponding parameters. Defining the vector of
parameters

Θ =
[

a1, . . . , ana, b1, . . . , bnb, c1,mL2, . . . ,mLn,

mR1, c2,mR2, . . . ,mRn, r2, . . . , rnr, s1, . . . , sns
]⊤

(31)

where

mL1 = 1 , r1 = 1 , cL = c1 , cR = c2
/

mR1 , (32)

and the vector of data

Φ(t) =
[

u(t− 2)f1(t− 1), . . . , u(t− na− 1)f1(t− 1),

− x(t− 2)f1(t− 1), . . . ,−x(t− nb− 1)f1(t− 1),

f1(t− 1), ξ21(t− 1)f1(t− 1), . . . , ξn1 (t− 1)f1(t− 1),

x(t− 1)f2(t− 1),−f2(t− 1), ξ22(t− 1)f2(t− 1), . . . ,

ξn2 (t− 1)f2(t− 1), y(t− 2), . . . , y(t− nr),

− w(t − 1), . . . ,−w(t− ns)
]⊤

(33)

the mathematical model for the sandwich system with
general backlash can be written in the vector form as

w(t)−y(t−2)[1−f1(t−1)][1−f2(t−1)] = Φ⊤(t)Θ+e(t) ,
(34)

where e(t) is a zero mean white noise.

Again the variables ξ1(t), ξ2(t), f1(t), f2(t) and the
internal variables x(t), y(t) are unmeasurable and must
be estimated similarly as in the previous Section. Assume
the estimates of x(t) in the s-th step are given by (22)
and the estimated variables ξ1(t), ξ2(t), f1(t) and f2(t)
in the s-th step are given by (23)–(26). The estimate of
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Fig. 7. Example 1 – parameter estimates – general backlash

internal variable y(t) in the s-th step can be written as
follows

sy(t) =

na
∑

i=1

saiu(t− i)sf1(t)−

nb
∑

j=1

sbj
sx(t− j)sf1(t)+

scL
sf1(t) +

n
∑

i=2

smLi
sξi1(t)

sf1(t) +
smR1

sx(t)sf2(t)−

smR1
scR

sf2(t) +

n
∑

i=2

smRi
sξi2(t)

sf2(t)+

sy(t− 1)[1− sf1(t)][1 −
sf2(t)] . (35)

Then the following error

s+1ε(t) = w(t) − sy(t− 2)[1− sf1(t− 1)][1− sf2(t− 1)]−

sΦ⊤(t)s+1Θ (36)

will be minimized in the estimation procedure, where
sΦ(t) is the data vector with the corresponding estimates
of variables x(t), ξ1(t), ξ2(t), f1(t), f2(t) and y(t) ac-

cording to (22)–(26) and (35) and s+1Θ is the (s+ 1)-st
estimate of the parameter vector.

The steps of the algorithm for the sandwich system
identification are:

a) Minimizing the least squares criterion based on (36)

the estimates of parameters s+1Θ are computed using

sΦ(t) with the s-th estimates of variables sx(t), sξ1(t),
sξ2(t),

sf1(t),
sf2(t) and sy(t).

b) Using (22)–(26) and (35) the estimates of s+1Φ(t)
are evaluated by means of the recent estimates of corre-
sponding parameters.

c) If the estimation criterion is met the procedure ends,
else it continues by repeating steps a) and b).

In the first iteration, only the parameters of the input
linear dynamic system are estimated. Again, nonzero ini-
tial values of the general backlash parameters mR1 , cL
and cR have to be considered for evaluation of 1Φ(t) to
begin the iterative algorithm.

5 SIMULATION STUDIES

The algorithms for the identification of cascade and
sandwich systems with backlash were implemented and
tested in MATLAB. The feasibility of the proposed meth-
ods is illustrated on the following examples.

Example 1. The cascade system with the linear dy-
namic system given by the difference equation

x(t) = 0.7u(t−1)+0.5u(t−2)+0.2x(t−1)−0.35x(t−2)

was followed by the general backlash (Fig. 4) with pa-
rameters mL2 = −0.3, mL3 = 0.3, cL = 0.6, mR1 = 1.5,
mR2 = 0.4, mR3 = 0.2, cR = 0.5. The identification
was performed on the basis of 1500 samples of uniformly
distributed random inputs with |u(t)| < 1.0 and simu-
lated outputs. Normally distributed random noise with
zero mean and the signal to noise ratio (the square root
of the ratio of output and noise variances) SNR = 25
was added to the outputs. The iterative estimation algo-
rithm was applied with the initial values mR1 = 1.0 and
cL = cR = 0.001 for the first estimate of ξ1(t), ξ2(t),
f1(t) and f2(t). The process of linear system parameter
estimation is shown in Fig. 5, while that of general back-
lash is shown in Fig. 6 (the top-down order of parameters
is mR1 , cL , cR , mR2 , mL3 , mR3 , mL2 ). The estimates
converge to the values of given parameters after 10 itera-
tions.
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Example 2. The sandwich system with internal back-
lash was considered with the input linear dynamic system
given by the difference equation

x(t) = 0.8u(t−1)+0.2u(t−2)−0.2x(t−1)+0.2x(t−2) .

The general backlash (Fig. 7) with parameters mL2 =
0.1, mL3 = 0.3, cL = 0.4, mR1 = 0.75, mR2 = 0.2,
mR3 = 0.6, cR = 0.5 was followed by the output linear
system given by the difference equation

w(t) = y(t−1)+0.15y(t−2)+0.2w(t−1)−0.35w(t−2) .

The identification was performed on the basis of 1500
samples of uniformly distributed random inputs with
|u(t)| < 1.0 and simulated outputs. Normally distributed
random noise with zero mean and SNR = 100 was added
to the outputs. The iterative estimation algorithm was
applied with the initial values mR = 1.25 and cL = cR =
0.1 for the first estimates of ξ1(t), ξ2(t), f1(t) and f2(t).
The process of parameter estimation is shown in Fig. 8
for the parameters of the input linear system, in Fig. 9 for
the general backlash parameters (the top-down order of
parameters is mR1 , mR3 , cR , cL , mL3 , mR2 , mL2 ) and
in Fig. 10 for the parameters of the output linear system.
The estimates converge to the values of given parameters
after about 15 iterations.

Although a general convergence proof for parameter
estimation algorithms with internal variable estimation is

not available [24, 25], the above examples show that the
convergence rate is relatively high despite the additive
output noise.

6 CONCLUSIONS

In this paper, a recently proposed analytic form of
general backlash characteristic description was used in
mathematical models of cascade and sandwich systems
including this type of dynamic nonlinearity. Iterative al-
gorithms were proposed for both cases enabling simulta-
neous estimation of the general backlash parameters and
the parameters of the cascaded linear dynamic systems
on the basis of input/output data. The feasibility of both
identification methods was shown in simulation studies.

The identification of systems with unknown backlash
is of major relevance to many control applications deal-
ing with mechanical, hydraulic, pneumatic, magnetic, and
piezoelectric systems. Introduction of the general back-
lash leads to more precise descriptions and significantly
contributes to better results in control of the cascade sys-
tem with output general backlash and the sandwich sys-
tem with internal general backlash. Finally note that the
proposed forms of cascade and sandwich models can be
used in recursive identification algorithms, too.
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